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Abstract. We develop a new approach using market-level data to model, identify, and
estimate a dynamic discrete choice demand model for durable goods with continuous
unobserved product-specific state variables. They are specified as serially correlated and
correlated with the observed product characteristics, particularly price. We provide a
method to estimate all model primitives, including the consumer’s discount factor and the
state transition distributions of unobserved product characteristics without the need to
reduce the dimension of the state space or by other approximation techniques, such as
discretizing state variables.We prove the identification of model primitives and provide an
estimation algorithm in which the most computationally demanding step is a linear re-
gression. Finally, we show how it can be implemented in an application in which we
estimate the demand for smartphones.
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1. Introduction
In recent years, dynamic discrete choice (DDC) models
have becomemore prevalent inmarketing and economics
because of their ability to analyze the dynamic aspects of
firms’ and consumers’ preferences and the consequent
intertemporal trade-offs across a wide range of sub-
stantive contexts. As researchers recognize and seek
to incorporate these factors into their modeling, the
complexity of estimating such models remains a
challenging barrier for research. Specifically, defining
a tractable state space for such models is often a
difficult task, leading some to adopt ad hoc approx-
imation approaches. The task becomes even more
challenging in the absence of an approximation method
and when the researcher incorporates multiple di-
mensions of unobserved state variables, individual
and choice specific.

In the demand estimation literature, these un-
observables relate to traditional individual product-
specific idiosyncratic errors and unobserved product
characteristics.1 Estimation is further complicated
when the unobserved product characteristics are seri-
ally correlated and correlated with observed state
variables given that computing the ex ante expected
value function involves high-dimensional integra-
tion over all unobserved state variables (idiosyn-
cratic and product characteristics). This is especially

problematic when there are many available products,
each with their own unobserved characteristic.
Our main contribution is to develop a novel approach

using market-level data to model, identify, and estimate
a dynamic discrete choice demand model for durable
goods with continuous unobserved product-specific state
variables in addition to the commonly included indi-
vidual product idiosyncratic errors. The unobserved
states or product characteristics are specified as se-
rially correlated and correlated with the observed
product characteristics, particularly price. We pro-
vide a method to estimate all model primitives, in-
cluding the consumer’s discount factor, without the
need to reduce the dimension of the state space or by
other approximation techniques, such as discretizing
state variables. In this sense, our method avoids the
curse of dimensionality—a large practical problem
when implementing DDC models.
We provide rigorous proof of identification and an

algorithm for estimation in which the most compu-
tationally demanding step is a linear regression.
Following the sequence of linear regressions, applied
researchers will have estimated all primitives of the
dynamic structural model. The estimation simplicity
and the absence of the curse of dimensionality aid
model specification because the researcher no longer
faces the trade-off between including more state
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variables with the feasibility of estimation or the di-
lemma of reducing the dimension of state variables at
the cost of incurring omitted variable bias. Thus, re-
searchers are able to estimate multiple model specifi-
cations at little computational cost. The major limita-
tions of the method are that (a) there need to be two or
more terminal choices in the DDC model (e.g., pur-
chasing a product, then leaving the market perma-
nently) and (b) the DDC model can only accommo-
date the multinomial logit or generalized extreme
value (GEV) nested logit structure, not unobservable
heterogeneity.

Our identification results are novel relative to the
literature on identifying DDC models. Our model for
durable goods can be understood as a general DDC
model in which a subset of unobserved state vari-
ables (unobserved product characteristics herein) are
continuous, serially correlated, and correlated with
other observed state variables. The existing identifi-
cation results (Magnac and Thesmar 2002; Kasahara
and Shimotsu 2009; Norets 2009; Arcidiacono and
Miller 2011, 2018; Hu and Shum 2012; Hu et al.
2017) in the literature cannot be applied here.

Most of the research focusing on individual-level
data do not include persistent unobservable state
variables (e.g., Bajari et al. 2016, Daljord et al. 2018).2

The following exceptions involving persistent un-
observables are worth noting. Hu and Shum (2012)
study dynamic binary choice models with continuous
unobserved state variables, but their identification
result is limited to the conditional choice probabilities
and state transition distribution functions, not to
model primitives such as flow utility functions and
discount factors. Norets (2009) does include a serially
correlated unobservable idiosyncratic error, which is
individual-specific rather than an aggregate product
shock as in our case. Arcidiacono and Miller (2011)
model persistent unobservables but limit them to a
discrete set of values.

Our linear estimation approach is also new relative
to the literature on estimating DDC models. First,
our estimation approach is not an approximation
method and, thus, does not rely on the validity of
specific approximations, such as interpolation or
other value function approximations, or behavioral
assumptions that consumers only consider some
function of the state space and not the entire state
(Gowrisankaran and Rysman 2012, Melnikov 2013).
Second, our estimator does not exhibit a curse of
dimensionality because it does not require the esti-
mation or approximation of the ex ante expected
value function as is almost always the case with prior
papers (e.g., Rust 1994, Bajari et al. 2016). Third, we
estimate more model primitives than the current
literature because our method recovers not just the
preference parameters but also the discount factor

and the transition process for observed and unobserved
state evolution.
Our work builds on several foundational papers in

the demand estimation literature. First is the result
that the difference between choice-specific payoff is a
function of individual choice probabilities (Hotz and
Miller 1993) in static and dynamic settings. The work
of Berry (1994) and the Berry et al. (1995) (BLP) model
(Berry 1994, Berry et al. 1995, Berry and Haile 2014)
on demand estimation with market-level data, includ-
ing unobservable product characteristics, have been
extensively used. This is similar to our setting but fo-
cused on a static environment.
Extending the BLP models to a dynamic setting

with forward-looking agents is challenging. Formal
identification in these papers is not specified. Some
researchers ignore persistent unobserved shocks
(Song and Chintagunta 2003) or make them time-
invariant (Goettler and Gordon 2011). Others fo-
cus on improving the computational speed of fixed
point estimators by approximation. Melnikov (2013)
and Gowrisankaran and Rysman (2012) approximate
based on inclusive value sufficiency, allowing the
researcher to collapse the multidimensional state into
one dimension, making it more tractable. Derdenger
and Kumar (2019) study the approximation proper-
ties of this approach and show that it is a biased and
an inconsistent estimator. Su and Judd (2012) and
Dubé et al. (2012) propose a constrained optimization
approach to estimate static and dynamic structural
models based on aggregate data. Also noteworthy are
Sun and Ishihara (2019), who present a simple Monte
Carlo–based approach to significantly diminish the
burden of dynamic structural models.
Although the literature has made advances in

computational tools that eliminate the costly nested
fixed point algorithm used in dynamic models, our
approach is different in that we have focused on
proving identification of model primitives and also in
that our approach avoids any computation of the
value function in the estimation process.
The simplicity of our estimator is quite powerful,

but it does come at a cost. In addition to the two
previously mentioned limitations, we discuss two
others. First, consumers in our model face an optimal
stopping situation in that their choice is to continue in
the market without purchasing (“no purchase”) or
to purchase a product and forever exit the market
(terminal choice). Specifically, the model must have
two or more terminal choices for the estimator to be
linear in preferences and for preferences to be esti-
mated via instrumental variables (IV). That said, the
model and estimator do allow for nonterminal choices
when an individual is faced with a choice of, say,
“lease one car” as long as the consumer choice does
not affect the future transition of state variables. We
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do not track individual product inventory holdings.
Thus, environments in which choices exhibit state
dependence with repeat purchases would not be
appropriately characterized.

Second, our computationally simple approach ap-
plies to a class of models similar to Berry (1994),
that is, type 1 and GEV distribution for idiosyn-
cratic errors. This limitation eliminates any possibility
of incorporating unobserved consumer heteroge-
neity in preferences as in Berry et al. (1995). This may
be problematic to those interested in understand-
ing policies targeted to heterogeneous populations
though it should be highlighted that our model can
incorporate any observable heterogeneity for a finite
number of classes. However, it is well known that
identifying unobserved consumer heterogeneity us-
ing aggregate data are quite difficult in practice.
Albuquerque and Bronnenberg (2009, p. 356) illus-
trate that, “in isolation neither variable ((market share
or brand penetration)) may lead to precise estimates
of heterogeneity.” Sudhir (2013, p. 53) also states that
“identification of heterogeneity is tough with ag-
gregate data.” As a result, we attempt to mitigate the
lack of unobserved heterogeneity through the esti-
mation of a GEV model.

Third, in our model, we generally can only identify
the difference between two unobserved product
characteristics, a challenge for counterfactual analy-
sis. We attempt to address this concern with two
approaches. The first is to simply draw from the
identified distribution of only one unobserved state
variable a large number of times to provide an
identified set on the policy experiment. In practice,
there is little to no added cost to this method as
compared with what a researcher does in order to
generate a confidence interval (draws from all pa-
rameters). Next, we show that unobserved product
characteristics are identified if the correlation be-
tween at least one unobserved state variable and price
is perfectly correlated. This second option has the
benefit of being testable.

The last limitation is a required stationarity as-
sumption for the identification and estimation of the
dynamic evolution of state variables. In particular, we
require the joint distribution of the unobserved and
observed product characteristics and price to be time
invariant for at least two periods. If such joint dis-
tribution changes in every period, the model is not
identified. The intuition is similar to the identification
of a linear panel data model in which regression
coefficients and the unobserved fixed effect are as-
sumed time invariant for at least two periods in order
to use a fixed effect or first difference estimator to
identify/estimate the model. Thus, it is typically not
a limitation in applications. When the number of
periods is large and one suspects that the joint

distribution of product characteristics and price could
have changed, one can split the sample into a few
subsamples and estimate the preferences and/or the
dynamic evolution of state variables for each sub-
sample as long as there are enough periods in each
sample.
There are a number of institutional features of an

empirical context that make our model more suitable.
Our approach is likely to prove useful in settings in
which the dynamics and intertemporal trade-offs are
of first-order importance to researchers and in which
the state space is large, which reflect a number of
empirical settings. Durable goods with a long re-
placement fit best, for example, solar panels. How-
ever, even products with a smaller replacement cycle
would work if the discount factor is low. Because our
method allows the researcher to recover the discount
factor easily, one could simply run the model to de-
termine suitability even when the researcher is not
sure about the discount factor. The data required for
the model is aggregate market-level data but allows
significant flexibility in the nature of variation. Al-
though our identification results only require T ! 2
periods of data (with multiple markets), in practice,
for estimation, a longer panel is helpful. Thus, the
researcher can deploy this method even with data
from only one market (e.g., national) or a smaller
panel with data from multiple markets (e.g., states or
metropolitan areas). The Monte Carlo studies in the
Online Appendix Section O.1 demonstrate recov-
ery for different combinations of markets and time
periods.
We apply our estimator using data from the cell

phone device market. Using monthly data from 10
different states, we estimate consumer preferences for
phone hardware, including smartphones. We de-
termine Apple had the largest fixed effect, and
Blackberry had the smallest out of all brands. Addi-
tionally, we find the unobserved product character-
istics were positively serially correlated for Apple yet
were negatively for Blackberry. After the recovery of
consumer preferences,we run several counterfactuals
to identify the feature that most impacts consumer
adoption. Counterfactual analysis finds that remov-
ing Bluetooth or Wi-Fi from phones dramatically
changes the within-market shares. Without Wi-Fi,
Apple’s iPhone would lose substantial market share
compared with other brands. This is due to Wi-Fi
almost exclusively being available only on the iPhone.
Moreover, Bluetooth was found to have the largest
overall demand on the market with its absence lead-
ing to roughly a 20 percentage point increase in the
market share of the outside good.
The rest of the paper is structured as follows. In

Section 2, we present the basic modeling approach. In
Section 3, we detail the assumptions and show the
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identification for the model parameters. In Section 4,
we obtain the estimators of preference parameters
and state transition distribution. In Section 5, we
discuss counterfactual implementation. In Section 6,
we provide an empirical application of the model in
the smartphone hardware market around the intro-
duction of the iPhone. In the counterfactual analysis,
we evaluate market outcomes when product char-
acteristics exogenously change. In the appendix, we
detail the GEV model along with the cellphone de-
mand estimates using a nested logit model.

