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A critical element of word of mouth (WOM) or buzz marketing is to identify seeds, often central actors

with high degree in the social network. Seed identification typically requires data on the relevant network

structure, which is often unavailable. We examine the impact of WOM seeding strategies motivated by the

friendship paradox, which can obtain more central nodes without knowing network structure. Higher-degree

nodes may be less effective as seeds if these nodes communicate less with neighbors or are less persuasive when

they communicate; therefore whether friendship paradox motivated seeding strategies increase or reduce

WOM and adoption remains an empirical question. We develop and estimate a model of WOM and adoption

using data on microfinance adoption across village social networks in India. Counterfactuals show that the

proposed strategies with limited seeds are about 13-30% more effective in increasing adoption relative to

random seeding. These strategies are also on average 5-11% more effective than the firm’s leader seeding

strategy. We also find these strategies are relatively more effective when we have fewer seeds.
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1. Introduction

Firm-initiated and consumer-driven word of mouth (WOM) marketing (often referred to as buzz

marketing), has received a lot of attention, and has proven effective in increasing adoption across a

wide range of products and services. WOM has been examined both theoretically and empirically

using a wide range of modeling approaches, to understand both the motivations to engage in it

and its various impacts (Godes and Mayzlin 2009, Iyengar et al. 2011, Campbell et al. 2017, Berger

and Iyengar 2013, Cai et al. 2015).

An important question in WOM marketing is how to choose appropriate seeds. There are a few

broad approaches considered in the literature. The first approach uses network data on connections

to identify central individuals (e.g. degree or eigenvector centrality) to obtain the most WOM

(Tucker 2008, Goldenberg et al. 2009, Libai et al. 2013). Recently, researchers have tried to combine

*We acknowledge helpful feedback from Eric Bradlow, Tat Chan, Khai Chiong, and participants in seminars at the

Four-school Marketing Conference, Marketing Dynamics Conference, Massachusetts Institute of Technology, Univer-

sity of California at San Diego, University of Toronto, Yale Computational Social Science Seminar.
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multiple networks among the same individuals to identify seeds with specific relationship types that

can lead to higher adoption (Chen et al. 2017). The second approach uses individual characteristics

to identify how opinion leaders can be used to seed networks (Iyengar et al. 2011). But opinion

leaders are often highly context-specific and may not span multiple categories, e.g. an opinion

leader in fashion might not be an opinion leader for consumer electronics or healthcare (King

and Summers 1970). Another approach is to identify seeds based on local network properties and

community characteristics to achieve higher diffusion (Yoganarasimhan 2012). But there might be

tradeoffs in that network structures that enable high diversity of content might not be efficient at

accelerating the flow of information (Aral and Van Alstyne 2011).1

Broadly, the emphasis in the recent literature has been to improve seed identification using

more comprehensive network data. However, even with easier access to online social networks,

data on the relevant network for a particular purpose is often unavailable. For example, even if

one had access to the Facebook (or similar) social networks of everyone including physicians, the

relevant physician-to-physician network data for seeding a new drug may be unavailable. Even

within a specific context, there are many challenges in gathering accurate network data, including

the time and effort required to obtain this data (Stark 2018). Moreover, the dynamically evolving

nature of connections and relationships requires frequent updating of such data. Social media data,

which are relatively easier to access, also have the challenge that activity there maybe more of

a substitute than a complement to offline or other social interactions and may not be effective

in high-involvement applications (Borgatti et al. 2009). Given all of the above, a theoretically

grounded seeding approach that can be used in the absence of complete data on network structure

can be valuable.

The friendship paradox suggests such just such an approach to obtain higher degree seeds, by

choosing among random friends of an initially chosen set of individuals. We empirically investi-

gate whether the friendship paradox can indeed be leveraged to choose seeds and generate higher

WOM and adoption when the relevant network structure information is unavailable. Specifically,

we address the following research questions:

1. Can friendship paradox based seeding strategies improve WOM and adoption relative to

random seeding? Can it improve upon an opinion leader based strategy chosen by the firm?

2. Can hybrid approaches leveraging the friendship paradox along with leadership characteristics

lead to higher adoption?

3. How does the extent of initial seeding (proportion of the network seeded) impact absolute and

relative performance of the strategies?

1 There is a complementary literature in computer science inspired by Domingos and Richardson (2001) on approxi-
mate seeding algorithms for influence maximization with performance guarantees. These algorithms differ in the level
of network information used. For example, Kempe et al. (2003) use full network information, Eckles et al. (2019) use
partial network information and Wilder et al. (2018) consider algorithms when network information is unknown.
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Friendship Paradox Motivated Network Seeding Strategies. The friendship paradox statement

“On average, your friends have more friends than you do” is based on a mathematical result that

holds independent of network structure, because popular people are always over-represented in the

set of friends (Feld 1991, Kumar et al. 2024). This strategy has been suggested for immunization

of networks and sensors on networks (Cohen et al. 2003, Christakis and Fowler 2010). The basic

intuition is simple: suppose we choose an initial node at random (so each node has an equal

probability of being selected) and then choose one friend of that node at random. This is termed

the ego-based or local friend strategy. The chosen friend of the initial mode is likely to be more

highly connected than average, since, by selection, a highly connected node will be in the friend

set of more people, and therefore more likely to be nominated as a friend. For intuition, consider

two extreme examples: (i) a simple hub-spoke network with a central node and several peripheral

nodes, all connected only to the central node. Each node has equal probability of being initially

selected, so we are very likely to get a peripheral node. When asked to nominate a friend, each of

the peripheral nodes can only suggest the central node, who is their only friend; (ii) an isolated

node without any connections. That node would never be chosen by anyone on the network as a

friend.

The friendship paradox thus suggests potential strategies for sampling higher degree individuals

(those with more friends) in any network, without knowing network structure. For example, one

could select a random friend each for a set of randomly chosen individuals. This strategy only

requires access to a set of randomly sampled individuals, and the ability to obtain a random friend

from them. Further, one can easily obtain the relevant network, by choosing the list of relevant

friends from which to sample for the particular seeding problem at hand, e.g. for physician influence

networks we might ask a doctor to suggest the contact of a random physician friend with whom

they discuss professional matters.

The theoretical results on the friendship paradox guarantee that individuals with higher than

average degree are obtained in expectation no matter what the underlying network, allowing for

potentially better seeds (Kumar et al. 2024). However, even though the sampled individuals have

higher expected degree, their use as seeds cannot guarantee greater WOM or product adoption,

because the extent to which higher degree individuals communicate with friends in their network

about the product is an empirical question. For instance, Kim et al. (2015) found that selecting

the highest degree nodes did not always yield greater adoption than with random seeding.

Challenges in evaluating network seeding strategies. A seemingly straightforward approach to

empirically evaluate the effectiveness of alternative seeding challenges is to conduct a field experi-

ment where different seeding strategies are assigned at random to different networks. However, it is

a challenge to obtain credible, robust answers on the effectiveness of various seeding strategies using
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standard experimental approaches because effective matching of treatment and control groups at

the level of network structure is not typically feasible through randomization.2 Network structure

plays a crucial role in diffusion processes, and even small changes in structure can make contagion

cascades possible (Centola 2010, Katona et al. 2011). Therefore, merely comparing adoption dif-

ferences across seeding strategies, without appropriate controls for how network structure impacts

communication and adoption within each network, would not be credible or robust.

Kim et al. (2015) conducted a field experiment by randomizing seeding treatments for two health-

related interventions across 32 Honduran villages and compare the average adoption performance

of random seeding and friend of random individual seeding. They found mixed results about the

effectiveness of friendship paradox based seeding in two health-based interventions—adoption of

multivitamins and chlorine-based water purification. Beyond the challenges in assessing differences

in treatment and control groups (discussed earlier), there are important differences in empirical

contexts. First, target seeds in Kim et al. (2015) received an intervention (a product along with

education), whereas in our case the seeds only decide whether to adopt the product. Second, seeds

received tickets to distribute to their friends and the outcome measure was ticket redemption. Due

to the focus on ticket redemption, word of mouth communication beyond neighbors of non-ticketed

households and the role of non-adopters in information diffusion is ignored. But these aspects of

communication that we model and account for are typically important in new product adoption.

Relatedly, the issue of better control and precision to detect differences in effectiveness of stochas-

tic seeding strategies using field experimental data treated at the network level has been considered

by Chin et al. (2022) using the potential outcomes framework (Rubin 2005). This is a useful

approach, but there remain important practical challenges. First, the approach only works for

stochastic seeding, while our approach works for both deterministic and stochastic seeding. In fact,

for the data we use from Banerjee et al. (2013), the approach would not be applicable, because

leaders are chosen deterministically as seeds in all villages. Further, it is unclear if the technique

can be adapted to answer the richer set of questions around leader and hybrid seeding strategies.

Second, due to the nature of the algorithm, the improvements in precision occur only with rela-

tively small seed sets (<5), which is unrealistic for many marketing settings except with very small

network sizes. Substantively, unlike our results, they detect no difference between random friend

and random strategies. This difference could be because the networks they consider have relatively

small degree range—a factor that is known to make random friend strategies less effective (Kumar

et al. 2024).3

2 The number of possible networks structures grows exponentially in the number of nodes; for example if N = 100

nodes, there are 2
N(N−1)

2 ≈ 101490 possible undirected network structures, and even more for directed networks.

3 The data used in Chin et al. (2022) is from the studies by Cai et al. (2015) and Paluck et al. (2016). Cai et al. (2015)
include 185 village networks, and states the following (with the exception of 2 villages): “The social network survey
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Our approach. Our approach involves estimating a structural model of diffusion of WOM and

product adoption over networks, leveraging variation arising from seeding strategies across networks

as well as the temporal trajectory. The modeling follows a flexible parametric approach, and allows

us to incorporate different elements of the diffusion process. The method combined with multiple

networks also allows us to overcome practical challenges in randomization when conducting network

based field experiments involving seeding. This aspect allows us to assess robustness of the results

to differences in networks and features of the data generation and WOM communication process.

Specifically, the model allows for a flexible relationship between degree and WOM — a critical

ingredient to evaluating the benefits of increasing degree through the friendship paradox. Further,

unlike typical diffusion models, which assume that all WOM arises from adopters, the model allows

WOM from both adopters and non-adopters. We also provide a novel nonparametric identification

argument that leverages the feature that leaders were chosen as seeds, along with the shape of the

adoption trajectory to identify differential effects for leaders versus non-leaders.

Estimating such a WOM diffusion model is challenging in practice because the necessary multi-

network data is typically unavailable. Most diffusion models are estimated based on one product’s

time series of adoption through one market (or social network). Further, the original seeding is

typically unobserved, and even if observed it is often not possible to identify the effect of different

seeding without multiple diffusion paths across similar networks. Finally, the impact of WOM

might be misidentified in the presence of advertising (Van den Bulte and Lilien 2001), attributing

to WOM what was actually achieved by advertising.