This paper comes with an online appendix, which
contains (i) numerical studies about our estimators
under various scenarios, (ii) discussion about the
interpretation of the assumptions in an empirical
context, (iii) implementation details about the coun-
terfactual procedure, (iv) proofs of some identifica-
tion theorems, (v) various formulas that are helpful
for calculating the asymptotic variance of our esti-
mators, and (vi) detailed discussion about the iden-
tification of nested logit specification.

2. Model
Ourmodel follows the previous literature on dynamic
discrete choice models of demand, particularly those
that employ market-level data. The choice set of a
consumer i in period t is )t ⊆ ) ≡ {0, 1, . . . , J}, where 0
denotes outside good and no purchase, and 1, . . . , J are
products. The possible time-varying choice set cor-
responds to the observed entry–exit of products in
the market. In each period t, consumer i considers
whether to purchase a product from the available
products )t \ 0{ }. If consumer i decides to purchase,
consumer i then chooses which to buy. Once a con-
sumer has purchased a product, the consumer exits
the market completely. Hence, purchasing a prod-
uct is a terminal action in our model. The consumer
decision process is, thus, equivalent to an optimal
stopping problem. The presence of a terminal choice
greatly simplifies the identification and estima-
tion because its expected lifetime utility is easy to
characterize.

2.1. Consumer Utility
Consumers consider numerous product and market
characteristics that may affect their current and fu-
ture purchase utilities, such as price, age of prod-
uct, and quality. The state can be described as Ωit ≡
(xt, pt, ξt, εit), where pt denotes the vector of product
prices, xt denotes the vector of the other observable
product characteristics, ξt denotes the unobserved (to
an econometrician) product characteristics, and εit is
the vector of individual choice-specific idiosyncratic
shocks, which are unobservable to researchers. De-
note mt ≡ (xt, pt, ξt) the market-level state.

Assumption 1 (Markov Process). Conditional Probability
Pr(Ωi,t+1 |Ωit, Ωi,t−1, . . .) ! Pr(Ωi,t+1 |Ωit).
Typically, in a product choice model, we can include

all the product variables in the state space, x′t ≡
(x′1t, . . . , x′Jt) and pt ≡ (p1t, . . . , pJt)′, where xjt and pjt
denote the vector of observable product characteristics
and the price of product j in period t, respectively.
There is some abuse of notation because xjt and pjt
are indeed not defined if product j does not exist in
period t, that is, j /∈ )t.
We normalize the expected period of utility of the

outside good to be zero. Hence, if consumer i does not
purchase in period t, consumer i receives flow utility
ui0t ! 0 + εi0t. This normalization is only for simplicity
of exposition. Our arguments still hold when ui0t is a
parametric function of observed characteristics of the
outside good and additive in εi0t. This is useful because
it has been shown that, unlike the case of static dis-
crete choice models, normalization in dynamic discrete
choice models is not innocuous for the purpose of
counterfactual predictions (e.g., Norets and Tang 2014,
Kalouptsidi et al. 2017).
When consumer i purchases product j at time t,

consumer i’s flow utility during the purchase period t is

uijt ! f (xjt,ξjt) − αpjt + εijt. (1)

Consumer i thenreceives the identicalflowutility f (xjt, ξjt)
in each period τ > t following consumer i’s purchase.
Let f (xjt, ξjt) ! x′jtγ + δj + ξjt. Let δ ! (δ1, . . . , δJ)′.
The term δj is the unobserved product fixed effect.
The vector ξt ! (ξ1t, . . . , ξJt)′ is unobservable to re-
searchers, and ξjt is a scalar with E(ξjt) ! 0. One
typically views δj + ξjt as a measure of functional or
design quality. Hereafter, we refer to ξjt as the un-
observed characteristics of product j at time t, which
may be serially correlated. Possible interpretations of
unobservable product–period-specific shocks ξjt are
not limited to the following:
i. Product quality: If the firm has a quality con-

trol in the production process, then there is likely
some degree of randomness or stochasticity in the
manufacturing process. This would vary by product
period and fit the assumptions about ξ in the paper.
Note that, depending on the production process, this
could also be serially correlated, which we accom-
modate in our model. In our application using cell
phone data, ξjt can be thought as the quality of
software on the phone, battery life, durability, etc.
ii. Advertising: We might have product-period

unobservable advertising levels by both manufac-
turers or network carriers and retailers such as
Best Buy in our application. Because advertising
expenditure decisions are set well in advance, it
is quite likely for such expenditures to be serially
correlated.
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The inclusion of these unobserved product charac-
teristics (states) are important. The data the researcher
collects to estimate demand models is almost always
incomplete as it does not contain all the state variables
that consumers use to make their decisions. Ignoring
unobserved product characteristics could bias the es-
timation of price coefficients was first discussed in the
work of Berry (1994) about the endogeneity of price.

Another econometric problem when one only uses
idiosyncratic errors as in Bajari et al. (2016) is that, if
the data-generating process had product-period un-
observables (e.g., advertising or quality control varia-
tions over time) but were ignored, then the idiosyn-
cratic errors would pick up those factors as in Song and
Chintagunta (2003). In such a case, we would have
correlation of idiosyncratic errors across individuals
and time if the unobservable product characteristics
were serially correlated. Because almost all papers
effectively specify such idiosyncratic errors to be in-
dependent across agents, this would lead to a mis-
specification and biased parameter estimates.

2.2. Dynamic Decision Problem
The consumer makes a trade-off between buying in
the current period t andwaiting tomake a purchase in
the next period. The crucial intertemporal trade-off is
in the consumer’s expectation of how themarket-level
state variables mt ! (xt, pt, ξt) evolve in the future. For
example, if product characteristics (or price) are ex-
pected to improve over time, the consumer has in-
centive to wait.

Consumer i in period t chooses from the set of
choices )t, which includes the option zero to wait
without purchasing any product. However, if the
consumer purchases, recall that the consumer exits
the market immediately upon purchase.

For a consumer in the market faced with a stateΩit
in period t, we can write the Bellman equation in
terms of the value function Vt(Ωit) as follows:

Vt(Ωit) ! max εi0t + βE(Vt+1(Ωi,t+1) |Ωit),
(

max
j∈)t\ 0{ }

vj(Ωit) + εijt

)
,

where the first term within brackets is the present
discount utility associated with the decision to not
purchase, j ! 0, any product in period t. The discount
factor is β ∈ [0, 1). The choice of not purchasing in
period t provides flow utility εi0t and a term that
captures expected future utility associated with
choice j ! 0, conditional on the current state being
Ωit. This last term is the option value of waiting to
purchase. The second term within brackets indicates
the value associated with the purchase of a product.

Given the fact that consumers exit themarket after the
purchase of any product, a consumer’s choice-specific
value function can bewritten as the sum of the current
period t utility and the stream of utilities in periods
following purchase:

vjt(Ωit) !
f (xjt, ξjt)
1 − β

− αpjt

!
x′jtγ + δj + ξjt

1 − β
− αpjt, j ∈ )t \ 0{ }.

(2)

We also let

v0t(Ωit) ! βE(Vt+1(Ωi,t+1) |Ωit). (3)

The value function Vt(Ωit) involves consumer i’s flow
utility shock εit. Assumption 2(i) ensures the fol-
lowing in which the expectation in the preceding
display is taken over εi,t+1:

E(Vt+1(Ωi,t+1) |Ωit) ! E(V̄t+1(xt+1, pt+1, ξt+1) | xt, pt, ξt),

where

V̄t+1(xt+1, pt+1, ξt+1) ≡ E(Vt+1(Ωi,t+1) | xt+1, pt+1, ξt+1).

Assumption 2 (Conditional Independence). For all t, we
have (i) Ωi,t+1 ⊥⊥ εit | (xt, pt,ξt); (ii) εi,t+1 ⊥⊥Ωit | (xt+1, pt+1,
ξt+1).
The role of part (ii) will be clear soon. Under As-

sumption 2, we know that vj is a function of market-
level state variables mt ! (xt, pt, ξt) only. Let sjt be the
market share of product j at time t. Given a conditional
distribution function F(· |mt) of εit, we have

sjt(mt) !
∫

1 vjt(mt) + εijt ≥ vkt(mt) + εikt, k ∈ )t
( )

· F(dεit |mt).
(4)

Our results do not require that the value function
Vt(Ωit) or the integrated value function V̄t(mt) be time
invariant. This could be desirable in applications
because the introduction of new products or tech-
nology innovation could change the consumer’s value
function.

3. Identification
We start by clarifying the data and the structural
parameters of the model. With the data, we observe
market shares sjt, observable product characteristics
xjt and prices pjt for j ∈ )t. Structural parameters in-
clude consumer preference parameters θ1 ! (α, β,
γ′, δ′)′, the state transition distribution function
F(Ωi,t+1 |Ωit), and the initial distribution function
F(Ωit) for some period t. In general, we need to know
θ1, F(Ωi,t+1 |Ωit) and F(Ωit) in order to simulate the
consumer’s dynamic decisions starting from period t
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and market shares under various counterfactual
experiments.

Using conditional independence (Assumption 2),
we have

F(Ωit) ! F(mt)F(εit |mt),
F(Ωi,t+1 |Ωit) ! F(mt+1 |mt)F(εi,t+1 |mt+1).

Moreover, we assume that εit ⊥⊥mt and F(εit) are
known for all t. We can write F(mt) ! F(xt, pt) ·
F(ξt | xt, pt). Thus, the cumulative distribution func-
tion F(xt, pt) is identified from observed xt and pt. Our
focus is then on F(ξt | xt, pt) and F(mt+1 |mt). The dif-
ficulty is that we do not observe ξt. In the remain-
der of this section, we show how to identify θ1,
F(ξt | xt, pt), and F(mt+1 |mt) nonparametrically under
mild restrictions.

We give a brief summary of our results in this
section. To identify preference θ1, one only needs to
know F(εit |mt) and to have IV that are uncorre-
lated with unobserved characteristics ξt. To identify
E(ξjt | xt, pt), we further assume that F(ξt | xt, pt) is time
invariant. To identify Var(ξjt) and Var(ξjt | xt, pt), one
needs one additional assumption, that is, to assume
that the unobserved characteristics ξ1t, . . . , ξJt are
independent and homoscedastic conditional on xt
and pt. To identify F(ξt | xt, pt) nonparametrically, one
needs a further assumption, that is, to assume that the
unobserved characteristics ξjt have identical distri-
bution except for their conditional mean. To identify
F(mt+1 |mt) nonparametrically, one needs additional
assumptions, among which one would require that
ξt+1 is an autoregressive (AR) process and xt+1 ⊥⊥
(ξt, ξt+1) | (xt, pt) or (xt+1, pt+1)⊥⊥ ξt | (xt, pt). Most iden-
tification results are constructive; hence, they can be
used as formulas for estimation.

It is well known that, without assuming that F(εit |mt)
is known, the flow utility functions and discount
factor are not separately identified (e.g., Magnac
and Thesmar 2002). Our restriction on F(εit | mt) is
twofold. First, we assume εit ⊥⊥mt. Second, we know
the marginal distribution of εit, which is a type
I extreme value distribution. In the online appendix,
we present identification for a GEV distribution.

Assumption 3. Assume that consumer i’s utility shocks
εit ! (εi0t, . . . , εiJt)′ are independent of mt ! (xt, pt,ξt). Let
εi0t + ω, . . . , εiJt + ω be an independent identically distrib-
uted type I extreme value with density f (εijt + ω ! ε) !
exp[−(ε + e−ε)], where ω ≈ 0.5772 is Euler’s constant.

Assumption 3 does not allow correlation between
market-level state variables and unobserved consumer
heterogeneity. This can be restrictive in some applica-
tions. For example, consumers may be heterogeneous in

their preference for design or quality, which is cap-
tured by ξt in this model. Such consumer prefer-
ence is unobserved; hence, it is denoted by εit. This
implies that εit and ξt are correlated. Allowing for
such correlation between εit and the other state var-
iables in general has been a difficult problem in the
literature of dynamic discrete choice model (see
Magnac and Thesmar 2002, Arcidiacono and Miller
2011). It seems to be harder here because ξt in mt is
unobservable.
It should be remarked that the assumption of in-

dependent idiosyncratic shocks is required, but the
assumption on type I distribution or any specific
distribution is not essential for our identification ar-
guments because our arguments start from express-
ing the difference between the payoffs of purchasing
different products as a function of market shares,
which holds for more general distribution of εit (Hotz
and Miller 1993). However, it greatly simplifies the
exposition and estimation.

3.1. Consumer Preference
Letθ′

1o ! (αo, βo, δo, γ′
o)denote the true values. Tomake

the idea clear, we consider a simple case with two
products (1 and 2) in addition to the outside good 0.
Both products are always available. Our arguments
can also be applied to show identification when the
choice set varies over time. It follows from the mul-
tinomial logit model that the market share sjt(mt) has
the following formula:

sjt(mt) ! exp(vjt(mt))/∑k∈)t
exp(vkt(mt)).

Hence, for any two products j, k ∈ )t, we have

ln(sjt/skt) ! vjt(mt) − vkt(mt). (5)

To show identification, we only use ln(s2t/s1t) and
ln(s2t/s0t). Equation (5) is similar to Berry (1994). The
key difference is that v0t(mt) in Berry (1994) or BLP
equals zero, and v0t(mt) here depends on an unknown
value function.
In Equation (5), letting j ! 2, k ! 1, we have ln(s2t/

s1t) ! v2t(mt) − v1t(mt), that is,

ln
s2t
s1t

( )
! (x2t − x1t)′γ̃ − α(p2t − p1t) +

δ2 − δ1
1 − β

+ ξ2t − ξ1t
1 − β

,
(6)

with γ̃ ! γ/(1 − β). Equation (6) explains the relative
market share by the difference of product characteris-
tics. Equation (6) resembles a linear regression be-
cause we observe ln(s2t/s1t), (x2t − x1t), and (p2t − p1t).
Let z(2,1),t denote a vector of instruments that are
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uncorrelated with ξ2t − ξ1t. We can identify γ̃, α, and
(δ2 − δ1)/(1 − β) with one period of data from the mo-
ment equation

E(g1,(2,1),t(θ1o)) ! 0,

g1,(2,1),t(θ1) ! z(2,1),t ln
s2t
s1t

( )
− (x2t − x1t)′γ̃

[

+α(p2t − p1t) −
δ2 − δ1
1 − β

]
.

(7)

We show the identification of the discount factor β
and product effect δ. Once β is identified, γ is iden-
tified from the already identified γ̃ ! γ/(1 − β). In
Equation (5), letting j ! 2, k ! 0, we have

ln
s2t
s0t

( )
! x′2tγ̃ − αp2t +

δ2
1 − β

+ ξ2t
1 − β

− βE(V̄t+1(mt+1) |mt).
(8)

Define the already identified term yt ≡ ln(s2t/s0t)−
x′2tγ̃ + αp2t: Note that yt is a function of mt only. We
rewrite Equation (8) with yt(mt),

yt(mt) !
δ2

1 − β
+ ξ2t
1 − β

− βE(V̄t+1(mt+1) |mt). (9)

By the expectation maximization formula for multi-
nomial logit (e.g., Arcidiacono and Miller 2011):

V̄t(mt) ! v2(mt) − ln s2t(mt)

! x′2tγ̃ − αp2t +
δ2

1 − β
+ ξ2t
1 − β

( )
− ln s2t(mt).

(10)

Define another identified term wt, a function of mt
only, and the corresponding value function

wt ≡ x′2tγ̃ − αp2t − ln s2t(mt)

V̄t(mt) ! wt(mt) +
δ2

1 − β
+ ξ2t
1 − β

, for all t.

Substituting V̄t+1(mt+1) in Equation (9) with the pre-
ceding display, we have the conditional moment
restriction

yt(mt) !
δ2

1 − β
+ ξ2t
1 − β

− βE wt+1(mt+1) +
δ2

1 − β
+ ξ2,t+1
1 − β

∣∣∣∣mt

( )
.

(11)

Because yt(mt) is a function of mt only, E(yt |mt) ! yt.
Moreover, E(ξ2t |mt) ! ξ2t because ξ2t is an element
of mt. As a result, the preceding display implies

E yt + βwt+1 − δ2 −
1

1 − β
ξ2t +

β
1 − β

ξ2,t+1

∣∣∣∣mt

( )
! 0.

(12)

By this conditional moment condition, we know that,
for any integrable function η(mt), we have

E yt + βwt+1 − δ2 −
1

1 − β
ξ2t +

β
1 − β

ξ2,t+1

( )
η(mt)

[ ]
! 0.

(13)

The conditional moment Equation (12) is very useful.
As its first application, we show the identification of
product fixed effect δ when the discount factor β is
known. Given β, letting η(mt) ! 1, we have

δ2 ! E(yt + βwt+1).

We use E(ξ2t) ! E(ξ2,t+1) ! 0. Because (δ2 − δ1)/(1 − β)
is identified, we identify δ1 given δ2 and β.
As the second application of Equation (12), we

show the identification of β. The market-level state
mt includes (x′1t, x′2t, p1t, p2t). Let x2t,IV be a vector of
functions of mt such that cov(x2t,IV , ξ2t) ! cov(x2t,IV ,
ξ2,t+1) ! 0.3 We can identify β and δ2 from

E(g2,(2,0),t(θ1o)) ! 0,
g2,(2,0),t(θ1) ! yt + βwt+1 − δ2, (yt + βwt+1 − δ2)x2t,IV ′( )′.

(14)

For example, if x2t,IV is a scalar, we explicitly have

β ! −cov(yt, x2t,IV)/cov(wt+1, x2t,IV),

provided that cov(wt+1, x2t,IV) ̸! 0 (corresponding to
rank condition in IV regression). From the definition
of wt+1, the rank condition requires that x2t,IV must be
correlated with the next period market-level state
variables or market share s2,t+1. The following prop-
osition is a summary about the identification of con-
sumer preference.

Proposition 1. Suppose Assumptions 1–3 hold. Let
dx ! dim xjt. If there is a vector of IV z(2,1),t such that
E z(2,1),t(ξ2t − ξ1t)
[ ] ! 0 and rank E

[
z(2,1),t((x2t − x1t)′,

(p2t − p1t))
] ! dx + 1, and there is a vector-valued function

x2t,IV of mt such that cov(x2t,IV ,ξ2t) ! cov(x2t,IV ,ξ2,t+1) ! 0
and cov(wt+1, x2t,IV) ̸! 0, we can identify consumer pref-
erence parameters α, β, and γ and product fixed effect δ with
two periods of data.

Moreover, these constructive identification ar-
guments suggest a simple estimation method for
θ1 ! (α, β, δ′,γ′)′. An IV regression can estimate γ̃,
(δ2 − δ1)/(1 − β), and α. Another IV regression of yt
on −wt+1 with IV x2t,IV can be used to estimate the
discount factor β. Such an estimator does not im-
pose any further distributional assumptions about
state transition law besides the first-order Mar-
kovian assumption.4 As a result, there is no “curse
of dimensionality” in the estimation of consumer
preferences.
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Remark 1 (Why Can We Identify the Discount Factor?). In
dynamic discrete choice literature, in order to identify
the discount factor, it is usually necessary to have an
excluded variable that does not affect current utility
but does impact future payoff (e.g., Fang and Wang
2015). To see why we can identify the discount factor
even without the excluded variable, let’s assume that
there are no unobserved product characteristics ξjt and
δj ! 0. The key reason is that we can identify the mean
value vj for each product j from relative market shares.
Without ξjt, we have

ln(s2t/s1t) ! (x2t − x1t)′γ̃ − α(p2t − p1t).
We identify γ̃ and α; hence, vj for every product j.
Knowing vj and the market share sjt from data, we
henceforth know the integrated value function V̄t by
(Arcidiacono and Miller 2011) V̄t(mt) ! vj(xjt, pjt)−
ln sjt. Next, by ln(s2t/s0t) ! v2(x2t, p2t) − v0(mt), and
v0(mt) ! βE(V̄t+1(mt+1) |mt), we have

ln(s2t/s0t) ! v2(x2t, p2t) − βE v2(x2,t+1, p2,t+1)
[

− ln s2,t+1 |mt
]
.

(15)

Note that mt ! (x1t, p1t, x2t, p2t) here. Because we know
v2, and market shares s2t, s0t, s2,t+1 are included in the
data, we can identify the conditional expectation
term; hence, β.

In general, in dynamic discrete choice models, the
mean value vj for each alternative j depends on the
unknown value function; hence, β cannot be identified
from the relative choice probabilities first. Our ar-
guments do not apply to the general dynamic discrete
choice model.

With unobserved product characteristics ξjt, we
need x2t,IV , a nonrandom function of mt. From Equa-
tion (15), we have

E(ln(s2t/s0t) | x2t,IV)
! E(v2t | x2t,IV) − βE(v2,t+1 − ln s2,t+1 | x2t,IV).

Here we use v2t to denote v2(x2t, p2t, ξ2t). Because the
unobserved ξ2t enters in v2(x2t, p2t, ξ2t) additively, ξ2t
and ξ2,t+1 disappear from the display by E(ξ2t | x2t,IV) !
E(ξ2,t+1 | x2t,IV) ! 0.

In the online appendix, we show that, when there is
only one product on the market, one can still identify
consumer preferences (α, β, γ′, δ′) with certain rank
condition. However, such identification has limited
practical relevance.

3.2. Dynamics of State Evolution
We now focus on identification of the firm side var-
iables,mt, which, in turn, impact the state space for the
consumer. Although the identification of consumer
preferences did not require us to assume stationarity
of the state evolution process, stationarity is neces-
sary for us to identify the state transition distribution.

Assumption 4 (Stationary Markov Process). The first-
order Markov process mt is stationary. The conditional
distribution function F(mt+1 |mt) is time invariant, and
F(mt) is the stationary distribution of mt.

We first show the identification of marginal dis-
tribution function F(mt), then the conditional distri-
bution function F(mt+1 |mt).

3.2.1. Identification of F(mt). We first identify E(ξjt |
xt, pt)with the stationary Assumption 5 about ξt. Then
we show nonparametric identification of F(ξt | xt, pt)
with additional restrictions.

Assumption 5. (i) The marginal distribution function F(ξt)
and the conditional distribution function F(ξt | xt, pt) are both
time invariant. (ii) ξt+1 ⊥⊥ (xt, pt) | (xt+1, pt+1).
Though Assumption 5(i) is implied by Assumption 4,
we state it separately because it involves unobserved
characteristics ξt whose interpretation depends
on empirical applications. It is more informative to
applied researchers to state the restriction about ξt
separately.
By Equation (6) and the identification of β, we can

identify dt ≡ ξ2t − ξ1t. It follows from Equation (6) that

dt ! (1 − β)ln(s2t/s1t) − (x2t − x1t)′γ − (δ2 − δ1)
+ (1 − β)α(p2t − p1t).

Variable dt is an identified object.
It is important to note that it is likely that we cannot

identify ξjt, only the difference ξ2t − ξ1t. Equation (11)
reads

δ2
1− β

+ ξ2t
1− β

− βE wt+1 +
δ2

1− β
+ ξ2,t+1
1− β

∣∣∣∣xt,pt,ξt
( )

− yt ! 0.

The unknown ξ2t appears both linearly and non-
linearly as a conditioning variable in the preceding
display. Recall that wt+1 ! x′2,t+1γ̃ − αp2,t+1 − ln s2,t+1
and yt ! ln(s2t/s0t) − x′2tγ̃ + αp2t. In general, in order to
show identification of ξ2t, one needs to prove that
the left-hand side (LHS) of the preceding display is
globally monotone in ξ2t, whose primitive condition
is unclear to us because yt and wt+1 depend on market
shares, hence, value function. It is expected that
∂yt/∂ξ2t > 0 and −∂wt+1/∂ξ2,t+1 > 0 because the mar-
ket share is expected to be increasing in ξ2t. As a result,
the sign of the derivative of the LHS of the display
with respect to ξ2t is indeterminate, when ξ2,t+1 is
positively correlatedwith ξ2t. Intuitively, the increase
in ξ2t can make both purchasing now and waiting
to purchase in the future more desirable; hence, the
market share is not necessarily monotone in ξ2t. In
practice, after the estimation of model primitives, one
can try to solve ξ2t from the equation numerically by
trying random starting guesses of the solution. If the
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equation has multiple solutions, the numerical so-
lution is likely to depend on the choice of starting
values. We tried to solve ξ2t for our model used in the
Monte Carlo studies reported in the online appendix
and found that the solution of ξ2t does not depend on
the starting values, which suggests that ξ2t is iden-
tifiable for that model.