We address these challenges using data on one product (microfinance) adoption across several

independent and relatively isolated village social networks. The firm’s seeding across the different

villages leads to exogenous variation in network position and characteristics of seeds, which aids

in identifying the impact of seeding. Also, there was no advertising or promotion activity by the

firm that would confound WOM effects, which is known to bias estimates of impact (Van den

Bulte and Lilien 2001). Based on the estimates, we simulate counterfactuals on WOM and product

adoption across these villages as a function of alternative seeding strategies. Finally, we compare

the effectiveness of the friendship paradox based ego-based or Local friend strategy (Kumar et al.

2024) and hybrid seeding strategies relative to random and opinion leader seeding strategies. We

use the term “local friend” for simplicity to refer to the ego-based strategy.

asked household heads to list five close friends, either within or outside the village, with whom they most frequently
discuss rice production or financial issues.” Similarly, Paluck et al. (2016) asks participants to list a maximum of 10
friends.
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Findings. We find that higher degree nodes are less likely to communicate WOM among adopters

and nonadopters. However, despite this negative correlation between degree and WOM, we estimate

that the friendship paradox (ego-based) local friend strategy provides a substantial improvement

over the random strategy. It also improves effectiveness over a leader seeding strategy used by the

firm. When the local friend strategy is used in conjunction with the leader strategy, the hybrid

provides a further marginal improvement. We find that informationally more demanding strategies

like top degree and top diffusion perform better than other strategies, obtaining a much higher

improvement, but at the cost of requiring information on network structure. Finally, we find that

when the proportion of seeds is lower, the relative effectiveness of the local friend strategy is greater.

Contributions. Our paper makes a number of contributions to the literature on seeding strategies

and diffusion. The present paper is among the first to empirically demonstrate the potential value of

seeding a random friend over random nodes for word of mouth communication in a robust manner.

We do so with a micro-model of household decision to adopt and communicate, that is flexible

enough to permit higher degree nodes to communicate less per-capita with friends and distinguish

WOM from leaders and non-leaders. Second, we compare leader seeding chosen by the firm to

the proposed Local friend seeding. To estimate differential effects of leaders from non-leaders, we

develop a novel nonparametric identification strategy that uses the temporal trajectory of adoption

diffusion. Finally, we evaluate counterfactual hybrid strategies using both friendship paradox ideas

and leadership characteristics and detail which types of hybrid strategies obtain greater adoption.

Overall, we demonstrate that our results around the superiority of informationally light random

friend seeding is robust to various specification checks.

2. Data

We use panel data collected by Banerjee et al. (2013) on the diffusion and adoption of microfinance

across households belonging to 43 rural villages in southern India in combination with rich network

data on the social connections among the households within each village.

The microfinance firm identified opinion leaders based on leader and social criteria in each village

prior to entry and seeded information about the microfinance product among these individuals

first. Table 1 provides the summary statistics of the village household networks. Households have

an average of more than 4 individuals. Averaged across villages, 61% of households have private

electricity, but only 28% of households have private latrines. There is relatively lower variation in

the number of people relative to rooms or beds across the households.

We use the union of all undirected network relationships detailed in the data.4 There is consid-

erable variation in the extent of relationships among households. Each village contains on average

4 We use the union since communication can happen during any type of interaction. Similarly, we convert directed
ties (e.g., survey questions about about borrowing items like rice or fuel oil) to undirected ties since communication
about the product can be bidirectional during any such asymmetric interaction.
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Table 1 Village Network Statistics

Statistic Mean SD Min Max

Household Characteristics:
Number of Households in Village 212.23 53.54 107.00 341.00
People in Household 4.77 0.37 4.20 5.69
Rooms in Household 2.31 0.41 0.75 2.94
Beds in Household 0.88 0.45 0.29 2.27
Proportion of Households with Electricity 0.61 0.16 0.11 0.89
Proportion of Households with Latrines 0.28 0.15 0.02 0.90
Proportion of Households with Leaders 0.13 0.03 0.07 0.21

Degree:
Mean 9.66 1.64 6.82 13.59
Standard Deviation 7.09 1.32 5.18 11.02
Minimum 1.00 0.00 1.00 1.00
Maximum 39.72 13.01 23.00 90.00
Mean of Leaders 12.93 2.59 8.88 18.82

Note: Unit of analysis is a village network (N=43)

Table 2 Adoption across Household Types (%)

Statistic Mean SD Min Max
All Households 19.38 8.16 7.66 45.08
Leader Households 24.71 12.64 3.57 53.85
Follower Households 18.68 8.19 7.30 43.71
Non-electrified Households 23.68 10.48 6.94 55.46
Electrified Households 15.87 7.52 4.76 34.43
Non-latrine Households 21.74 9.87 7.03 51.25
Latrine Households 14.68 9.30 0.00 36.36

Note: Unit of analysis is a village network (N=43)

212 households. Across villages, the mean degree (connections) of households is around 9, the mean

of the standard deviation of degree for households at the village level is large at around 7.1, with

the minimum and maximum reflecting wide variation. The mean degree of opinion leaders is higher

than the average (34% more) and close to the maximum of average degree across villages. We

illustrate the network for Village 1 in Figure 1 as an example.

The primary performance comparison in our study is the adoption of microfinance by households

across the villages. Table 2 summarizes adoption across household types. We find that 19.4% of

households adopt microfinance, with significant variation across the villages. Opinion leaders are

more likely to adopt than followers, perhaps a feature of the information propagation chosen by the

firm, which targeted these leaders in each village. Adoption is correlated with household charac-

teristics; electrified households are less likely to adopt compared to non-electrified, and households
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Figure 1 Social Network of Households in Village 1

with a latrine are less likely to adopt than those without. Broadly, these statistics reflect the reality

that microfinance is used by poorer households in emerging markets.

3. Model and Estimation

We use a model of WOM and product adoption across a social network. Using network terminology,

households are nodes and connections between them are edges, and network neighbors are friends.

Households need to be informed about the product in order to adopt. Households who are informed

communicate with their neighbors probabilistically, even if they have not adopted. We build upon

the model of Banerjee et al. (2013), with key adaptations required to study our research question

related to the friendship paradox. First, we allow the WOM probability from a node to differ by

degree, reflecting the idea that WOM propensity may depend on this factor. Second, we allow the

WOM probability from a node to differ for those identified as leaders by the firm. Banerjee et al.

(2013) allow the probability of WOM to depend on adoption status but not on the number of

connections (degree) or leader status. Our extensions are specifically motivated by the strategies

examined here. Recall that our approach based on Friendship Paradox obtains higher degree nodes

than average. Thus, we chose a conservative approach, allowing for the idea that whereas high

degree nodes may be better due to their degree, they might also be less likely to communicate with

their friends or network neighbors. If we did not account for that, then we could be biasing the

results in favor of the friendship paradox strategy. Similarly, accounting for differences in WOM

among firm-designated “leaders” is critical to assess the effectiveness of leader strategies.
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Baseline Model

Word of Mouth Communication: We provide an overview of the WOM model that occurs sepa-

rately over time in each network. Further details are provided in §EC.3 in the supplement.

We model households as belonging to Uninformed (U), Informed (I), Adopter (A) and Non-

adopter (NA). Initially, all households are uninformed. The initial seeds become informed (I) due

to the firm’s communication. In each period, all informed nodes communicate probabilistically with

each of their neighbors, and the probability of such communication is ps(D), defined below. Such

communication occurs at all time periods, motivated by in-person interactions that households have

with their network neighbors. We model these events as being independent draws across the set

of neighbors of a household. Households become fully informed following a WOM communication

received from any friend. Once a household becomes newly informed (transition from U to I state),

they make a decision on adoption, and they do not revisit the adoption choice in subsequent

periods.

WOM in the model occurs in the network when a household receives information (only) from its

informed neighbors. We allow WOM probability ps(D) to depend on adoption status s and degree

D.

ps(D) = qsmin +(qsmax − qsmin)

[
D−Dmin

Dmax −Dmin

]
(1)

The WOM probability ps(D) refers to the probability that a node with degree D and adoptions

status s (either adopter or non-adopter) communicates with each of its network neighbors. Thus,

qsmin represents the WOM probability for a node with minimum degree (D=Dmin), whereas q
s
max

represents the WOM probability for the highest degree node (D =Dmax) and adoption status is

denoted s. These quantities are based on the minimum and maximum degrees across all networks.

Both parameters depend on the adoption status s ∈ {NA,A} of the node, with NA indicating

“Not Adopted” and A indicating “Adopted.” The specification in Banerjee et al. (2013) is a special

case of this model when qmin = qmax = q, such that WOM is independent of degree. Nodes continue

communicating with neighbors in periods after they become informed.

Adoption: When a household becomes aware of the product at time t, the household’s decision

of whether to adopt, y ∈ {0,1}, is modeled as a standard logit choice with observed heterogeneity.

The utility of household i from adoption and non-adoption is:

ui(y= 1) = β0 +βXi + ϵi,1

ui(y= 0) = ϵi,0 (2)

Xi represents the vector of leader characteristics of household i, β the vector of coefficients, and

ϵi,s are distributed as Type I Extreme Value random variables.
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After a node becomes informed either as an initial seed or through a neighbor, further WOM from

others does not impact the likelihood of adoption. Thus, WOM is purely informational rather than

persuasive in this baseline. While the baseline model provides a useful benchmark, it leads to the

question of whether there are more complex or sophisticated decision processes for communication

and adoption, which we examine and model below.

Endorsement or Persuasion

In the endorsement or persuasion model, (termed “complex contagion” by Centola and Macy

(2007)), likelihood of adoption varies based on whether WOM is received from more friends. Fol-

lowing Banerjee et al. (2013), the utility of adoption is:

ui(y= 1) = β0 +βXi +λFit + ϵi,1 (3)

where Fit is the fraction of neighbors who have informed i about microfinance and λ is the endorse-

ment parameter. The utility of non-adoption remains unchanged.

Leader Effects

Leaders selected as seeds by the firm may have unobserved individual characteristics (leadership)

that lead to higher probability of WOM relative to non-leaders, over and above their higher degree.

Further, firms may have provided specific information to their selected leader seeds, which may

make their WOM more effective.5 To capture such differences, we extend the baseline model to

allow for differential probability of WOM for leaders:

psi (D) = qsmin +(qsmax − qsmin)

[
D−Dmin

Dmax −Dmin

]
+ qℓ1[i∈Leaders] (4)

Thus, if leaders are especially effective in spreading WOM, we would find the parameter qℓ to be

positive, whereas a negative value would indicate leaders are less effective than non-leaders.6

Nonlinear Effect of Degree

Finally, we allow WOM likelihood to be nonlinear in degree by allowing a quadratic effect, which

can also capture potential non-monotonicity with respect to degree.

ps(D) = qsmin +(qsmax − qsmin)

[
D−Dmin

Dmax −Dmin

]
+ qQ

[
D−Dmin

Dmax −Dmin

]2
(5)

where qQ represents the parameter corresponding to the quadratic term.