One sufficient yet uninteresting condition is that
(x2,t+1, p2,t+1, s2,t+1, ξ2,t+1)⊥⊥ ξt | (xt, pt). In this condition,
one can drop ξt from the conditioning variables from
the conditional expectation and solve ξ2t.5 However,
in practice, unobserved product characteristics ξt are
serially correlated as seen in our empirical applica-
tion. Moreover, the next period’s market share is
typically correlated with the current period’s un-
observed product characteristics despite their price
and xt. For example, if the current ξt is high, con-
sumers tend to buy now rather than waiting until the
next period.

We show how to identify E(ξjt | xt, pt). By E(ξ1t |
xt, pt) ! E(ξ2t | xt, pt) − E(dt | xt, pt), we only need to show
the identification of E(ξ2t | xt, pt). Multiplying both
sides of Equation (12) by (1 − β), we get

E (1−β)yt+β(1−β)wt+1− (1−β)δ2−ξ2t+βξ2,t+1 |mt
[ ]!0.

Because xt, pt ∈ mt, apply the law of iterated expec-
tation, and we have

E (1−β)yt+β(1−β)wt+1− (1−β)δ2−ξ2t+βξ2,t+1 |xt,pt
[ ]

! 0.
(16)

Now define

h(x, p) ≡ E (1 − β)yt + β(1 − β)wt+1
[

− (1 − β)δ2 | xt ! x, pt ! p
]
,

π(x, p) ≡ E(ξ2t | xt ! x, pt ! p).

The function h(x, p) is nonparametrically identified
because we observe yt,wt+1, xt and pt. The unknown
function π(x, p) is the parameter of interest. It can be
shown (see the online appendix for the proof) that
Equation (16) can written as a Fredholm integral
equation of type 2,

π(x, p) − β
∫

π(x′, p′)F(dx′, dp′ | x, p) ! h(x, p). (17)

We know that there would be a unique solution of
π(x, p) (the proof is similar to lemma 2 of Chou and
Ridder (2017)).

Proposition 2. In addition to the conditions of Proposition 1,
suppose Assumptions 4 and 5 hold. We can identify E(ξjt |
xt, pt) for each product j ∈ )t.

To identify the conditional variance Var(ξt | xt, pt),
we need additional assumptions.

Assumption 6. (i)The unobserved characteristics ξ1t, . . . ,ξJt
are independent conditional on (xt, pt); (ii) assume that
Var(ξ1t | xt, pt) ! · · · ! Var(ξJt | xt, pt) ! σ2(xt, pt).
Using dt ! ξ2t − ξ1t, it can be shown that

E(d2t | xt, pt) ! 2σ2(xt, pt) + E ξ2t | xt, pt
( )− E ξ1t | xt, pt

( )[ ]2.

Because we have identified E ξ1t | xt, pt
( )

and E ξ2t | xt, pt
( )

,
we identify σ2(xt, pt) from the preceding display.
As for the unconditional variance, we use

Var(ξjt) ! E(ξ2jt) ! E[E(ξ2jt | xt, pt)].

Moreover, E(ξ2jt | xt, pt) ! σ2(xt, pt) + E(ξjt | xt, pt)2. Be-
cause we have identified σ2(xt, pt) and E(ξjt | xt, pt),
we identify E(ξ2jt | xt, pt) and, hence, Var(ξjt).
Proposition 3. In addition to the conditions of Proposi-
tion 2, suppose Assumption 6 holds. We then can identify
Var(ξjt | xt, pt) and Var(ξjt).
The fact that we can identify both the condi-

tional mean and variance of ξjt given (xt, pt) is quite
useful. By the conditional independence of the un-
observed product characteristics (Assumption 6(i)),
we can write F(ξ1t, . . . , ξJt | xt, pt) ! ∏J

j!1 F(ξ1t | xt, pt). If
the conditional distribution of ξjt given xt, pt belongs
to the location scale family, the conditional mean and
variance determine the distribution of F(ξt | xt, pt).
For two products j and k, if we assume F(ξjt | xt, pt)

and F(ξkt | xt, pt) are “similar” in the following sense,
we indeed can nonparametrically identify F(ξjt | xt, pt).
Assumption 7. For any two products j and k, conditional
on (xt, pt), ξjt and ξkt have identical distribution except for
their conditional mean.

Proposition 4. In addition to the conditions of Proposition 3,
suppose Assumption 7 holds. Let ϕ(t; xt, pt) the character-
istic function of ξjt conditional on xt, pt. Conditional on
xt, pt, if ξjt has absolute moment of order 2, |ϕ(t;xt,pt) | +
|ϕ(t;xt,pt)′| + |ϕ(t;xt,pt)′′ | ̸! 0, and F(ξ̃1t |xt,pt) is sym-
metric at zero, F(ξjt |xt,pt) and F(ξt |xt,pt) are identified.

Proof. See the online appendix.

Remark 2 (Heteroskedasticity). When we have three or
more products, we only need to assume that there are
at least two products whose conditional variance
Var(ξjt | xt, pt) is the same. To see this, suppose there are
three products, and Var(ξ1t | xt, pt) ! Var(ξ2t | xt, pt). We
have shown how to identify Var(ξ1t | xt, pt). To iden-
tify Var(ξ3t | xt, pt), we simply use d31,t ! ξ3t − ξ1t. By
Equation (6), we have

d31,t ! (1 − β) log(s3t/s1t) − (x3t − x1t)′γ − (δ3 − δ1)
+ (1 − β)α(p3t − p1t),
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which is identified. By the same arguments, we have

E(d231,t | xt, pt) ! Var(ξ3t | xt, pt) + Var(ξ1t | xt, pt)
+ E ξ3t | xt, pt

( )− E ξ1t | xt, pt
( )[ ]2.

We then identify Var(ξ3t | xt, pt) from this display.

3.2.2. F(mt+1 |mt). Note that mt ! (xt, pt, ξt) and ξt is a
J × 1 vector.We are going to show the semiparametric
identification of F(mt+1 |mt) by restricting the rela-
tionship between ξt+1 and mt to have a certain linear
functional form.

Wepresent twoversionsof identification resultsunder
two different Assumptions 8 and 8’. Under either
assumption, the conclusion F(mt+1 |mt) is identified.
Depending on the context of one’s empirical research,
one may find one assumption is more appropriate
than the other. Roughly speaking, Assumption 8
is more appropriate if ξt can be understood as de-
sign or product quality, which can affect the price.
Assumption 8’, however, is more appropriate if ξt can
be understood as the spending of advertisement that
is determined based on the product price.

Assumption 8. Assume that (i) ξt+1 ⊥⊥ (xt, pt) | ξt, (ii) xt+1
⊥⊥(ξt,ξt+1) | (xt, pt), (iii) and pt+1 ⊥⊥ (xt, pt,ξt) | (xt+1,ξt+1).
This implies that the following decomposition

F(mt+1 |mt) ! F(ξt+1 | ξt)F(xt+1 | xt, pt)F(pt+1 | xt+1,ξt+1).

(iv) Assume that F(ξt+1 | ξt) ! F(ξ1,t+1 | ξ1t) · · · F(ξJ,t+1 |
ξJt), and ξj,t+1 and ξkt are uncorrelated for any two distinct
products j and k, and (v) ξj,t+1 ! φjξjt + νj,t+1, where νj,t+1
has mean zero and is independent of ξjt.

These assumptions can be interpreted as follows.
At the beginning of period t + 1, each manufacturer j
receives its ξj,t+1, which depends on ξjt. Meanwhile,
xt+1 is generated based only on xt and pt. Given ξj,t+1
and xt+1 in period t + 1, manufacturers then determine
their prices for period t + 1.

Proposition 5. In addition to the conditions of Proposition 4,
suppose Assumption 8 holds. We can identify F(ξt+1 | ξt),
henceforth, F(mt+1 |mt).

Proof. See the online appendix.

Assumption 8′. Assume that (i) (xt+1, pt+1)⊥⊥ ξt | (xt, pt),
(ii) ξt+1 ⊥⊥ (xt, pt) | (xt+1, pt+1,ξt). This implies the following
decomposition:

F(mt+1 |mt) ! F(xt+1, pt+1 | xt, pt)F(ξt+1 | xt+1, pt+1, ξt).

(iii) Assume that F(ξt+1 | xt+1, pt+1, ξt) ! ∏
J
j!1F(ξj,t+1 |

xj,t+1, pj,t+1, ξjt), and (iv) ξj,t+1 ! φ0j + φ1jξjt + φ2jpj,t+1 +

φ′
3jxj,t+1 + νj,t+1, where νj,t+1 has mean zero and is in-

dependent of (ξjt, pj,t+1, xj,t+1).

Proposition 5′. In addition to the conditions of Proposition 4,
suppose Assumption 8’ holds. We can identify F(ξt+1 |
xt+1, pt+1,ξt), henceforth F(mt+1 |mt).
Proof. See the online appendix.

Remark 3 (Nonterminal Choices). Up to now, we have
assumed that a consumer’s choice is terminal, for ex-
ample, “buy one car then exit the market.” We can
extend the analysis to allow for nonterminal choice, for
example, “lease one car.” For simplicity, assume that
there is a third product “lease one car.” Let the flow
utility of the third product be

ui3t ! x′3tγ − αp3t + δ3 + ξ3t + εi3t.

By buying product 3, the consumer remains on the
market. Hence, the choice-specific value function v3t is
as follows:

v3t ! x′3tγ − αp3t + δ3 + ξ3t + βE(V̄t+1(mt+1) |mt).

Recall that v0t ! βE(V̄t+1(mt+1) |mt). We then have

ln(s3t/s0t) ! v3t − v0t ! x′3tγ − αp3t + δ3 + ξ3t,

which is the standard regression model in the BLP
model. It is well known that one can identify ξ3t itself
in general (Berry and Haile 2014). Once one has
identified ξ3t, the joint distribution F(p3t, ξ3t) and the
autocorrelation corr(ξ3t, ξ3,t+1) are identified. So non-
terminal choice can be accommodated.
It should be remarked that the main reason why this

works is that the current nonterminal choice, “lease one
car” today, does not affect the future market state mt+1.
Hence, the expected future payoff E(V̄t+1(mt+1) |mt)
does not vary with respect to choice. As a result, the
payoff difference between the choice of “lease one car”
and the choice of “outside good” is simply the flow
utility difference. In most dynamic discrete choice with
individual-level data, this does not hold because, in
most applications, the current choice affects the tran-
sition of state variables; hence, the expected future
payoff is also alternative specific.

Remark 4 (Changing Choice Set). It is important to
remark that our identification (preceding) and esti-
mation arguments (following) rely only on the need for
the same products to exist in two consecutive periods.
Of course for estimation, one needs multiple markets
when there are only two periods of data available.
Consider one example: in periods 1 and 2, there are two
products a and b, and in periods 3 and 4, there are
two products b and c. This example has both entry
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(product c) and exit (product a). In each period, we
assume we have enough markets. To identify/estimate
the preference parameters, we can use all four periods
by taking account of the logmarket share ratio between
b and a for periods 1 and 2, b and c for periods 3 and 4.
To identify/estimate the product-specific correlation
between price and unobserved product character-
istic and the serial correlation of unobserved product
characteristic, we can use periods 1 and 2 for product
a, periods 1–4 for product b, and periods 3 and 4 for
product c.

4. Estimation
For simplicity of exposition, we focus on the case that
the data are from one single market, for example, the
United States, over T consecutive periods. Both nu-
merical studies and empirical application show the
case with multiple markets. We first describe the
estimation routine for parameters and then describe
the variance estimation. The estimation routine in-
volves only IV and linear regressions. We then dis-
cuss the assumptions made in the paper, followed
by comments about data requirements in practice.
However, for applied marketers who are only in-
terested in understanding how to implement our
procedure, we include Table 1, which concisely pres-
ents the six ordinary least square (OLS) or IV re-
gressions that are required to estimate the model
primitives.