5 Our model does not distinguish between incidence of WOM and its effectiveness, but so long as both those effects
do not change in the counterfactual, the strategy comparisons remain valid.

6 We note that since all initial seeds are “leaders,” it aids the leader fixed effect identification as any impact of leader
fixed effect will be stronger in the initial periods and can be therefore identified off the adoption trajectory. More
details about the identification of the leader fixed effect is detailed in §EC.2.
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We examine a number of models, combining these modeling elements, as summarized in Table 3.

Overall, we have 8 specifications. The first 4 models have no endorsement or persuasion effect

(denoted by superscript E= 0). In ME=0
1 , the WOM probability does not depend on degree. This

model is identical to the model in Banerjee et al. (2013). In ME=0
2 , the WOM probability depends

on degree. ME=0
3 incorporates a differential effect for leaders to the prior model specification. ME=0

4

allows for a nonlinear relationship between WOM probability and degree with a quadratic function.

The next four models are identical to the first four, but with an endorsement effect (denoted by

superscript E= 1).

Table 3 Summary of WOM Model Components

ME=0
1 ME=0

2 ME=0
3 ME=0

4 ME=1
1 ME=1

2 ME=1
3 ME=1

4

Endorsement × × × × ✓ ✓ ✓ ✓
Degree-dependent WOM × ✓ ✓ ✓ × ✓ ✓ ✓
Leader Differential WOM × × ✓ ✓ × × ✓ ✓
Nonlinear Effect: WOM and Degree × × × ✓ × × × ✓

Estimation

The model estimation proceeds in three steps similar to Banerjee et al. (2013), with specific differ-

ences. The estimation procedure is detailed in Supplement §EC.3. Note that we use optimization

algorithms for estimation rather than grid search. Here we provide a high level description of the

three steps.

Step 1: Adoption Process. We estimate the adoption process parameters β with a logistic regres-

sion using the adoption decisions of only the initially seeded individuals based on equation (2).

Step 2: WOM Process. We estimate the WOM process parameters (qNA
min, q

NA
max, q

A
min, q

A
max) as well

as endorsement (λ), leader effect (qℓ) and quadratic effect (qQ) using the Simulated Method of

Moments (SMM). We use the same set of cross sectional moments used in Banerjee et al. (2013),

supplemented by time series moments, all listed in Table 4. Overall, the moments capture key

aspects of diffusion within a network, both globally over the entire network and locally across

connections. The first moment is global, matching overall adoption levels in the network. Moments

2-4 are local moments that fit household level adoption as a function of adoption characteristics

of their neighbors, and help identify communication probabilities for non-adopters and adopters

respectively. Moments 5 and 6 are also local moments in that they capture covariance in adoption

between a household and its first and second degree neighbors respectively.7 Next, we include time

series moments that have not been used in Banerjee et al. (2013). Moments 7-9 characterize the

7 We provide precise specification of the moments and the rationale for using them in §EC.3.
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Table 4 List of Moments

# Description

1. Proportion of seeds adopting
2. Proportion of households with no adopting neighbors who have adopted
3. Proportion of neighbors of adopting seeds who have adopted
4. Proportion of neighbors of non-adopting seeds who have adopted
5. Covariance between a household’s adoption and average adoption of its first degree neighbors
6. Covariance between a household’s adoption and average adoption of its second degree neighbors
7,8,9 Cumulative adoption upto time t= 1,2,3 (Time series moments)

temporal trajectory of adoption within villages, which helps us in the identification of the leader

fixed effect, as detailed in §EC.2. We detail how each moment informs the estimation of each

parameter, i.e. the sensitivity of parameter estimates to each of the cross sectional and time series

moments based on the approach of Andrews et al. (2017) in §EC.5.6.

The objective function for the parameter vector θ is defined as in Banerjee et al. (2013):

S(θ) =

(
1

S

S∑
s=1

[
mS(θ)−mD

]′)
W

(
1

S

S∑
s=1

[
mS(θ)−mD

])
(6)

where mS(θ) represents the vector of model simulated moments, mD denotes the vector of data

moments. W is the weighing matrix, which can either be estimated with a two–stage approach or

be set to be the identity matrix to obtain consistent estimates. The estimator is then defined as:

θ̂= argmin
θ

S(θ) (7)

Step 3: Standard Errors. We estimate the standard errors using a block-bootstrap resampling

procedure of sampling with replacement, treating each network as a block.

4. Results

We use data from the villages where microfinance was introduced to estimate the proposed models.

We first detail the results from the adoption model in Table 5. The number of beds in the house-

hold and the rooms per person are negatively associated with adoption probability, and access

to a private latrine in the home and rooms per person has a negative impact. The estimates are

consistent with the idea that microfinance is used by relatively poor households without access to

traditional banking services.8

Table 6 reports the estimates for the 8 WOM models. We use the model specifications ME=0
2

(without endorsement) and ME=1
2 (with endorsement) as our primary specifications for discussion,

although the results are provided for all models. We note that our primary results of interest

8 We report a variety of adoption models in Section EC.5.5; the results presented here is for the best fitting (lowest
AIC) model.
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Table 5 Adoption: DV: Microfinance Adoption (1=yes, 0=no).

Variable Estimate SE

Constant −1.210∗∗∗ (0.322)
Rooms 0.007 (0.085)
Beds −0.283∗∗ (0.143)
(No) Electricity 0.156 (0.123)
(No) Latrine 0.179∗∗ (0.080)
Rooms per person −1.023∗∗∗ (0.392)
Beds per person 1.147∗ (0.656)

Log Likelihood −603.093

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

continue to hold qualitatively across all the model specifications. For some models, it might be

more relevant to use the temporal variation.9

Table 6 Model Estimates

Model Specification: Estimates (Standard Errors)
No Endorsement With Endorsement

Parameter Symbol ME=0
1 ME=0

2 ME=0
3 ME=0

4 ME=1
1 ME=1

2 ME=1
3 ME=1

4

Non-adopter lowest degree qNA
min 0.186 0.177 0.123 0.157 0.016 0.211 0.137 0.136

(0.075) (0.0845) (0.0866) (0.0865) (0.111) (0.124) (0.0592) (0.078)
Non-adopter highest degree qNA

max 0.186 0.030 0.116 0.078 0.016 0.054 0.078 0.084
(0.075) (0.113) (0.122) (0.0958) (0.111) (0.109) (0.0423) (0.0639)

Adopter lowest degree qAmin 0.297 0.382 0.345 0.389 0.351 0.387 0.375 0.352
(0.0921) (0.113) (0.0876) (0.0992) (0.0703) (0.0846) (0.0728) (0.0693)

Adopter highest degree qAmax 0.297 0.305 0.383 0.271 0.351 0.275 0.315 0.249
(0.0921) (0.104) (0.0787) (0.0859) (0.0703) (0.0944) (0.0831) (0.0844)

Leader Effect qℓ – – -0.091 0.046 – – 0.054 0.067
(0.0907) (0.0814) (0.0554) (0.0612)

Quadratic Effect qQ – – – -0.010 – – – -0.108
(0.0407) (0.0396)

Endorsement λ – – – – 0.417 0.312 0.134 0.157
(0.0281) (0.0419) (0.0206) (0.048)

In Models ME=0
1 and ME=1

1 , grayed out parameters are not estimated since qsmin = qsmax.

We note that this communication is a one-on-one process. We first interpret the parameter

estimates of the preferred model specifications M2. We begin with the case of no endorsement,

ME=0
2 . First, the WOM probability for adopters is greater than that of non-adopters (qAmin > qNA

min

and qAmax > qNA
max). Next, we examine degree dependence. For low-degree households, the WOM

probability is significant, whereas for high-degree households, it lacks significance (qNA
min > qNA

max).

9 We estimate various other models to test different specifications of the data generating process. We mention a
few here. First, we allowed a “broadcast process” to consider the effect of an initial village meeting by seeds to
communicate to all households. Second, we allowed for a ”leader certification” effect to test for an incremental effect
of leader endorsement on adoption. Third, we allowed opinion leader seeds to be chosen by occupation, where leader
effects are conferred on all members with that occupation. The counterfactual performance under all of the models
are provided in §EC.4.3).
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Thus, while low-degree non-adopter households are open to communicating with their neighbors

without adopting the product, their more connected neighbors are not. For adopters, the WOM

magnitude for both low-degree and high-degree households is more comparable, with the same

ordering. Despite this, high-degree households communicate more overall since they have more

connections.

From ME=0
3 and ME=0

4 , we find no differential effect of leaders; the parameter qℓ is small in

magnitude and not statistically significant, implying that leaders do not communicate more than

others. Similarly, for the quadratic effect, we do not find qQ to be substantial.

Next is the set of models (E = 1) with an endorsement effect. In the preferred model ME=1
2 , we

find that the relative ordering of the effects is similar to that of the model without endorsement,

though the WOM effect for non-adopters is not significant. We find the endorsement effect λ to

be positive and significant across all models. The other parameters are qualitatively the same as

for the models without endorsement. Specifically, in all cases, for both non-adopters and adopters,

lower-degree households communicate more than higher-degree households. Again, we find the

leader effect to be not significant across all of these models, but the quadratic effect is marginally

significant in this case.

In the supplement §EC.5, we consider a number of other additional models of the data generating

process.10

5. Counterfactuals

We use counterfactuals to evaluate various seeding strategies based on Friend, Leader, Hybrid and

Network Information categories described in Table 7. Within the Friend category, we examine the

impact of the local friend strategy, which samples on network neighbors of randomly chosen nodes

(households) to obtain seeds. In Leader, we examine both the “(firm’s) leader” strategy, using the

original leaders that were designated for seeding by the microfinance firm, and “like leader,” which

chooses as seeds leader-like nodes who have similar network positions as leaders. We use three

dimensions to measure network position: degree, eigenvector and power centrality (Bonacich 1987).

This helps evaluate whether the impact of seeding is due to the network position or due to the

differential impact by individual characteristics of leaders. Hybrid strategies combine the features

of sampling on friends along with information on opinion leaders. We examine two different hybrid

strategies: choosing a random friend of leader household (weak hybrid) or choosing a random leader

10 We consider a benchmark where there are only broadcasts (§EC.5.1), but no communication through networks.
In §EC.5.2, we consider a model where there is an initial broadcast by seeds, to model an initial village meeting
described in Banerjee et al. (2013). We also consider the case where leaders may be present outside the initial seed set
(§EC.5.3), and where leaders may have specific certification ability (§EC.5.4). Specifically, we show in Figure EC.3
that there is reasonable probability that seeds chosen by any of our counterfactual strategies overlap with the seeds
chosen by the firm.
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friend of leader household (strong hybrid). The difference between them is whether the resulting

seed obtain must be a leader (strong) or not (weak).

We also evaluate two network information benchmarks, top degree and top diffusion. Unlike the

above strategies, these network strategies require complete knowledge on who is connected to whom

(network structure) or the degree distribution, i.e. the number of connections of each node. If highly

connected nodes are likely to be better in accelerating adoption, the idea is to choose from the set

of highly connected nodes in the top degree strategy. Top diffusion is an approach proposed by

Banerjee et al. (2013) to identify nodes with high centrality for the purpose of information diffusion.

It requires the social network structure (adjacency matrix), but does not require knowledge of the

parameters of the diffusion process. Seeds are randomly chosen from the set of top 15% of nodes

for both top degree and top diffusion strategies. Further details about the strategies, including

informational requirements, are provided in Section EC.4.2.

Table 7 Seeding Strategies and Implementation

Category Strategy Implementation Procedure (for each of m seeds)

Friendship Local Friend Select node at random from list. Obtain one randomly chosen
friend of node as a seed.

Leader (Firm’s) Leader Select node from list of leaders

Like Leader Select leader node ℓ at random. Select the non-leader node
most similar to ℓ in terms of network properties.

Hybrid Friend of Leader
(Weak Hybrid)

Select a random leader from list of leaders. Obtain one ran-
domly chosen friend of this leader as a seed.

Leader Friend of Leader
(Strong Hybrid)

Select a random leader from list of leaders. Obtain one ran-
domly chosen friend who is also a leader to be seed.

Network
Information

Top Degree Select a seed node at random from the list of top (Top 15%)
degree (most connected) nodes .

Top Diffusion Select a seed node at random from the list of top (Top 15%)
diffusion nodes (proposed by Banerjee et al. (2013), and defined
in Table EC.4).

We use the estimated parameters from ME=1
2 for the counterfactual simulations below. In the

Supplement, we provide a comparison of the counterfactual results of all the different model spec-

ifications summarized in Table 3. We set seeding level as a percentage of households in the village,
15



so the number of households seeded varies across villages as a function of village populations. We

examine the sensitivity of the results to different seeding levels (0.5%, 1%, 5%) in Section 5.1 below.

Table 8: Comparison of Strategies (5% seeding)

Strategy
Informed (%) Adopted (%) ∆Informed(%) ∆Adopted(%)
Mean SD Mean SD over Random over Random

Random 38.77 42.19 7.56 25.58 — —
Local Friend 42.98 43.28 8.54 27.12 10.86 13.08
(Firm’s) Leader 41.70 43.03 8.25 26.70 7.54 9.13
Like Leader 41.57 42.96 8.20 26.60 7.21 8.48

Hybrid Strategies:
Friend of Leader 43.75 43.52 8.74 27.42 12.85 15.67
Leader Friend of Leader 40.85 42.73 8.08 26.39 5.37 6.91

Network Information
Strategies:
Top Degree 47.37 44.65 9.62 28.78 22.18 27.28
Top Diffusion 46.78 44.35 9.51 28.56 20.65 25.91

Note: Parameter Estimates from model ME=1
2 used for counterfactuals.

We evaluate seeding effectiveness in terms of proportion of informed households and adoption

generated by the seeding strategies as the performance measure. We start with a higher level of

seeding (5%) to be conservative, since the advantage of the proposed strategies is greater with fewer

seeds. Table 8 reports the aggregate statistics on the proportion of households informed about the

microfinance service and the proportion adopting microfinance. The improvement for local friend

over random is about 13.1%, while the improvement over random for Leader is about 9.1%. We

also find that the hybridstrategy friend of leader performs the best with a 15.7% improvement

over random, suggesting that the two broad approaches of leveraging network structure (using

friendship paradox) and leadership or other demographic characteristics (using Leader indicator)

can be combined to achieve higher performance. However, we note that using the local friend

strategy alone without any information about the network structure or leader information can

generate much of this performance benefit. However, there is a risk in applying a strict criterion

requiring the friend to also be a leader, with performance worse than local friend. Overall, the local

friend and hybridstrategies do better than the Leader strategy without data on the full network

structure, suggesting that they are viable approaches to seeding WOM with unknown networks.

As we might expect, the network information strategies, which require global knowledge of

the network structure lead to much greater adoption than the above strategies. Interestingly, the

top degree approach performs better than the diffusion centrality based approach, although the

difference is minimal. It’s likely that for these relatively small village networks, the overlap in seed
16



sets among the top degree and top diffusion strategies is quite high, hence the similarity. In larger

networks, e.g. Twitter we might see larger differences between them. Overall, we observe that the

local friend strategy is able to obtain about 88.7% (and the weak hybrid achieves about 91%) of

the performance of the best informationally demanding network information strategy. This finding

characterizes the tradeoff between the amount of information required and the effectiveness of

the strategy in driving adoption. In cases where it is impractical to obtain the relevant network

information, the local friend or hybrid strategies could be profitably used as an alternative.

We report the pairwise comparison between strategies Table 9. The local friend strategy is better

than random and leads to improved adoption in most of the villages. The local friend strategy also

outperforms the Leader strategy across a majority of villages. The (Firm’s) Leader strategy does

worse than random in about 14% of of the villages. The weak hybrid friend of leader strategy is

also better than random in about 93% of villages, but the strong hybrid leader friend of leader

actually performs worse than random in about 35% of the villages. This implies that it matters

how the hybrid strategy is implemented, and whether the condition of leadership is required for not

just the initial node but also for the nominated friend. The results suggest reduced effectiveness of

seeding when we require that the nominated friend also be a leader. Finally, and as expected, the

Like Leader strategy is the most similar in performance to the Leader strategy.

Table 9 Pairwise Comparison of Strategies (5% seeding)

Local Leader
Like Friend of Leader Friend Top Top

Leader Leader of Leader Degree Diffusion

Random 97.67 86.05 81.40 93.02 65.12 100.00 100.00
Local Friend 32.56 30.23 55.81 27.91 90.70 90.70
(Firm’s) Leader 53.49 67.44 41.86 100.00 100.00
Like Leader 74.42 39.53 95.35 97.67
Friend of Leader 20.93 90.70 88.37
Leader Friend of Leader 97.67 97.67
Top Degree 37.21

Note: Number in cell indicates % of villages where column strategy achieves higher adoption

than row strategy.

5.1. How does Extent of Seeding Impact Performance of Strategies?

The idea of word-of-mouth marketing is to choose a small number of seeds to help spread infor-

mation about a product or service. We summarize in Table 10 how the performance of the seeding

strategies varies with the proportion of nodes seeded, at 0.5%, 1%, and 5% of nodes seeded. For

full results across all model specifications, see Supplement Section EC.4.3.
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We define the performance metric as leverage, in terms of how well a proposed seeding strategy

s performs relative to the random strategy (whose leverage is 1 by definition):

Leverage(s) =
# Households Adopting under Strategy s

# Households Adopting under Random Strategy

Table 10 Leverage for Counterfactual Strategies

No Endorsement With Endorsement

Strategy Seeding at: 0.500% 1.000% 5.000% 0.500% 1.000% 5.000%

Local Friend 1.140 1.064 1.008 1.315 1.307 1.131
(Firm’s) Leader 1.094 1.045 1.005 1.186 1.178 1.091
Like Leader 1.080 1.038 1.002 1.188 1.126 1.085

Hybrid Strategies:
Friend of Leader 1.145 1.071 1.012 1.355 1.303 1.157
Leader Friend of Leader 1.089 1.049 1.006 1.208 1.216 1.069

Network based Strategies:
Top Degree 1.241 1.108 1.012 1.713 1.621 1.273
Top Diffusion 1.242 1.100 1.010 1.675 1.618 1.259

The following observations are noteworthy. First, the (Firm’s) Leader strategy always outper-

forms the random strategy and the local friend strategy always outperforms the Leader. Thus, our

main results hold across the range of seeding proportions examined for models with and without

the endorsement effect. Second, the weak hybrid strategy dominates across most model specifi-

cations, whereas the strong hybrid underperforms the local friend strategy. Third, Like Leader

performs very similar to leader, indicating that performance of the leader strategy is not driven

by the differential leader effects, but rather the network position of leaders. Fourth, while the

full information network-based strategies perform the best, we also find that the friendship para-

dox based strategies get upto half of the differential benefit without requiring network structure.

Finally, leverage for all strategies decreases as the number of seeds increases, implying that their

performance benefit is greater under more constrained circumstances, e.g., when product samples

are limited or expensive, or the seeding process requires intensive education or interaction.

6. Conclusion

We estimate a model of network-mediated WOM and product adoption and evaluated the effective-

ness of alternative seeding strategies that leverage the friendship paradox. The proposed friendship-

paradox based strategies, which are informationally light and require little knowledge of network

structure significantly improve WOM seeding and product adoption relative to not just random
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seeding, but also relative to the firm’s opinion leader seeding. Specifically, we find about a 13%

average improvement with local friend seeding in both information spread and adoption compared

with random, and about 5-10% improvement over the Firm’s Leader seeding, which is based on

pre-selected occupations. Further, local friend seeding is typically better than random across mul-

tiple villages with varying network structures, whereas we find that the Leader strategy can be

worse than random in a significant number of village networks. We note that this result is based

on expected performance and can vary based on network structure. Further, it should be expected

that seeding strategies that use detailed network information can improve adoption relative to the

local friend strategy, with the tradeoff that much more information is required.

We find that the relative advantage of both local friend and hybrid strategies relative to the

random strategy is inversely related to the proportion of nodes seeded. Thus, when we have fewer

seeds, these strategies become even more advantageous in expectation. This result is practically

useful in cases where the target population is large, and seeding is either financially costly or

practically challenging due to time constraints or other operational limitations. The combination

of the battery of robustness checks and the monotonic improvement in performance with greater

network information provides consistent evidence of effectiveness. This adds to the literature by

providing a mechanism, and suggests follow up studies to detect robust gains from using friend

seeding strategies with field experiments (e.g., Kim et al. 2015).

The data used here from multiple village networks and explicit knowledge of who were chosen

as initial seeds has many advantages for studying the current seeding problem. Yet, common with

much research on diffusion, a limitation is that communication is unobserved. While we model

communication as a latent process, and show that our key counterfactual claims about friend based

seeding are robust to many alternative models of communication, it would be useful to study this

problem in setting where communication is directly observable. Further, even though the seeding

process is observed, the firm always seeded on “leaders” based on a certain set of occupations.

Methodologically, we also provide a novel non-parametric identification argument for leader fixed

effects that does not depend on specific functional forms to estimate the leader fixed effect with

our current data where only leaders are used as seeds. The approach relies on the shape of the

temporal trajectory, and its impact on the area under the trajectory.