4.1. Preference
4.1.1. Preference for the Observed Characteristics

and Price.
Step 1. Estimate (γ̃′ ≡ γ′/(1 − β), α) using the fol-

lowing moment equation:

E(g1,(j,k),t(θ1o)) ! 0, for 0 < j < k ≤ J,

g1,(j,k),t(θ1) ! z(j,k),t ln
sjt
skt

( )
− (xjt − xkt)′γ̃

[

+ α(pjt − pkt) −
δj − δk
1 − β

]
.

The vector z(j,k),t is a vector of IV that is uncorrelated
with (ξjt − ξkt). The moment equation follows from
Equation (7) in identification.
In practice, one can estimate γ̃ and α by an IV re-

gression of ln(sjt/skt) on (xjt − xkt) and (pjt − pkt)with IV
z(j,k),t using data t ! 1, . . . ,T and a set of selected pairs
of products (j, k). In real data applications, we found
that it is desirable to divide the products into a few
clusters based on their prices, for example, run a
k-means clustering by price and consider only in-
tercluster pairs of products. The underlying reason is
that price difference pjt − pkt is usually endogenous.
If two products are close in their price, for example,
they come from the same cluster, the instrument z( j,k),t
is likely to be weak.

Table 1. Estimation Recipe

Step Dependent variable Independent variablesa IV

1 ln(sjt/skt) (xjt − xkt) −(pjt − pkt) z(j,k),tb

γ̃ α

2 ŷjt‡ −ŵj,t+1‡ xjt,IVc

β

3 (ŷjt + β̂ŵj,t+1) 1d OLS
δj

4 (1 − β̂)(ŷjt + β̂ŵj,t+1) (p̃jt − β̂p̃j,t+1) zρ,jte

ρ̃j

5 d̂2(j,k),t/2 + ˆ̃ρj ˆ̃ρkp̃jtp̃kt ‡ 1 OLS
σ2

6 d̂2(j,k),t/(2β̂σ̂2) − [(1 − β̂)/β̂](ŷjt + β̂ŵj,t+1)d̂(j,k),t/σ̂2 1 OLS
φj

‡Variable definitions:
1. ŷjt ! ln sjt

s0t

( )
− x′jt ˆ̃γ + α̂pjt;

2. ŵjt ! x′jt ˆ̃γ − α̂pjt − ln sjt;

3. d̂(j,k),t ! (1 − β̂) ln sjt
skt

( )
− (xjt − xkt)′ ˆ̃γ + α̂(pjt − pkt) − δ̂j−δ̂k

1−β̂

[ ]
.

aThe (IV) regression coefficient estimates associated with independent variables are estimates of the
parameters underneath the independent variables.

bThe IV z(j,k),t is uncorrelated with (ξjt − ξkt).
cThe IV xjt,IV is uncorrelated with ξjt and ξj,t+1.
dThis indicates regression with intercept term only.
ezρ,jt(pjt) is a vector of functions of pjt, for example, zρ,jt(pjt) ! (pjt, p2jt, . . . , pKjt )′ for some integer K ≥ 1 or

the optimal IV formula, Equation (O.11) in the online appendix.
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Letting ˆ̃γ and α̂ be the obtained estimates, define

yjt ! ln
sjt
s0t

( )
− x′jtγ̃ + αpjt and

wjt ! x′jtγ̃ − αpjt − ln sjt,

and their estimates ŷjt ! ln sjt
s0t

( )
− x′jt ˆ̃γ + α̂pjt and ŵjt !

x′jt ˆ̃γ − α̂pjt − ln sjt.

4.1.2. Discount Factor.
Step 2. Estimate β using

E(g2,(j,0),t(θ1o)) ! E(xjt,IV(yjt + βwj,t+1 − δj)) ! 0,

for 0 < j < J,

This moment equation follows from Equation (14) in
identification. In practice, to estimate β, one simply
runs an IV regression of ŷjt on −ŵj,t+1 using xjt,IV as the
IV for ŵj,t+1 using data t ! 1, . . . ,T − 1 and j ! 1, . . . , J.

4.1.3. Expected Unobserved Product Fixed Effect.
Step 3. Estimate δj using

E(yjt + βwj,t+1 − δj) ! 0,

which corresponds to the preceding moment equa-
tion when xjt,IV ! 1. In practice, one runs a linear re-
gression for each j of (ŷjt + β̂ŵj,t+1) on a constant of one
using data from t ! 1, . . . ,T − 1.

Define d̂(j,k),t, which is used in the estimation of the
other parameters,

d̂(j,k),t ! (1− β̂) ln
sjt
skt

( )
− (xjt−xkt)′ ˆ̃γ+ α̂(pjt−pkt)−

δ̂j− δ̂k
1− β̂

]
.

[

4.2. F(mt) and F(mt+1 |mt)
The full nonparametric estimation of F(mt) and F(mt+1 |
mt) would be unreliable in a small sample, which is
the case in most applications using market-level data.
We consider the assumption of normal distribution
to simplify the problem while keeping the interest-
ing dynamics and joint dependence among mt. For
exposition, we assume that the distribution F(xt, pt)
and F(xt+1 | xt, pt) are known.

Assumption 9.
i. xt ⊥⊥ ξt | pt and ξt+1 ⊥⊥ pt | pt+1.
ii. Assume the necessary conditional independence so

that

F(ξ1t, . . . , ξJt | p1t, . . . , pJt) ! F(ξ1t | p1t) · · ·F(ξJt | pJt).

In particular, this implies ξjt ⊥⊥ pkt | pjt for j ̸! k.
iii. For each product j, assume that (pjt, ξjt)′ follows a

bivariate normal distribution with mean (µpjt, 0)′, Var(pjt) !
σ2pjt, Var(ξjt) ! σ2, and cov(pjt, ξjt) ! ρjσσpjt. Let p̃jt !

(pjt − µpjt)/σpjt be the standardized price. The bivariate
normal distribution implies that E(ξjt | pjt) ! ρjσp̃jt. This
also implies that νj,t+1 in the AR(1) process ξj,t+1 ! φjξjt +
νj,t+1 follows a normal distribution.

Given this assumption, the primary interests are
to estimate σ2 ! Var(ξjt), ρj ! corr(pjt, ξjt), and φj.
However, it is easier to estimate ρ̃j ! ρjσ. Let θ2 !
(ρ̃1, . . . , ρ̃J , σ,φ1, . . . ,φJ)′ and θ ! (θ′

1, θ
′
2)′.

4.2.1. Correlation Between Product Price and
Unobserved Product Characteristics.

Step 4. Estimate ρ̃j ≡ ρjσ using

E(g3,j,t(θo)) ! 0, for 0 < j ≤ J,

where

g3,j,t(θ) ! zρ,jt(pjt)rjt, (18)
rjt ! (1 − β)(yjt + βwj,t+1) − (1 − β)δj − ρ̃j(p̃jt − βp̃j,t+1).

Here zρ,jt(pjt) is a vector of functions of pjt, for example,
zρ,jt(pjt) ! (pjt, p2jt, . . . , pKjt)′ for some integer K ≥ 1. We
discuss the optimal choice of zρ,jt(pjt). In practice, one
can estimate ρ̃j for each j by an IV regression of (1 −
β̂)(ŷjt + β̂ŵj,t+1) on (p̃jt − β̂p̃j,t+1)with IV zρ,jt. The online
appendix collects the detailed steps for obtaining the
moment equations of Steps 4–6.
It should be remarked that, in practice, ρ̃j is more

difficult to estimate than θ1 ! (α, β, γ′, δ′)′ for three
reasons. First, to estimate ρ̃j, one has only T − 1
number of observations. Second, the sampling error
in estimating θ1 impacts the estimation of ρ̃j. Third,
the variance of ρ̃j is proportional to the inverse of the
variance of (p̃jt − βp̃j,t+1). When price is persistent over
time, the variance of (p̃jt − βp̃j,t+1) is small.

4.2.2. Variance of Unobserved Product Characteristics.
Step 5. Estimate σ using

E(g4,(j,k),t(θo)) ! 0, for 0 < j < k ≤ J,

g4,(j,k),t(θ) ! d2(j,k),t/2 + ρ̃jρ̃kp̃jtp̃kt − σ2.

In practice, one can run a linear regression of d̂2(j,k),t/2 +
ˆ̃ρj
ˆ̃ρkp̃jtp̃kt on a constant using data t ! 1, . . . ,T and all

selected pairs of products. Knowing ρ̃j ! ρjσ and σ,
we know the joint distribution of (ξjt, pjt).

4.2.3. Serial Correlation of Unobserved
Product Characteristics.

Step 6. Estimate φj using

E(g5,(j,k),t(θo)) ! 0, for k ̸! j,

g5,(j,k),t(θ) !
d(j,k),t
2

2βσ2
− 1 − β

β
(yjt + βwj,t+1)

d(j,k),t
σ2

− φj.
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In practice, one can run a linear regression for each j
of d̂(j,k),t

2
/(2β̂σ̂2) − [(1 − β̂)/β̂](ŷjt + β̂ŵj,t+1)d̂(j,k),t/σ̂2 on a

constant one using data t ! 1, . . . ,T − 1 and the se-
lected pairs of products.

4.3. Asymptotic Variance and the Advantages of
Sequential Estimation

There are two major reasons why we favor sequential
estimation. First, sequential estimation is numerically
reliable. Regardless of the dimension of the state
variables, each step in the sequential estimation in-
volves only linear or IV regression; hence, there is no
numerical optimization. This also implies that the
output of the estimation does not suffer from any
randomness, always results in the same estimates,
and does not require us to specify any starting point.

Second, sequential estimation is empirically ap-
pealing. Most steps in our sequential estimation
process involve either running linear IV regression or
straightforward computations. The identification and
estimation involves finding relevant IV. One can then
easily test whether one’s chosen IVs are weak or not
by standard statistical tests in linear IV regression.
Using sequential estimation, one can immediately
see the significance of the selected observed product
characteristics by software routines.

Remark 5 (Estimating Standard Errors in Practice). Even
though we present a sequential estimator, one should
not use the standard errors reported along these se-
quential steps. This is because these standard errors do
not take into account the sampling error from the es-
timation in the earlier steps. One should instead use
the asymptotic variance formulas that are derived as-
suming a joint parametric generalized method of
moments (GMM) estimation process. See the online
appendix for details. To evaluate those formulas, one
plugs in the parameter estimates from either the se-
quential or joint procedure because they are both
consistent. Thus, to summarize, the estimation of pa-
rameters is carried out sequentially, but the estimation
of standard errors is done jointly.

4.4. Summary of Assumptions
Given thatwe have presented numerous assumptions
for identification and estimation of parameters, we
provide a summary of them in Table 13 of the online
appendix highlighting the settings in which the as-
sumptions are consistent and inconsistent. There are a
few points that deserve further explanation.

First, we note that Assumptions 1–4 and similar
ones are standard in the dynamic structural models
literature (Hotz and Miller 1993, Rust 1994, Bajari
et al. 2007). For the estimation of preference param-
eters, only Assumptions 1–3 are required.