We suggest some broader issues to explore in future research. Future work could evaluate the

effect of leaders on adoption by randomizing seeds with leaders in some villages and non-leaders

in others. It would also be useful to explore whether the benefits of seeding using the friendship

paradox generalize to other contexts and different network structures. Microfinance has certain

adoption and WOM communication features that may differ from other products. For example, the

poor need microfinance and may be more persuaded about its benefits than the rich; the poor may
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also have systematically different social network structures. Hence it would be valuable to assess

whether the benefits of friend-based seeding remain robust for other products. Future research

should also evaluate how network structural characteristics may systematically impact friend based

seeding effectiveness. It would also be useful to consider the potential tradeoffs in cost and time in

using our informationally light seeding strategies relative to investing in identifying (even limited)

network information prior to seeding. In some cases, rather than use opinion leaders, it may be

useful to seed individuals nominated by others as “gossipers” to assess their impact on diffusion

and higher overall adoption (Stephen and Lehmann 2016, Banerjee et al. 2014). Finally, it would

be useful to consider whether seeding approaches proposed here need to be adapted for highly

asymmetric networks, where directional ties are significant (Ben Sliman and Kohli 2018).
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Electronic Companion Supplement

EC.1. Mathematical Notation

In Table EC.1 below, we define the terms used in networks. These terms are helpful when we define

network properties and in the moment conditions. We illustrate a village network in ??, with the

black nodes indicating leaders.

Table EC.1 Table of Notation

Characteristic Description Definition
Nodes Degree Number of connections (edges) of i Di

Edge Connection between nodes i and j eij ∈ {0,1}
Adjacency (Edge)
Matrix

Connection between nodes i and j E,Ei,j ∈ {0,1}

Node Set Set of all N nodes in Network V = {1,2, . . . ,N}
Edge Set Set of all edges in Network E = {(i, j) : eij = 1}
Network Edge Count Number of undirected connections e=

∑
i∈V,j>i eij

Seeds Set of all nodes chosen as seeds S
Adopters Set of all nodes which have adopted A
Reachable Set Nodes with adoption status s∈ {A,NA} reach-

able from i in k steps
Es

i (k)

Proportion of adopt-
ing neighbors

Fraction of adopting nodes among those reach-
able from node i in k steps

zi(k) =
|EA

i (k)|
|EA

i (k)|+ |ENA
i (k)|

Vector of above Vector of adopting proportion of neighbors for
each node

z(k) = [z1(k), . . . , zN(k)]

Minimum Distance Distance of Shortest Path between i and j δij =mink s.t.E
k
(i,j) > 0

EC.2. Identification of Leader Fixed Effect

We demonstrate below that the WOM communication probability for leaders qL is separately

identified from the word of mouth communication probability q for non-leaders. While the argument

itself is non-parametric and does not rely on a specific functional form, our demonstration model

uses a simple parametric representation consistent with the paper. For this argument, we choose

to add a leader fixed effect to the simplest model (Model 1) from the paper.

Suppose we had only static adoption data, we would not be able to identify the fixed effect.

However, (i) the availability of time series aggregate adoption data and (ii) the presence of multiple

networks allows us to identify the fixed “leader” effect.

First, we note that using only the final adoption levels will not allow leader fixed effect qL to

be identified separately from just overall propensity to communicate q. Increases in each of these

parameters will result in higher final adoption levels in a network. It is straightforward to see that

a relatively low level of q in conjunction with a high level of qL might result in the same adoption

level as a high level of q and a low level of qL.
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However, the curvature of the adoption trajectory over time provides variation that permits

identification of the leader effect qL separately from q. Intuitively, if qL is higher, the adoption

trajectory shows a steeper increase in the earlier periods, since only leaders are communicating

initially, and only in subsequent periods do non-leaders communicate. Thus, the proportion of

communication attributable to leaders is highest at the beginning and decreasing over time. Thus,

the impact of a higher qL will be greatest in earlier periods as opposed to later periods. In contrast,

the impact of a higher q will be lower in the initial periods, since few non-leaders are informed,

and it has proportionally greater impact on adoption in later periods.

While the above argument is non-parametric and does not rely on specific functional forms for

identification, for the purpose of illustration, we use a parametric model below.

Simplified Model

We provide a highly simplified version of the model similar to Model 1 in the paper, for the

specific purpose of examining identification and making the required variation transparent. The

main features of this model are:

1. A few leader nodes are informed initially (similar to the main model).

2. In each period, each informed node communicates with probability (that depends on the

node’s leadership status). Thus, non-leaders communicate with probability q and leaders com-

municate with probability qL with each of its neighbors. Note that in this simplified model,

adoption status does not impact communication probability.11

3. When nodes are newly informed, they have the ability to adopt a product with probability

γ = 0.2. (We don’t have any covariates impacting adoption here, unlike in the main model,

and do not require the variation obtainable from these covariates).

The WOM communication probability for node i is specified as:

pi =

{
q, if i is not a leader

qL = q+ qℓ, if i is a leader

where qℓ is the leader fixed effect. Recall that the leader fixed effect is the difference between the

WOM communication probabilities of leaders and non-leaders.

We demonstrate in Figure EC.1 precisely the variation that is required for this identification.

There are several sources of possible variation in the network data. First, we observe that both

adoption trajectories for (a) q= 0.01, qℓ = 0.08, qL = q+ qℓ = 0.09 (red curve) and (b) q= 0.13, qℓ =

−0.12, qL = q + qℓ = 0.01 (green curve) end up after T = 5 periods at the same overall adoption

11 Even though this additional variation based on adoption status might prove useful as a separate source of identifi-
cation, our identification argument does not require it.
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Figure EC.1 Identification and Adoption Time Trajectory

level, i.e. 0.165 or 16.5%. Thus, just having the final adoption levels, it would not be possible to

separately identify q and qL.

However, their adoptions differ in their time trajectories. For (a) (red curve), with a higher leader

fixed effect qL = 0.09, we see the early period trajectory is steeper than the case (b) (green

curve). On the other hand, with (b), the later period trajectory is steeper than in (a).

In general, for different combinations of (q, qL) that obtain the same level of final overall adoption,

the area under the adoption trajectory curve will be greater for combinations of (q, qL) with higher

levels of qL and lower levels of q.

Does exclusive seeding by leaders help or hinder identification of leader fixed effect?

There are two reasons why leader seeding (in contrast to random seeding) is helpful to answering

our research question.

First, it may appear that our context in which the firm exclusively used leaders by the for

initial seeding makes it more challenging to separately identify the leader fixed effect. But in

fact, our explanation above should clarify that this exclusive use of leaders for initial seeding aids

identification of the leader fixed effect and allows us to disentangle qL and q. This is because the

exclusive use of leaders for initial seeding guarantees that a higher leader fixed effect will increase
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the earlier adoption trajectory relative to later. Therefore if the seeding had been random, it would

not be feasible to separately identify the effects as one cannot use this identification argument.

Second, leader seeding avoids a specific kind of bias in leader effects. Suppose we only have

random seeding, but there are leaders present in the data. If leaders have different (higher or lower)

degree on average than others, and if they have differential communication, it would not be possible

to identify any leader specific communication effect. For instance, if Leaders have higher degree,

the Local friend strategy could result in more leaders on average. The counterfactual results would

then be biased to find lower effects for the Local strategy than would be obtained in reality. Due

to leader seeding in our data, we can identify and characterize the leader fixed effect (separately

from non-leaders), and thus avoid this potential bias.

EC.3. Model Details and Estimation

First, we detail the estimation of the adoption process, followed by the WOM communication

process, and finally detail the block bootstrap to obtain standard errors. We simulated Nsim = 150

diffusion paths with seeds chosen stochastically corresponding to each seeding level and using each

of the seeding strategies. The reported WOM communication parameters are based on the average

of the simulated diffusion paths.

Adoption Process

The adoption parameter vector is β = (β0, . . . , β6). The logistic regression specification for the

adoption decision follows from the utility specification. The log likelihood for household i is li(β|Xi)

and for all households in the network is l(β|X)

l(β|X) =
N∑
i=1

li(β|Xi) =
N∑
i=1

logP (yi = 1|Xi) =
N∑
i=1

log

[
exp(βXi)

1+ exp(βXi)

]
(EC.1)

(EC.2)

The adoption process is estimated by maximum likelihood estimation.

WOM Process

Given adoption parameters β, the WOM process is simulated separately for each village network.

We track two states for each household: its information state and its adoption state. The infor-

mation states are uninformed (U) and informed (I), whereas the adoption states are Not-adopted

(NA) and Adopted (A). Both the Informed and Adopted states are absorbing states, during which

nodes can communicate with their neighbors.

An informed household with adoption status s ∈ {NA,A} (i.e. non-adopting or adopting) will

communicate with any of its neighbors in a single time period with probability ps(D). This is a

dynamically evolving process over time, and depends on the informed status of all households in
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the network. We have formalized these details further below using additional notation. Let ps(D)

be the probability that an informed household with adoption status at the beginning of time t

sj(t)∈ {U,NA,A} (i.e. uninformed, non-adopting or adopting) of degree D will communicate with

any of its neighbors in a single time period. Uninformed households do not communicate. During

time period t, an uninformed household i becomes informed if it receives a communication from

any of its network neighbors Ni. This event happens with probability pit = 1−Πj∈Ni
(1−psj(t)(Dj)).

The WOM process for each of the Nsim simulations begins with Step (0) and then proceeds

through Steps (1)-(3) for each time period.

(0) Each household (node) in the network is initially in an uninformed (U) information state. In

initial period t= 0, the seed nodes are chosen in each network based on the seeding strategy.

In the actual data, the seed nodes in each village were chosen based on the opinion leadership

criterion. In the counterfactual scenarios, seed nodes are chosen based on an alternative strategy

(random, local friend etc.). In all cases, the information state of the seed nodes changes from

Uninformed (U) −→ Informed (I).

The following process (1) – (3) process then takes place in each period t∈ {1,2, . . . , Tv} for village

v.12

(1) Each household that has become informed decides whether to adopt.

(2) Then, an informed household can probabilistically communicate about the microfinance prod-

uct with each of its network neighbors. The probability of such communication ps(D) may

depend on both its degreeD, i.e. the number of neighbors the informed household has, as well as

the adoption status s∈ {A,NA} of the informed household. We separate out the probabilities

pNA(D) and pA(D) as detailed in §3 of the paper.

(3) When this communication takes place, each neighbor receiving information changes its infor-

mation state from Uninformed (U) −→ Informed (I). If the neighbor node has already been

informed earlier, there is no change in its state.

For each simulation and for each village v, we compute 6 cross-sectional moments according to

Table EC.2 at the end of Tv periods of simulation, and 3 time series moments. Thus, for the 43

villages with microfinance adoption, we have Nmoments = 9×43 = 301 moments across the villages.

We then minimize the MSM objective function S(θ) detailed in equation (7) from §3 in the [0,1]K

region to obtain the probability parameter estimates presented in Table 6 in §4 of the paper. For

the MSM objective, we start with the initial weight matrix set to the identity matrix to obtain

consistent estimates. Since we obtain standard errors through bootstrap, a consistent estimator is

all that is needed.

12 The number of time periods varies across villages in the data, with a mean of 6.5 and SD of 1.83.
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Standard Errors with Bootstrap Estimation

We obtain standard errors for the communication probability parameters using a bootstrap proce-

dure detailed below. First, we obtain NR = 2,000 draws using a random grid for the communication

probability vector θ = (qNA
0 , qNA

1 , qA0 , q
A
1 ) ∈ [0,1]

4
. The parameter is characterized appropriately

based on the model specification.

We proceed through Steps (a) – (c) below for each of the Nsim draws to obtain moments for

each village v.

(a): We choose seeds corresponding to the Leader strategy used in the data.

(b): We compute the simulated WOM Process detailed above for Tv periods for each draw of the

parameter vector θ.

(c): We use the cross-section and time series adoption status data to compute the moments detailed

in Table EC.2 separately for each village.

Compute B = 10,000 bootstrap estimates using the moments obtained from the samples above.

For b= 1,2, . . . ,B do Steps (d) – (f) below.

(d): Resample with replacement from moments from the set of villages showing microfinance activ-

ity.

(e): Compute the objective function with the resampled moments at each of the NR points evalu-

ated above.

(f): Choose the parameter vector with the minimum objective as the estimate β(b) to be used in

the bootstrap.

The distribution of β(b), with b= 1,2, . . . ,B provides the bootstrap estimate distribution for com-

puting standard errors.

Moment Conditions for Estimation

In this section, we describe the rationales for the moments listed in Table EC.2 that we use in our

estimation. The required mathematical notation is defined in §EC.1.

In general, all moments are informative in the estimation of all parameters. However, the con-

nections between some moments and parameters are more intuitive. The time series moments,

and more generally the temporal trajectory are especially important for identification when there

are differential effects for leaders. We describe the moments and the obvious associated links with

parameters below.

First, we detail the cross-sectional moments MC1 to MC6. (MC1) is the proportion of seeds

that have adopted. Since the seeds are guaranteed to be informed outside the WOM process,

this allows us to estimate the parameters impacting adoption probability without relying on the

communication process. In contrast, (MC2) is the proportion of households with no adopting
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Table EC.2 List of Moments.

Symbol Description Definition

MC1 Proportion of seeds adopting
|S ∩A|
|S|

MC2 Proportion of households with no adopting neighbors who
have adopted

∑
i∈A I [Ni ∩A= ϕ]∑
i∈V I [Ni ∩A= ϕ]

MC3 Proportion of neighbors of adopting seeds who have adopted

⋃
j∈S∩A |Nj ∩A|⋃

j∈S∩A |Nj|

MC4 Proportion of neighbors of non-adopting seeds who have
adopted

⋃
j∈S∩V\A |Nj ∩A|⋃

j∈S∩V\A |Nj|
MC5 Covariance between a household’s adoption and average

adoption of their first degree neighbors
cov (y, z(1))

MC6 Covariance between a household’s adoption and average
adoption of their second degree neighbors

cov (y, z(2))

MTτ Cumulative adoption upto time τ (Time series moment) yτ =
1
N

∑N

j=1 yjτ

neighbors who adopt, which allows us to match a non-adopter’s communication likelihood, because

such an adopting household could only have received information from neighbors, all of whom are

non-adopters.

(MC3) is the proportion of neighbors of adopting seeds who have adopted. This moment most

closely connects to the WOM probability of adopters, since the neighbors of seeds have a high

probability of receiving information from the seeds. With (MC4), the proportion of nodes that are

neighbors of non-adopting seeds who adopt. The focus here is primarily on parameters qNA
0 and

qNA
1 . With low probability, it becomes less likely that neighbors of non-adopting seeds would adopt

(all else being equal).

(MC5) and (MC6) captures the relationship between adoption by a focal household and its first

and second degree neighbors. This is particularly important in networks where there is a significant

region (or sub-network) that is uninformed. In such regions of the network, both a focal node and

its neighbors will have zero adoption, which results in a perfect correlation. Observe that in such

a case, (MC2) and (MC4) are not informative since the moment will have values exactly zero for

such sub-networks. Thus (MC5) and (MC6) can also be viewed as characterizing the limits of the

WOM process.

Overall, we need to have moments that match global network-level measures, e.g. (MC1) that

focuses on overall adoption. It is also critically important to incorporate moments that match local

network structure, allowing these connections to have a strong impact on the adoption process,

which is what distinguishes the network approach from the Bass model.

The time series moments (MTτ) matches the cumulative overall adoption in each time period

τ period within each village. This is the typical data used in estimation of aggregate Bass-like
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diffusion models. These moments helps us to estimate the time-path of the diffusion process. In

each period of the model, based on the network structure and the diffusion of the information

process, we have different number of households which potentially become informed and therefore

have the opportunity to make adoption choices.

We detail the sensitivity of parameter estimates to moments using the methodology of Andrews

et al. (2017) in §EC.5.6.

EC.3.1. Model Fit

Additional Model Fit Metrics We next evaluate the fit of these models below using 3 addi-

tional measures. The metrics used for fit are detailed below:

1. First, we regress the actual adoption rate during each time period in the data (as dependent

variable) against the simulated adoption rate obtained from the model, similar to what Baner-

jee et al. (2013) present in Table 2 of their paper. The intercept terms are found to be not

significant, and the coefficient of interest across all models indicate that the model is able to

capture and characterize the essential dynamics of the process. If the coefficient of simulated

adoption is close to 1, that would indicate a good fit.

2. Next, we examine typical fit measure like RMSE (root mean squared error) and MAPE

(Mean Absolute Percent / Proportion Error). Lower values of these measures indicate better

fit.

We find that the model fit is consistent with the original paper for in-sample fit (see Table 2

of Banerjee et al. (2013)). We then examine out of sample fit by estimating our preferred models

using 85% of the villages, and holding the remaining 15% of the sample as holdout. We find that

the out of sample fit is not significantly worse than in sample fit, indicating the models do not

suffer from an obvious overfitting problem. Banerjee et al. (2013) do not provide out of sample fit

in their paper.

Table EC.3 provides the in-sample and out-of-sample fit for our preferred models. We note that

the coefficients on simulated adoption for both in-sample and out-of-sample are between 0.87 and

0.89. The RMSE and MAPE measures are similar for both of our chosen models, and it is useful to

verify that the out-of-sample fit is not much worse than in-sample fit. If out-of-sample were indeed

much worse, then we should be concerned about the model overfitting the data.

EC.4. Counterfactuals

We detail first the implementation of each of the strategies, and then performance of the strategies

under different models and at different seeding levels.

EC.4.1. Seeding Strategy Implementation

Table EC.4 provides specific implementation details for each of the seeding strategies we consider.
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Table EC.3 Main Models: In Sample and Out of Sample Model Fit Measures

In Sample Fit Out of Sample Fit
ME=1

2 ME=0
2 ME=1

2 ME=0
2

Intercept 0.002 0.000 -0.002 -0.001
(0.02) (0.02) (0.02) (0.02)

Simulated Adoption 0.874 0.89 0.875 0.87
(0.097) (0.098) (0.096) (0.1)

RMSE 0.067 0.067 0.069 0.069
MAPE (×100%) 0.379 0.372 0.395 0.406

Table EC.4 Seeding Strategies and Implementation

Category Strategy Implementation Procedure (for
each of m seeds)

Information Required

Random Random Select node at random from list as
seed.

Randomly sampled subset of
list of individuals (or Com-
plete List)

Friend Local Friend Select node at random from list.
Obtain one randomly chosen friend
of node as a seed.

Randomly sampled subset of
list of individuals + Obtain
random friend

Leader (Firm’s) Leader Select node from list of leaders indi-
cated by firm

List of Leaders (where leader-
ship is specific to domain)

Like Leader Select leader node ℓ at random.
Select the non-leader node most
similar to ℓ in terms of network
properties‡.

List of leaders + Entire Social
Network (Adjacency Matrix
E)

Hybrid Friend of Leader
(Weak Hybrid)

Select a random leader from list of
leaders. Obtain one randomly cho-
sen friend of this leader as a seed.

List of leaders + Obtain ran-
dom friend

Leader Friend of
Leader
(Strong Hybrid)

Select a random leader from list of
leaders. Obtain one randomly cho-
sen friend who is also a leader to be
seed.

List of leaders + List of
leader friends of each leader

Network
Information
Strategies

Top Degree Select a node randomly from list of
top degree nodes (We specify this as
the top 15% most highly connected
nodes.

Degree of each node in the
network.

Top Diffusion Select a node randomly from list of
top diffusion centrality nodes. Diffu-
sion Centrality is defined as DC =
[
∑τ

t=1 q
tEt] · 1 where E is the adja-

cency matrix and 1 is the column
vector of 1s. As suggested in Baner-

jee et al. (2013), we set q=
1

λ1

where

λ1 is the greatest eigenvalue of the
adjacency matrix.

Full Adjacency matrix E
(who is connected to whom)
and the number of periods for
diffusion τ .

‡ : Similarity between nodes in network position could be implemented using the following centrality
metrics (among others): degree, eigenvector, Bonancich power centrality
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EC.4.2. Comparison of Strategies

Figure EC.2, shows the performance of the strategies pairwise, where performance is measured by

the proportion of informed households in each counterfactual strategy evaluation.
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Figure EC.2 Comparison of Strategies across Villages (1% of Households Seeded).
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(c) Friend of Leader versus Other Strategies
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(d) Leader Friend of Leader versus Other Strategies
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Note: Each data point (square) is a village network in all panels. The size of the shape is proportional

to the size of the village (number of households). Darker colors indicate overlap between villages.

Next, we examine the consistency of relative performance of the various seeding strategies across

villages. Figure EC.2 provides an overall comparison of the 4 strategies with the informed levels of

Leader, local friend and hybridstrategies plotted against one another. We find that both local friend
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and friend of leader consistently perform better on informing relative to random as all villages fall

above the diagonal. In contrast, while Leader is better than random for most villages, it is worse

for some villages, as shown by the points that fall above the diagonal in the top-left panel.

Moreover, the villages where the Leader strategy performs especially well are smaller (fewer

households). In terms of the hybrid strategies, we find that the weak hybrid friend of leader strategy

mostly outperforms Leader, but it does not do better than local friend overall. The strong hybrid

leader friend of leader actually performs worse than the local friend and weak hybrid strategy. In

many villages, it performs worse than the Leader strategy as well.

EC.4.3. Leverage Under Different Models

We examine how the number of seeds impacts the performance of different seeding strategies in

the counterfactual across the full set of model specifications. We examine seeding at the level of

0.5%, 1%, and 5% to understand how the level of seeding affects relative benefits of our friendship

paradox strategies. The results for different seeding levels are detailed in Table EC.5.