Assumptions 5–9 on unobservable state variables
(product-period specific) aremostly new becausemost

prior research does not consider a persistent unob-
servable state.6 These are required for identification
of the observable and unobservable state evolution
process. Third, Assumption 9 is only required to make
parametric estimation possible because of data lim-
itations encountered in practice. There, we specify a
bivariate normal distribution, which characterizes the
contemporaneous dependence between price and the
unobservable product characteristics. We also spec-
ify that an unobservable characteristic for a product j
only depends on its price and not the price of other
products k ̸! j.
Finally, many of the assumptions are made on

conditional distributions or moments of conditional
distributions. Typically, the conditioning variables
are some combination of observables xjt and pjt. Thus,
the dimension of observable product characteristics
xjt and their variation play a significant role in the
assumption. In situations in which we have many
product characteristics or when they span a greater
support, the assumptions that restrict conditional
moments could be viewed as less restrictive. Because
our method does not have to worry about the curse
of dimensionality from increasing the dimension
of xjt, one can make these assumptions less restric-
tive by adding more observable product character-
istics if data permitted. It is easy to understand
from the following example. Suppose there are two
products, and they are dishes served by two res-
taurants. Let ξ1t and ξ2t be the unobserved taste
of the two dishes. Assumption 6(ii) in the paper
says that Var(ξ1t | xt, pt) ! Var(ξ2t | xt, pt). Without any
conditioning variables, Assumption 6(ii) requires
Var(ξ1t) ! Var(ξ2t), which is strong. However, if the
conditioning variables include food ingredients,
recipes, tenure of chef, etc., it is reasonable to assume
Assumption 6(ii).
Another point is worth noting on the conditional

moment restrictions. The larger the support of the
conditioning variables, (xt, pt), the less restrictive the
assumptions are. If, on the other hand, all product
characteristics are binary and prices show no varia-
tion, then the restrictions become stronger. For ex-
ample, if we have anX variable that indicateswhether
the smartphone supports music or not (binary), that
would be more restrictive. If, on the other hand, the
music variable actually indicated support for differ-
ent formats (e.g., MP3, WAV), we can view it as less
restrictive.

4.5. Data Requirements for Estimation
We now discuss the data requirements for employing
our estimator. For consumer parametersα, β, γ, it uses
the data on all products J across markets M and time
periods T. For product-specific parameters (δj fixed
effect and evolution of state-space parameters), the
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length of the panel T and marketsM is relevant. With
Assumption 9 (normal distribution), estimation re-
duces to a linear regression. Thus, the realistic sample
size would be comparable to the sample size that the
researcher would use for a linear regression.

With regard to the nonparametric estimation within
certain steps, there are only two instances. They are
E(p̃j,t+1 | pjt) and E(r2jt | pjt) in the construction of the
optimal IV for estimation Step 4.

First, one does not have to use the optimal IV. In-
stead, one can use a sequence of polynomials of price
as the IV, and the estimator is still consistent though
inefficient. Similarly, even if the nonparametric es-
timates Ê(p̃j,t+1 | pjt) and Ê(r2jt | pjt) of the conditional
expectations have large estimation error, the con-
structed optimal IV is still a valid IV (because the
nonparametric estimates are still a function of price
pjt), and hence, the estimation is valid though it’s no
longer efficient.

Second, the nonparametric regressions for esti-
mating E(p̃j,t+1 | pjt) and E(r2jt | pjt) involve only one
single regressor, pjt. Hence, it does not require much
more data than the linear regression of p̃j,t+1 on pjt or
the linear regression of r2jt on pjt. It is known that if one
used a linear regression to estimate the conditional
expectation, the mean-squared-error (MSE) is of or-
der O(n−1), and the MSE of nonparametric regression
has the order of O(n−4/5). In other words, if one be-
lieves that 20 observations is sufficient to estimate
the linear regression of p̃j,t+1 on pjt, then 25 observa-
tions are enough for its nonparametric regression
counterpart.

5. Counterfactual Implementation
The estimation of consumer preference parameters
did not require the direct computation of the value
function nor require an assumption about how con-
sumers form future beliefs. However, in order to run
any type of counterfactual analysis, the researcher is
required to compute the ex ante value function based
on the estimated parameters.

In addition to the stationary Assumption 4, any
counterfactual analysis requires the following:

i. Consumer preference: Preference parameters do
not change under the counterfactual.

ii. Consumer expectations: Expectations are specified
(e.g., rational expectations or perfect foresight).

iii. State evolution: Determine how the state vari-
ables evolve. The typical assumption is that observ-
able states evolve in the samemanner as the evolution
process present in data although the researcher is free
to specify a different evolution process and then
compute counterfactual outcomes for that case.

As long as we have these, we can perform a
counterfactual analysis by simulating individual
consumer choices under the counterfactual setting

because primitives for the agent and the state evo-
lution parameters are identified. All that is required
are assumptions on consumer expectations andwhat
beliefs consumers have about the evolution of the
state space (e.g., consumers track the evolution of
each individual product’s characteristics, the con-
ditional value function of each good, or a market
statistic such as the inclusive value). As a result, we
are able to employ our model primitives to examine
the impact of a change of any of the observed char-
acteristics in the flow utilities, a price change, exit of a
product, early entry of an observed product, and
policies that change consumer expectations.7

In order to implement any counterfactual exer-
cises and recover the impact of market share or
revenues, we must specify ξ1t. With this, all other
ξjt are identified because ξjt − ξ1t is identified. One
such approach is to simulate ξ1t from its estimated
AR(1) process and determine the ex ante value
function for each draw to obtain a range of coun-
terfactual results.8

6. Empirical Application
Wenow examine an empirical setting inwhichwe use
our method to obtain estimates of preferences as well
as other market- or product-level factors, including
the correlation between price and the unobserv-
able product characteristic, and serial correlation
in the unobservable product characteristics. We focus
on the market for mobile phone hardware in the
United States during the period June 2007–May 2008
(12 months). For this setting, we use data from the top
10 states across the United States with each of the
states serving as markets. The top six brands overall
are chosen as separate products, and all other brands
are included in a generic other brand choice.

6.1. Data
We have a number of product features at the brand
level for each of these markets. The features vary both
temporally as well as across markets. These prod-
uct characteristics are averaged at the brand choice
level across products within the brand for each
market and period. More specifically, variables are
generated using a weighted average based on sales
in each period.
Table 2 shows the basic summary statistics of the

market by showing the mean of product character-
istics for each brand in the sample.9 The top brands
in the market include Apple (iPhone), RIM (Black-
berry), Samsung, LG, Nokia, Motorola, and others.
This market displays differentiation among the
brands with the first two brands arguably represen-
ting smartphones, whereas the rest were primarily
focused on feature phones (or dumb phones) dur-
ing this time frame. The “x” variables are observable
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product characteristics, and include indicator variables
for the presence of Bluetooth support (xblue), GPS
capability (xgps), presence of a physical QWERTY
keyboard (xqwerty), whether music capability was
supported (xmusic), and Wi-Fi support (xwifi). The
two numeric variables characterized the weight of the
device in ounces (xweight), and the talk time in hours
(xtalktime). Typical battery life wasmeasured in hours
of talk time, which does not seem to be the case at
present. Recall also that most phones at the time were
feature phones (not smartphones), and typical phones
only had a numeric keypad with 10 buttons, rather
than the full QWERTY keyboard.

The price shows significant variation with very
low-priced as well as high-priced models over $400.
A majority of the phones at the time did have Blue-
tooth support, but not GPS support. QWERTY key-
boards were not as prevalent with the exception of
Blackberry, which was well known for this feature.
About 50% of the phones had some degree of music
support, but some of this support was tied in to
carrier-based music services (such as downloading
tones), which were quite expensive because cus-
tomers of a carrier such as Verizon orAT&Twere seen
as a captive market. Surprisingly, except for iPhone,
the majority of the phones did not support Wi-Fi,
a feature which is taken for granted in the present
market. Phones weighed an average of 350 ounces
(100 grams) and lasted for about five hours of talk
time before the battery was depleted.

6.2. Model
Wemodel J products in each market and time period.
Consumers are indexed by i, products by j, markets
(states) by ℓ, and periods by t. The period utility for a
consumer imaking a purchase of product j in market
ℓ at time t is

uijℓt ! δj + x′jℓtγ + αpjℓt + ξjℓt + εijℓt.

After purchasing, consumer i receives flow utility δj +
x′jℓtγ + ξjℓt + εijℓτ in each following period τ > t. The
no-purchase option is modeled as receiving a pe-
riod utility of zero with an option to continue in the

market as in Section 2. Consumers who purchase
exit the market and, thus, can be modeled as re-
ceiving the discounted stream of future utilities im-
mediately upon purchase. Thus, they obtain in ex-
pectation (δj + γXjℓt + ξjℓt)/(1 − β) + αPjℓt. Consumers
who do not purchase continue in the market and
receive the expected discounted value of waiting or
βE(V̄(mt+1) |mt).
Estimates are obtained based on Section 4 and

standard errors from the GMM variance formula.

6.3. Results
The results of the estimation are detailed in Table 3.
There are a few noteworthy observations regarding
the first step IV regression results. We exclude price
and music as potentially endogenous variables and
use the other product characteristics as instruments
in the IV regression. We also use additional instru-
ments obtained as the mean product characteristics
and price for comparison products in other markets.
These comparison products are chosen by a clustering
process, in which Apple and RIM (Blackberry) are
grouped in one cluster, which could be interpreted as
the smartphone cluster; other well-regarded brands
of feature phones at the time are grouped in a second
cluster (Motorola, Samsung, LG, and Nokia); and
finally, all other brands are grouped in a third cluster.
For a product, the products in other clusters serve as
comparison products in order to provide a sufficient
degree of variation.
First, observe that the price and all the product

characteristics are significant. The relative sales re-
sponse to product characteristics is positive for
Bluetooth and GPS but negative for weight and
music. Wi-Fi capabilities as well as talk time (which
measures battery life) are also positive as we might
expect. Our result about music appears counterin-
tuitive, but two contextual reasons help understand
this effect. First, in 2007, music capabilities of most
phones were very rudimentary, and they typically
did not support the well-known MP3 music format,
and capabilities of streaming with Spotify or other
internet services were also unavailable. Second, many
consumers who cared about music owned iPods or

Table 2. Summary Statistics for Mobile Phone Data: Mean of Characteristics

Brand price xblue xgps xweight xqwerty xmusic xwifi xtalktime share n of obs

Other 0.34 0.29 3.36 0.16 0.24 0.04 4.41 120
Moto 0.57 0.44 3.42 0.03 0.35 0.00 4.83 120
Samsung 0.61 0.35 2.98 0.10 0.43 0.01 4.31 120
LG 0.68 0.68 3.50 0.18 0.55 0.00 4.05 120
Nokia 0.41 0.09 3.28 0.01 0.35 0.00 4.33 120
Blackberry 0.87 0.43 3.59 0.87 0.73 0.03 4.07 119
Apple 1.00 0.04 4.50 0.00 1.00 1.00 7.87 111
All 131.86 0.64 0.34 3.50 0.19 0.52 0.15 4.80 18.9

Chou, Derdenger, and Kumar: Linear Estimation of Aggregate DDC Models for Durable Goods
Marketing Science, Articles in Advance, pp. 1–22, © 2019 INFORMS 15



other dedicated music (MP3) players, and phones
were really seen as a rather poor substitute for these
until the iPhone became popular over the years.
Finally, we tested for weak instruments and did not
find this in our setting.

The coefficients of product characteristics are
scaled by 1/(1 − β). Thus, thefirst step results in Table 3
do not directly depend on β. However, obtaining the
appropriately scaled coefficients of the product
characteristics requires us to either assume or esti-
mate β.

Step 2 of Table 3 provides the estimate of β, which is
the (negative of) coefficient ofwt+1 in Step 2 detailed in
Section 4. We find that β̂ ≈ 0.8, and it is highly sig-
nificant. For our monthly data, β ! 0.8 implies that,
after 24 months, which is the typical length of a
cell phone contract in the United States, the cell
phone has no additional utility, β24 ! 0.824 ! 0.0047,
for consumers.

We proceed with estimating the product fixed ef-
fects, detailed in Section 4. The fixed effects are de-
tailed in Step 3 of Table 3. We find that the most
negative fixed effect is for Blackberry (RIM), followed

by Samsung and the other feature phone manufac-
turers. Apple has the highest fixed effect.
Finally, we examine the remaining set of all pa-

rameter estimates in Steps 4–6 of Table 3. We have
previously described the product characteristics and
discount factor as well as the fixed effects for the
products. We now focus attention on the dynamics of
the state transition process as detailed in Section 2.
The correlation between the product price and the
structural error (or unobserved product characteris-
tic) is captured by ρj for product j. We find that all
these correlations are positive, and Apple has the
highest such correlation. One interpretation is that,
for Apple, there is a stronger connection between its
price and unobserved product characteristics, rela-
tive to other manufacturers, which is consistent with
the recognition it received for designing the iPhone
to be unique and highly differentiated. The weakest
correlation is observed for Samsung and other (ge-
neric) feature phones.
Next, we find the variance of the unobservable prod-

uct characteristic ξjt to be small but significant. This
partially explains why our estimates are significant.