A few observations are relevant here:

(a) The (firm’s) leader strategy typically (but not always) outperforms the random node strategy

for any combination of model / (#seeds)

(b) The friendship paradox based Local strategy achieves higher performance (leverage) than the

firm’s leader strategy under all of the model specifications.

(c) The weak hybrid friend of leader seeding strategy achieves better performance than Local strat-

egy in most model specifications. However, the strong hybrid leader friend of leader strategy

seems to consistently underperform the (firm’s) leader strategy.

(d) The “Like Leader” strategy performs very similar to Firm’s leader (within 2-3% of the leverage

metric).

(e) Leverage for all counterfactual strategies decreases as the number of seeds increases.
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Table EC.5 Leverage for Counterfacual Strategies

(a) Seeding at 5% of number of nodes

ME=0
1 ME=0

2 ME=0
3 ME=0

4 ME=1
1 ME=1

2 ME=1
3 ME=1

4 ME=0
B ME=1

B

Local Friend 1.01 1.01 1.16 1.15 1.13 1.13 1.02 1.15 1.06 1.05

(Firm’s) Leader 1.01 1.01 1.10 1.10 1.09 1.09 1.01 1.10 1.04 1.03

Like Leader 1.00 1.00 1.10 1.10 1.08 1.08 1.01 1.10 1.03 1.03

Friend of Leader 1.01 1.01 1.20 1.19 1.16 1.16 1.02 1.19 1.07 1.05

Leader Friend of Leader 1.01 1.01 1.10 1.09 1.07 1.07 1.01 1.09 1.04 1.03

Top Degree 1.01 1.01 1.34 1.33 1.27 1.27 1.02 1.32 1.10 1.08

Top Diffusion 1.01 1.01 1.32 1.30 1.26 1.26 1.02 1.31 1.09 1.07

(b) Seeding at 1% of number of nodes

ME=0
1 ME=0

2 ME=0
3 ME=0

4 ME=1
1 ME=1

2 ME=1
3 ME=1

4 ME=0
B ME=1

B

Local Friend 1.05 1.06 1.33 1.33 1.31 1.31 1.10 1.31 1.24 1.22

(Firm’s) Leader 1.04 1.05 1.20 1.19 1.19 1.18 1.07 1.18 1.18 1.16

Like Leader 1.03 1.04 1.12 1.11 1.13 1.13 1.06 1.10 1.13 1.13

Friend of Leader 1.05 1.07 1.31 1.31 1.31 1.30 1.11 1.31 1.26 1.24

Leader Friend of Leader 1.04 1.05 1.25 1.24 1.22 1.22 1.07 1.23 1.19 1.17

Top Degree 1.08 1.11 1.71 1.68 1.63 1.62 1.17 1.66 1.49 1.44

Top Diffusion 1.08 1.10 1.70 1.67 1.64 1.62 1.17 1.66 1.48 1.43

(c) Seeding at 0.5% of number of nodes

ME=0
1 ME=0

2 ME=0
3 ME=0

4 ME=1
1 ME=1

2 ME=1
3 ME=1

4 ME=0
B ME=1

B

Local Friend 1.12 1.14 1.35 1.32 1.34 1.32 1.18 1.33 1.31 1.30

(Firm’s) Leader 1.08 1.09 1.20 1.18 1.20 1.19 1.11 1.20 1.19 1.18

Like Leader 1.07 1.08 1.23 1.20 1.23 1.19 1.10 1.24 1.17 1.17

Friend of Leader 1.13 1.15 1.39 1.36 1.38 1.35 1.18 1.40 1.30 1.29

Leader Friend of Leader 1.08 1.09 1.25 1.22 1.24 1.21 1.11 1.24 1.22 1.22

Top Degree 1.20 1.24 1.80 1.75 1.73 1.71 1.32 1.77 1.65 1.61

Top Diffusion 1.20 1.24 1.77 1.71 1.73 1.68 1.32 1.76 1.66 1.62

EC.5. Alternative Models and Robustness Checks

We consider different models of WOM communication and seeding to assess if our key claims

are sensitive to model specification. Here we consider three models of WOM communication. In

§EC.5.1, as a basic benchmark, we consider a single source—advertising type, non-network model

where information is not transmitted through the social network, but all households receive infor-

mation from a central single source (perhaps the firm). Assessing the relative fit of this model with

respect to our preferred network based communication model can clarify the importance of mod-

eling information transmission through social networks before even assessing the role of seeding
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strategies.13 In §EC.5.2, we consider a broadcast model where in the first period seeds conduct a

village-wide meeting in which information about the microfinance program can be broadcast to all

those who attend. This model is motivated by a meeting process that the firm encouraged the seeds

to conduct and is described in Banerjee et al. (2013). In §EC.5.4, we consider a process where lead-

ers have a certification impact—their adoption or support may increase persuasion even outside of

their networks. This model goes beyond the WOM effects of leaders in allowing differential impact

based on source of certification. Finally, in §EC.5.3 we also consider a seeding process where not

just the firm chosen seeds are leaders but a random sample from certain select occupations that

are considered as leaders. In this process, leaders are present both among seeds and non-seeds, but

all seeds are randomly chosen members of these occupations.

In the text of the paper, we had used the best fitting model of adoption (Table 5). In §EC.5.5,

we report the alternative models of adoption we considered and their relative fit with respect to

the chosen model. Finally, we report parameter sensitivity to the different moments used in the

estimation §EC.5.6.

EC.5.1. Single Source Model

We consider a single source—advertising type, non-network model here as a null benchmark model.

In this model, information is not transmitted through the social network, but all households receive

information from a central single source (perhaps the firm). In each period, the source transmits

information to each household with probability θ—could be thought of as a household seeing an

ad. Informed households then have a chance to adopt. The adoption model is identical to the main

model in the paper. Informed households do not communicate any information to other household

in this single source model.

Observe that this model is parametrized by only one parameter θ. The estimated value θ on an

average set of villages is θ̂ = 0.46. Using this model, we evaluate the in-sample and out of sample

fit (using 15-20% of the villages as a hold out sample). Similar to Banerjee et al. (2013), we regress

the real adoption data on the simulated adoption trajectory derived from the model.

There are a few observations:

1. The coefficient of simulated adoption share based on the estimated null model are not statis-

tically significant for either the in sample or out of sample adoption share regressions. Thus,

this model does not have any predictive powerin explaining true adoption.

The finding above is not surprising, since a null model must lead to a concave cumulative adoption

curve over time (since there are fewer households that have not been informed over time), whereas

13 We thank a reviewer for suggesting this benchmark
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Table EC.6 Null Single Source Model: Fit Measures

Dependent variable:

In Sample Villages Out of Sample Villages
Adoption Share Adoption Share

Constant 0.060 0.017
(0.064) (0.197)

Simulated Adoption share 0.847 1.143
(0.544) (1.669)

RMSE 0.112 0.076
MAPE (×100%) 0.38 0.30
R2 0.047 0.055

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

a network based model is more consistent with the S-shaped curve for cumulative adoption, similar

to the classic model of Bass (1969).

Overall, the empirical evidence of Table EC.6 does not support the single source non-network

model, since this model does not capture the primary data patterns of adoption across the village

networks.

EC.5.2. Broadcast during Initial Period

Our model proposed that information about microfinance propagates through word of mouth over

the social network. We consider a benchmark (null) model where the information is broadcast to

households initially in period 0 at a meeting, where the attendance at the meeting is probabilistic.

In such a model, information flows directly from a common source to any of the households in the

network (subject to their attendance at the meeting), and the structure of the social network is

not relevant for this initial communication. After this initial broadcast, regular WOM communi-

cation occurs through the social network in subsequent periods. As in our main models, informed

households have the opportunity to make an adoption decision, whereas non-informed households

cannot do so.

We explain why modeling the initial broadcast mechanism would only strengthen our qualitative

conclusions about the relative superiority of local friend seeding. In a model with the broadcast

mechanism, we should attribute some part of the adoption in early periods to that meeting rather

than organic household-to-household word of mouth. This implies that the word-of-mouth driven

trajectory would be even lower in earlier periods, which further implies that the leader fixed effect

would be more negative. Taking this logic to the counterfactuals where non-leaders are chosen as

seeds, we would therefore see a further increase in relative performance of the local friend seeding

strategy and other non-leader strategies when compared to the leader strategy that generates the

data.
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We now demonstrate this argument by estimating the model that allows for such an initial

broadcast and performing the counterfactual. To reiterate, we restate the modeling assumptions.

• In period 0, the leaders invite members of the village to an initial meeting where they explain

the microfinance product. For each household, the probability of attending the initial meeting is

γ. We refer to this as the initial broadcast effect.

• In addition to the above, regular word of mouth communication happens through the social

network, as we have specified in the main model.

• We consider the case when there are separate leader fixed effects, and the case where this

effect is absent.

There are a few points to consider here. First, there is the question of separate identification

of an initial broadcast effect from the leader fixed effect. Here, the separation is possible because

the broadcast is a one-time initial event, whereas the impact of the leader fixed effect continues

beyond the initial period. Thus, if we have 3 or more periods, we can identify both effects. Next, a

higher level of leader fixed effect (qℓ) will lead to more friends of leaders being informed (relative

to non-friends), and leads to higher adoption among friends of leaders. In contrast a higher value

of initial broadcast effect γ informs households who are not friends of leaders, leading to higher

adoption among that group.

Second, if the probability of attending the initial meeting is very high, γ ≈ 1, then there is little

role for the network in communication. The model is then similar to the single source null model

of §EC.5.1. More generally, the higher the broadcast effect, the less important are the structure of

network connections. Third, in the counterfactual where we choose non-leaders as seeds, we might

expect this initial broadcast to be less likely or absent. When leaders have a unique ability to do

bring about such a broadcast that non-leaders do not possess, then in the counterfactual, we would

set the broadcast parameter γ = 0. Of course, this assumption stacks the deck against any of our

proposed strategies, but we include it to show that our strategies still perform better than the

leader strategy.