Table 3. Estimation Results of Mobile Phone Market

Parameter Estimate Standard error t-value F-valuea

Step 1: preference, γ/(1 − β) price −0.01 0.001 −19.2 13.5
xblue 5.37 0.387 13.9
xgps 0.79 0.213 3.7
xweight −0.37 0.095 −3.9
xqwerty 1.03 0.169 6.1
xmusic −8.63 0.454 −19.0 9.3
xwifi 3.37 0.379 8.9
xtalktime 0.29 0.061 4.7

Step 2: discount factor β 0.79 0.006 122.1 9.5
Step 3: fixed effect δMoto −0.36 0.043 −8.4

δSamsung −0.43 0.042 −10.2
δLG −0.29 0.039 −7.5
δNokia −0.38 0.053 −7.2
δBlackberry −0.55 0.043 −12.9
δApple −0.03 0.050 −0.5
δOther −0.34 0.038 −8.8

Step 4: correlation between price and unobserved
product characteristics

ρMoto 0.27 0.025 10.6 75.6

ρSamsung 0.21 0.021 10.0 75.5
ρLG 0.38 0.034 11.0 71.5
ρNokia 0.28 0.025 11.2 88.7
ρBlackberry 0.53 0.050 10.6 72.1
ρApple 0.89 0.079 11.2 49.6
ρOther 0.25 0.023 10.8 61.4

Step 5: standard error of ξjt σ 0.29 0.003 93.2
Step 6: autocorrelation of ξjt φMoto 0.63 0.041 15.3

φSamsung 0.96 0.041 23.4
φLG 0.85 0.049 17.2
φNokia 0.57 0.040 14.2
φBlackberry −0.44 0.089 −5.0
φApple 0.32 0.145 2.2
φOther 0.46 0.015 30.8

a“F-value” is the first stage F test statistic on excluded IV.
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This unobservable characteristic evolves differently
across the products. We note a strong serial correla-
tion for Samsung and LG, indicating their relative
stability over time, whereas, in the case of Blackberry,
we observe a negative value, consistent with new de-
signs being released. Empirical results for nested logit
are in Section A.2.

6.4. Counterfactual
Next, we look to analyze the impact a number of
observable product characteristics have on sale.

Specifically, we examine the sales (market share)
impact when xwifi, xgps, and xblue are individually
set to zero for all products. In order to determine the
corresponding impact for each phone, we use the
method proposed in Section 5 of the online appendix.
For completeness, we discuss two important details
associated with the implementation. First, in the se-
ries approximation of the outside market share in
Equation (O.5), we use the quadratic polynomial
of vcjt for each j ! 1, . . . , 7 and the inclusive value
ln(∑7

j!1 exp(vcjt)). The inclusive value is used to capture

Figure 1. Impact on Within-Market Shares
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the possible interaction between vc1t, . . . , v
c
Jt. Second,

we use Equations (O.6) and (O.7) from the online
appendix to recover ξApple,t because of its high cor-
relation (0.89) between its price and ξApple,t. In par-
ticular, we let

ξ̂1t !
1 − β̂

1 − β̂φ̂1

( )[
ŷ1t − δ̂1

+ β̂E(ŵ1,t+1 | xt, pt, d̂(2,1),t, . . . , d̂(J,1),t)
]
,

and ξ̂jt ! ξ̂1t + d̂(j,1),t. For exposition simplicity, we
omit the subscript of state/market. Recall d(j,1),t !
ξjt − ξ1t. The conditional expectation was estimated
nonparametrically.

Figure 1 shows the counterfactual substitution ef-
fects among brands. We compute how the log market
shares relative to Apple change from the observed
data to the counterfactual (e.g., no Wi-Fi). We find
that removing the Bluetooth or Wi-Fi dramatically
changes the within-market shares. WithoutWi-Fi, the
iPhone would lose a substantial amount of its market
share when compared with other brands. We note
that Wi-Fi is almost exclusively available on iPhone
(Table 2) during the data period. Thus, it could be
viewed as providing a competitive advantage to
Apple in that it provides full internet access. Also,
removing GPS does not seem to impact the within-
market share significantly. Consumers were likely
not using their phones for GPS because they were
very poor substitutes with limited screen size and
visibility during the data period. Also, GPS capabil-
ities provided by phones required consumers to pay
an additional monthly fee to their network.

Table 4 shows the counterfactual outside market
share, which can be understood as the impact on
overall demand. The average in Table 4 is taken over
all months for each state (market). Table 4 shows that
removing Wi-Fi or GPS has little effect on the overall
demand. However, removing Bluetooth has a large
effect on the overall demand. Table 5 reports the total

effects by showing the market shares in different
counterfactual settings.

7. Conclusion
We develop a new method to estimate dynamic dis-
crete choice models using only aggregate data. Al-
though the extant methods for such estimation are
fairly computationally burdensome, our proposed
approach has the advantage that it can handle a large
number of products as well as characteristics across a
number of markets and time periods. The computa-
tional complexity is of the order of a linear (or IV)
regression to obtain the parameter estimates, making
it easily accessible.
We demonstrate the validity through proofs of the

asymptotic properties of the estimators and demon-
strate parameter recovery in finite sample simula-
tions. Further, we show the results in a practical ap-
plication using data from the market for mobile phone
handsets.
Although the method requires minimal assumptions

on the state transition process and other primitives, there
are a few limitations worth noting. First, the method
allows for product-level differences across both ob-
served and unobserved dimensions but is only appli-
cable for logit or GEV distributions. However, our
method is able to leverage specific properties of a setting
in which there are two or more terminal (or renewal)
choices, making the problem similar to a linear model.
Although the method does not incorporate unobserved
consumer heterogeneity in preferences, the approach
is suitable for cases in which this limitation is offset by
the computational simplicity and the fact that no as-
sumptions are needed about the state space or how state
variables transition in order to estimate preference
parameters. We expect that building further on this
research to broaden its applicability to be a worthwhile
area for further exploration. Future work would ben-
efit from recognizing Albuquerque and Bronnenberg
(2009), Sudhir (2013), and others and include addi-
tional microdata and moment conditions to precisely
pin down the distribution of unobserved consumer
heterogeneity.

Table 5. Average Counterfactual Market Shares,
Percentage

Brand No change xwifi = 0 xgps = 0 xblue = 0

Other 6.91 6.19 6.59 4.02
Moto 8.86 9.43 7.66 1.71
Samsung 5.94 6.10 5.44 0.96
LG 5.60 5.93 3.91 0.62
Nokia 2.87 3.02 3.26 1.65
BB 1.40 1.35 1.21 0.08
Apple 0.62 0.02 0.72 0.01

Table 4. Average Counterfactual Outside Market Share,
Percentage

State No change xwifi = 0 xgps = 0 xblue = 0

California 64.4 64.0 68.9 91.5
Florida 71.2 70.9 72.1 91.4
Georgia 66.9 67.7 70.3 91.9
Illinois 67.7 68.6 70.3 90.9
Michigan 68.1 68.7 72.7 91.8
New Jersey 63.1 63.4 70.1 89.8
New York 66.1 66.8 70.5 89.5
Ohio 72.5 72.1 75.1 89.7
Pennsylvania 71.1 70.9 74.1 91.5
Texas 67.0 66.7 68.7 91.4
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Appendix. Nested Logit Extension
The multinomial logit specification has the notorious “in-
dependent irrelevant alternative” properties.We consider a
nested logit model as a remedy. First, split the products
0, 1 . . . , J{ } into κ + 1 exhaustive and mutually exclusive
sets. Denote &A the Ath group. The outside good 0 is as-
sumed to be the only member of group 0. When one
product, excepting for 0, forms a group by itself, we call it a
“stand-alone” product. For a product j, let s̄jt be the market
share of the group containing j, let s̃jt ! sjt/s̄jt be the within-
group market share. Of course, if product j is a stand-alone
product, s̄jt ! sjt and s̃jt ! 1.

Assumption A.1. Assume that εit follows the following GEV

distribution: F(εit) ! exp −∑κ
A!0

∑
j∈&A e

−εijt/ζ(A)
( )

ζ(A)
[ ]

. The un-

known scale parameter ζ(A) determines the within-nest correlation
of group &A. For any group A with one single product, such as
&0 ! 0{ }, let ζ(A) ! 1.

For any product j, we also use ζj to denote the within-nest
correlation of the group containing j. For example, if j ∈ &A,
ζj ! ζ(A). It is well known that the within-nest correlation
coefficient is 1 − ζ(A)2. Because of space limitation, we only
describe the estimation steps. The online appendix shows
the identification and the other details of obtaining our
estimation recipe.

A.1. Estimation
We focus on the case in which the data are from one single
market over T consecutive periods.

A.1.1. Preference: No Stand-Alone Product. Apart from the
outside good, every group contains at least two products.

Step 1. For each group A! 1, . . . ,G, estimate (γ̃′/ζ(A),
α/ζ(A)) using the following moment equation:

E(g1,(j,k),t(θo)) ! 0, for j, k ∈ &A and j > k,

g1,(j,k),t(θ) ! z(j,k),t ln
s̃jt
s̃kt

( )
− (xjt − xkt)′γ̃/ζA

[

+ (pjt − pkt)α/ζA − δj − δk
(1 − β)ζA

]
.

The vector z(j,k),t is a vector of IV that are uncorrelated
with (ξjt − ξkt).

In practice, one can estimate (γ̃′/ζ(A), α/ζ(A)) by an IV
regression of ln(s̃jt/s̃kt) on xjt − xkt and pjt − pkt with IV z(j,k),t
using data t ! 1, . . . ,T. Letting ̂γ̃/ζ(A) and ̂α/ζ(A) be the
obtained estimates, define

yjt ! ln s̃jt − x′jtγ̃/ζj + pjtα/ζj,

and their estimates ŷjt ! ln s̃jt − x′jt ̂̃γ/ζj + pjtα̂/ζj. Note that
ζj ! ζ(A) when j ∈ &A.

Step 2. Estimate β, ζ, and δ. Define a list of group dummy
variables dGA,jt ! 1 if j ∈ &A and ! 0 otherwise. Estimate β, ζ,
and δ using E(g2,(j,0),t(θo)) ! 0, where

g2,(j,0),t(θ) ! xjt,IV ln
s̄jt
s̄0t

( )
+
∑κ

A!1
ζ(A)dGA,jtyjt

[

−
∑κ

A!1
βζ(A)dGA,j,t+1yj,t+1 − β ln s̄j,t+1 − δj

]
.

In practice, one can first estimate β and ζ(1), . . . , ζ(κ) by
solving the nonlinear least square problem,

min
β,ζ

∑J

j!1

∑T−1

t!1
ĝ2,(j,0),t(θ)′ĝ2,(j,0),t(θ),

ĝ2,(j,0),t(θ) ! (xjt,IV − x̄j,IV) ln
s̄jt
s̄0t

( )
+
∑κ

A!1
ζ(A)dGA,jtŷjt

[

−
∑κ

A!1
βζ(A)dGA,j,t+1ŷj,t+1 − β ln s̄j,t+1

]
.

Here, x̄j,IV ! T−1 ∑T
t!1 xjt,IV is the sample average of xjt,IV .

As for initial values, one can run an IV regression of
ln(s̄jt/s̄0t) on dGA,jtŷjt, d

G
A,j,t+1ŷj,t+1, and ln s̄j,t+1 with IV xjt,IV and

use the coefficients associated with dGA,jtŷjt and ln s̄j,t+1 as the
initial values for ζ(A) and β.

After obtaining ζ̂ and β̂, one can let δ̂j be the estimate of δj:

δ̂j ! T−1 ∑T−1

t!1
ln

s̄jt
s̄0t

( )
+ ζ̂jŷjt − β̂ζ̂jyj,t+1 − β̂ ln s̄j,t+1.

A.1.2. Preference: With Stand-Alone Product. When there
are stand-alone products, the estimation can be simplified.
Without loss of generality, assume product 1, . . . , J1 are stand-
alone products, and they form group 1, . . . , J1, respectively.
If J1 ! J, this becomes multinomial logit case.