Table EC.7 details the parameter estimates from the initial broadcast model. We find that the

results are qualitatively very similar to that of our main model, and quantitatively the relative

magnitudes and ordering between the parameters are also the same. For instance, non-adopters

communicate less than adopters, and degree is negatively correlated to probability of communi-

cating with a network neighbor. In the model with Leader fixed effects, the leader fixed effect is

negative but not significant. We also find the initial broadcast effect, which represents the proba-

bility that each household attended the initial meeting to be γ = 0.013 or γ = 0.079 depending on

whether the model includes leader fixed effects or not.
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Table EC.7 Initial Broadcast Model Estimates

Model Specification: Estimates (Standard Errors)
Parameter Symbol ML=0

5 (No Leader FE) ML=1
5 (with Leader

FE)

Non-adopter lowest degree qNA
min 0.103 0.073

(0.062) (0.062)
Non-adopter highest degree qNA

max 0.063 0.071
(0.087) (0.089)

Adopter lowest degree qAmin 0.401 0.392
(0.034) (0.090)

Adopter highest degree qAmax 0.314 0.259
(0.100) (0.129)

Leader Effect qℓ – -0.001
– (0.080)

Initial Broadcast Effect γ 0.013 0.079
(0.030) (0.030)

Table EC.8 Leverage with Initial Broadcast Model

No Leader FE With Leader FE
Strategy Seeding at: 0.50% 1.00% 5.00% 0.50% 1.00% 5.00%

Local Friend 1.31 1.21 1.10 1.31 1.21 1.10
(Firm’s) Leader 1.20 1.15 1.06 1.20 1.15 1.06
Like Leader 1.18 1.13 1.06 1.18 1.13 1.06

Hybrid Strategies:
Friend of Leader 1.32 1.22 1.10 1.32 1.22 1.10
Leader Friend of Leader 1.21 1.14 1.07 1.21 1.14 1.07

Table EC.8 reports how the counterfactual strategies perform relative to random seeding using

the estimates from the Initial broadcast model. The ratio (leverage) of 1 indicates that the strategy

performs just as well as random.

Further, we observe that:

• Leverage reduces as the seeding proportion increases, similar to the main model.

• At all seeding proportions (0.5%,1%,5%), the results show that incorporating the initial broad-

cast effect does not change the relative performance of the random, Local and Leader seeding

strategies, and this holds with or without leader fixed effects.

EC.5.3. Leader Based on Occupation

In our main model, we made the assumption that the set of households with leader fixed effects

is the same as the seed set, as all of the seeds were considered leaders in their villages. But as

per Banerjee et al. (2013), the microfinance firm chose its seeds based on whether they were in

certain “leader” occupations (e.g., teachers, shopkeepers, business owners etc). However, not all

households with those occupational characteristics were chosen as seeds.
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It may then be reasonable to consider a specification where the seeds are assumed to be randomly

sampled from those working these selected occupations. In this case, the leader fixed effect should

be associated with all members belonging to these occupations, whether they were used as seeds or

not.

We estimate such a model and obtain parameter estimates θ = (qNA
min, q

NA
max, q

A
min, q

A
max, ql) =

(0.074,0.056,0.424,0.344,−0.016). We then run counterfactuals under different seeding strategies

as before.

The counterfactual results presented in Table EC.9 show that the results are quantitatively

similar and qualitatively identical. The results for all the strategies differ from the main results of

Table 10 because the parameter estimates used above are different.

Table EC.9 Leverage for Counterfactual Strategies

Seeding Level 0.5% 1% 5%
Strategy

Leader by Occupation 1.17 1.13 1.03
Local Friend 1.27 1.19 1.05

Friend of Leader 1.27 1.24 1.05
Leader Friend of Leader 1.16 1.15 1.04

Like Leader 1.16 1.11 1.04
Top Degree 1.53 1.40 1.08

Top Diffusion 1.53 1.37 1.07

EC.5.4. Leader Certification Effect

One concern is if the leader seeds chosen by the firm had an additional certification effect beyond

their differential WOM communication that we have already modeled as the leder fixed effect.

The original study seeded information with leaders who were pre-defined. Thus, there might be

a question of whether such an effect may be present in the counterfactual, where seeding is not

focused on leaders. Such a “leader certification effect” effect posits that households might be more

likely to adopt if they hear through word of mouth that a leader has certified or endorsed the product.

We detail two arguments below to demonstrate that this concern is unlikely to hold in the coun-

terfactual. First, for this concern to be valid, none of the seeds recommended by the counterfactual

strategy should overlap with the “leader characteristics” of seeds chosen in the original study. To

the extent, those choices were made based on certain occupations and other characteristics, this is

unlikely that our seeding strategies did not have overlap with the chosen occupations.

Second, we quantify the overlap in leaders (which are originally chosen by the firm) across the

strategies, and demonstrate that such leaders are chosen even in the counterfactuals, although

more under some strategies than others.
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Figure EC.3 Seeding Overlap (1% seeding)

We detail the degree of overlap with a density plot in Figure EC.3 that details the probability that

any given leader household will be chosen under each of the counterfactual strategies.14 We focus

on seeding at 1%, the results are qualitatively similar at other levels. There are a few noteworthy

observations here. First, we do expect that almost all leader households have a higher probability

of being chosen as seeds under the Leader strategy, since the seeding is limited to leader households

here. Second, as expected, the random strategy (in gray) has the lowest probabilities of these

leader households being selected. Third, observe that leader households have a non-zero probability

of being chosen under each of the counterfactual strategies, notably the local friend strategy.

Finally, each of the other (non-random) counterfactual strategies have a higher probability of leader

households being selected compared to the random strategy. More specifically, observe that the

comparison of interest is the difference between the Leader strategy (in green) and the local friend

strategy (in red).

Overall, we believe that above result indicates that our counterfactual outcomes are unlikely to

be biased due to the potential for some unobserved leader certification ability in the chosen seeds.

14 The main strategies (random, local friend and Leader) are in solid lines, whereas the hybrid strategies are in dashed
lines and the network information strategies are dotted line format.
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EC.5.5. Generalizing the Adoption Model

The adoption model in the main paper was chosen based on model fit across models that incor-

porated household data, as well as network characteristics of households derived from the social

network within each village. We detail the results in Table EC.10. The results suggest that the

household characteristics including number of rooms and beds and indicator for electricity are

informative for adoption, and produce a better model fit, as measured by the Akaike Information

Criterion (AIC). The AIC is a well regarded measure of fit that is commonly used since it balances

model complexity with a likelihood based model fit, unlike measures like likelihood and Pseudo R2.

Specifically, as we add more predictors (electricity and latrine) in moving from model (1) to

model (2), the fit as measured by AIC increases. Similarly in adding Rooms and Beds per capita

to obtain model (3), the fit improves. However, we find that the household’s home ownership and

roof type are not significant predictors of microfinance adoption and the models (4) and (5) that

include these variables are worse in terms of AIC than model (3).

A few observations are relevant here. First, we note that pseudo-R2 values are not comparable

to R2 values for linear models, and are typically much lower, as noted by Guadagni and Little

(1983). Second, the adoption model is estimated using data from seeded leader household. The

microfinance product is a financial one and is typically not targeted at leader households, but

other households close to the bottom of the income pyramid. Therefore, the explanatory power of

observables is typically lower for leader households. Finally, though the ability to predict whether

any particular household will adopt is low, the cumulative adoption by integrating the adoption

probabilities across all households should have less variance and therefore better fit. Many of these

diffusion paths are equivalent in terms of the overall adoption since households are more likely to

be connected to households that are similar to them in terms of network position.
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EC.5.6. Parameter Sensitivity to Moments

We have explored a wide variety of alternative model specifications and assumption for both the

adoption and word of mouth communication processes. However, an interested reader might be

interested in testing robustness to an alternative they have in mind that might be quite different.

This issue is explored in detail by Andrews et al. (2017), who provide a unified framework to help

make structural (and other) models more transparent so that readers can easily evaluate sensitivity

to assumptions. They recommend providing a sensitivity matrix (Λ) that allows us to evaluate how

violations of specific moment conditions can change the model parameter estimates.

One might view the approach of Andrews et al. (2017) as complementary to specifying different

models to demonstrate robustness, which we have also done. Their point is that since it is impossible

to test all potential alternative models, providing the sensitivity matrix allows any interested reader

to determine how each of the data moments contribute to parameter estimates. Following Andrews

et al. (2017), we report the sensitivity matrix Λ in Table EC.11.

Similar to the applications presented in Andrews et al. (2017), we scale the values so that the

sensitivity values correspond to a 1% change in each moment condition. These results can be

helpful in evaluating the sensitivity of each parameter on each of the moment conditions used in

estimation.

First, observe that we use simulated method of moments (SMM), which is a (simulated) version

of Generalized Method of Moments (GMM) to obtain the parameter estimates. This allows for the

form of the sensitivity matrix

Λ=−(G′WG)−1G′W

where G is the Jacobian corresponding to the moment conditions g(θ) andW is the weighing matrix

used in the GMM estimation. The main result of Andrews et al. (2017) is that the asymptotic bias

of local violations of the moment conditions is then given as

E(θ̃) = ΛE(g)

so that knowing Λ allows us to determine how violations of the moment conditions g translate into

differences in parameter estimates.

The sensitivity matrix corresponding to the baseline model with the leader fixed effect are

detailed in Table EC.11. For each parameter, the table shows the sensitivity of parameter estimates

to violations of the moment conditions. We have 9 moments that are each present across all the

villages in the data, and in the model the moments are generated from the parameter values.

Overall, there are 6 cross sectional moments, and 3 time series moments (period 1, period 2 and

period 3).
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Table EC.11 Plug-in Sensitivity Λ for Model with Leader FE Effect

Cross Sectional Time Series
Moment # → M1 M2 M3 M4 M5 M6 M7 M8 M9

qNA
min 0.009 0.016 0.004 0.004 0.005 0.003 0.001 0.022 0.011
qAmin 0.003 0.005 0.001 0.001 0.002 0.002 0.000 0.006 0.003
qNA
max 0.008 0.050 0.005 0.001 0.018 0.014 0.000 0.090 0.037
qAmax 0.013 0.012 0.011 0.013 0.004 0.011 0.002 0.003 0.005

qℓ 0.001 0.006 0.001 0.005 0.001 0.002 0.000 0.003 0.002

To understand the table, consider for example the parameter qNA
max, which represents the word

of mouth communication probability for (high degree) non-adopters. First, observe that the cross-

sectional moment this parameter is most sensitive to is moment 2, which is the proportion of

households with no adopting neighbors who have adopted. Similarly we find that the parameter is

not sensitive at all to moment 7, which is the initial adoption. This is consistent because households

adopting in the first period are unlikely to be hearing about it from non-adopters. In the earliest

period, only the seeds have a chance to adopt, and the seeds are directly informed by the firm, so

word of mouth among non-adopters is unlikely to play a role. In contrast, the adoption in periods 2

and later are relevant to the parameter, especially in contrast to the initial period. If initial period

adoption is low (consider the extreme case of zero adoption in the initial period), then adoption in

later periods must be driven by word of communication, which then informs both parameters qNA
min

and qNA
max.

Similarly, we find that for the leader fixed effect, moment 2 and moment 4 are most important.

The time series moment 7 (adoption in period T=1) does not contribute any information

about the leader fixed effect. This is consistent with our intuition since the leader fixed effect is

communication by the leaders to their friends, and thus, the level of period 1 adoption will not be

informative of how much communication has occurred through the network by leaders. In contrast,

period 2 adoption (moment 8) is important since we would find a greater jump in the early adoption

trajectory when the leader fixed effect is greater.

Overall, this method provides transparency in illustrating what variation in the moments is

driving the parameter estimates of the model.
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