Step 1. It can be shown that we, in general, have

ln
s̄jt
s̄kt

( )
! δj − δk

1 − β
+ (xjt − xkt)′γ̃ − (pjt − pkt)α

− ζj ln
s̃jt
s̃kt

( )
+ ξjt − ξkt

1 − β
.

Note that ln(s̄jt/s̄kt) ! 0 if j, k are from the same nest, and
ln(s̃jt/s̃kt) ! 0 if j and k are both stand-alone products. When
there is at least one stand-alone product, that is, J1 ≥ 1, we
can estimate ζ(J1 + 1), . . . , ζ(κ) (ζ(0) ! · · · ! ζ(J1) ! 1), γ̃, and
α by the following:

g1,(j,k),t(θ) ! (z(j,k),t − z̄(j,k))
[
ln

s̄jt
s̄kt

( )
− (xjt − xkt)′γ̃

+ (pjt − pkt)α +
∑κ

A!J1+1
ζ(A)dGA,jt ln

s̃jt
s̃kt

( )]
,
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where z̄(j,k) ! T−1 ∑T
t!1 z(j,k),t. In practice, we run an IV re-

gression of ln(s̄jt/s̄kt) on xjt − xkt, pjt − pkt, and dGA,jt ln(s̃jt/s̃kt)
with IV z(j,k),t.

Step 2. Estimate β. Define

ỹjt ! ζjyjt + ln(s̄jt/s̄0t), and
w̃j,t+1 ! −ζjyj,t+1 − ln s̄j,t+1.

(A.1)

Because ζj has been estimated in the first step, ỹt and w̃t
are known. We then can estimate β using E(g2,(j,0),t(θo)) ! 0,
where

g2,(j,0),t(θ) ! xjt,IV(ỹjt + βw̃t+1 − δj).

In practice, to estimate β, run an IV regression of ˆ̃yjt on
− ˆ̃wj,t+1 using xjt,IV as the IV.
Step 3. Estimate δj using

E(ỹjt + βw̃t+1 − δj) ! 0.

Run a linear regression for each j of ( ˆ̃yjt + β̂ŵj,t+1) on a
constant (of one) with data from t ! 1, . . . ,T − 1.

A.1.3. F(mt) and F(mt+1 | mt). We make the same normal
distribution assumption as in the paper. The estimation
of the parameters in F(mt) and F(mt+1 |mt) in the nested logit
case is identical to the multinomial logit case by replac-
ing d(j,k),t, yjt, and wjt in the multinomial logit case with
d̃(j,k),t, ỹjt, and w̃jt, where ỹjt and w̃jt are defined in Equa-
tion (A.1), and

d̃(j,k)t ! (1 − β)ζj ln
s̃jt
s̃kt

( )
− (xjt − xkt)′γ + (1 − β)

· α(pjt − pkt) − (δj − δk) + (1 − β) ln s̄jt
s̄kt

( )
,

with or without stand-alone products. So we do not repeat
the procedures.

A.2. Mobile Phone Market Application with Nested
Logit Specification

Using the nested logit (NL) specification, we reestimated
the cell phone market application. Besides the outside
option, there are three nests in the model. Nest 1 consists
of Apple and RIM (Blackberry), nest 2 consists of the

Table A.1. Estimation Results of Mobile Phone Market: Nested Logit

Parameter Estimate Standard errora tvalue F-valueb

Step 1: preference, γ/(1 − β), and within nest corr price −0.01 0.00 −4.60 6.81
xblue 1.00 0.58 1.72
xgps 0.47 0.09 5.22
xweight −0.08 0.05 −1.72
xqwerty −1.55 0.45 −3.41
xmusic −0.27 1.04 −0.26 13.17
xwifi 0.68 0.91 0.75
xtalktime 0.12 0.05 2.39
Corr in nest 1 0.78 0.15 5.35 27.70
Corr in nest 2 1.00 0.00 371.13 29.6

Step 2: discount factor β 0.97 0.10 9.55 29.6
Step 3: fixed effect δMoto 0.15 0.07 2.07

δSamsung 0.16 0.07 2.21
δLG 0.12 0.07 1.64
δNokia 0.19 0.07 2.56
δBlackberry 0.11 0.08 1.40
δApple 0.28 0.08 3.52
δOther 0.16 0.07 2.14

Step 4: correlation between price and unobserved
product characteristics

ρMoto 0.14 0.02 5.54 50.11

ρSamsung 0.17 0.03 6.28 46.84
ρLG 0.21 0.03 7.14 45.39
ρNokia 0.20 0.03 7.89 59.89
ρBlackberry 0.24 0.07 3.28 45.61
ρApple 0.69 0.11 6.13 31.62
ρOther 0.25 0.05 5.00 35.85

Step 5: std. error of ξjt σ 0.05 0.00 41.22
Step 6: autocorrelation of ξjt φMoto 0.08 0.02 4.34

φSamsung 0.04 0.01 4.05
φLG 0.45 0.03 17.73
φNokia 0.40 0.03 14.33
φBlackberry 0.42 0.07 5.66
φApple 4.67 0.23 20.28

Note. xblue, Bluetooth indicator; xgps, GPS indicator; xweight, weight in ounces; xwerty, QWERTY keyboard indicator; xmusic, music playing
capability indicator; xwifi, Wi-Fi support indicator; xtalktime, talk time (battery life) in minutes; std., standard; Corr, correlation.

aThe standard errors reported here are obtained from sequential estimation steps.
b“F-value” is the first stage F test statistic on excluded IV.
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well-regarded brands of feature phones at the time (Motorola,
Samsung, LG, and Nokia), and nest 3 consists of all other
brands. In this specification, “all other brands” is a stand-
alone product; hence, we use the estimation method out-
lined for the case with stand-alone product. In estimation,
we use the same IV as we use in the multinomial logit
(MNL) specification. The results are detailed in Table A.1.

The correlation coefficient for nest 2 (feature phones) is
almost 1.00, likely because these phones are very similar. The
correlation coefficient for nest 1 (Blackberry and iPhone) is
0.78 because of some important differences between these
two phones, for example, iPhone can accessWi-Fi, though they
are both smartphones.

The estimates of many important parameters in the NL
case are close to the estimates in the MNL case. The price
coefficient, α, in both NL andMNL is −0.01. The estimate of
the discount factor, β, in NL is 0.97, which is bigger than 0.8
in the MNL case. The ordering of the estimated fixed effect
among different phones from both MNL and NL is similar—
iPhone has the highest fixed effect, and Blackberry has the
lowest. Also, similar to the estimates in the MNL, iPhone
has the highest correlation between price and unobserved
product characteristics. The estimates of the serial corre-
lation of ξjt are somewhat different from the MNL case. The
most noticeable difference is the iPhone, whose autocor-
relation coefficient is greater than one. This means ξiPhone,t is
a nonstationary process, which could be because the iPhone
had only been on themarket for a fewmonths. Note that the
estimated standard error of ξjt is substantially smaller than
the MNL case. This can be understood from the regression
formula in the NL case:

ln
s̄jt
s̄kt

( )
! δj − δk

1 − β
+ (xjt − xkt)′γ̃

− (pjt − pkt)α − ζj ln
s̃jt
s̃kt

( )
+ ξjt − ξkt

1 − β
.

Note that, in the MNL case, each product forms a nest
by itself, and preceding equation becomes

ln
s̄jt
s̄kt

( )
! δj − δk

1 − β
+ (xjt − xkt)′γ̃ − (pjt − pkt)α + ξjt − ξkt

1 − β
.

The “regressor” ln(s̃jt/s̃kt) vanishes in the MNL case. The
estimated variance of ξjt essentially depends on the vari-
ance of the “error term” (ξjt − ξkt)/(1 − β) in the regression
equations. In the NL case, we have one additional regressor
ln(s̃jt/s̃kt); hence, the variance of the residuals is reduced. The
observed reduction of the variance of unobserved product
characteristics after controlling for nest or group market share
suggests that, in empirical research, one might be able to at
least reduce the influence of the unobserved product char-
acteristics by using certain observed group characteristics,
for example, the nest or group market share.

Endnotes
1The inclusion of the latter unobserved state is necessary to account
for the endogeneity of price.
2We note that Daljord et al. (2018) presents an innovative way to
identify the discount factor in DDCmodels with individual data. The
primary difference is that our setting involves persistent unobservable

state variables, whereas those are not present in the aforementioned
paper.
3 It should be remarked that x2t,IV does not need to be a component of
x2t. For example, x2t,IV can be x1t + x2t if cov(xjt,ξ2t) ! cov(xjt, ξ2,t+1) !
0 for both j ! 1 and 2.
4 Implicitly, we assumed the unobserved product characteristics are
mean stationary.
5 In the solution, one needs E(ξ2,t+1 | xt, pt). We identify E(ξ2,t+1 |
xt+1, pt+1). Then we can identify E(ξ2,t+1 | xt, pt) ! E[E(ξ2,t+1 | xt+1, pt+1) |
xt, pt] by Assumption 5.
6The closest paper is that of Norets (2009), who models a serially
correlated idiosyncratic shock.
7 In stationary models such as ours, Arcidiacono and Miller (2018)
determine that a counterfactual policy change induced by an in-
novation to the state transition is identified as long as the true utility
value associated with the Arcidiacono and Miller (2011) represen-
tation of the value function is known. One computationally light
method that allows for the recovering of counterfactual outcomes in
which state transitions change is with the use of the inclusive value
sufficiency assumption. In this method, both the change in flow
utilities and state transitions are accounted for with the latter by
simply reestimating the AR(1) process for the counterfactual inclusive
value. For exit models, we are able to simulate forward the un-
observed state variables because again we identify and estimate its
transition process.
8 In the online appendix Section O.3, we present a solution for solving
the value function that does not require value function iteration, the
discretization of state variables, nor the use of interpolation and an
alternative way to determine ξ1t.
9Because of a nondisclosure agreement, we cannot report brand-level
price and market share data.
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1 Numerical Simulation

In order to determine how well our estimator performs in small samples, we run several
simulations that vary the number of products, the number of markets, the number of time
periods and whether the data generating process originated from a type 1 extreme value
distribution or a GEV distribution or a finite mixture model.

1.1 Logit Model

We first discuss the data generating process associated with the logit model. The consumer’s
flow utility function follows the specification in §2.1. When consumer i purchases product j
in period t, he receives the following flow utility in period t,

uijt = f(xjt, ⇠jt)� ↵pjt + "ijt ⌘ f(xjt, ⇠jt)� 0.5pjt + "ijt,

and receives f(xjt, ⇠jt) as flow utility in each period post purchase in period t. In the
simulation we let

f(xjt, ⇠jt) = x0
jt� + �j + ⇠jt = x0

jt0 + 0.75 + ⇠jt,

for any product j. So ↵ = 0.5, � = 0 and �j = 0.75 for any product j. Products in the
simulation are differentiated by the observed price, pjt, and unobserved characteristics, ⇠jt.
The discount factor � is set to 0.80. We maintain the independence and logit specification
about "ijt, i.e. Assumption 3.
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We next describe the data generation process of price and the unobserved product char-
acteristics. We specifically account for correlation between ⇠jt and pjt. Such a formulation
is motivated by the price endogeneity problem researchers face when employing aggregate
data, where firms can observe ⇠jt and then set prices optimally. We use a reduced form price
model to characterize this dependence. Specifically,

pjt = cj +MCjt + !jt and ⇠jt = �j⇠j,t�1 + ⌫jt,

where (!jt, ⌫jt)0 is iid across products and time periods, and follows a normal distribution,

 
!jt

⌫jt

!
⇠ N
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�2
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Here MCjt denotes the marginal cost of product j at time t. MCjt is independent of (!jt̃, ⌫jt̃)
0

for any period t and t̃. Specifically, MCjt takes the form

MCjt =  jMCj,t�1

We will use MCjt as the instrumental variable in both estimation steps 1 and 2 outlined in
§4.1.

In our simulations the maximum number of products is 5, and we assign the following
parameter values. We let (c1, . . . , c5) = (1, 2.5, 3.5, 4.5, 5.5) and ( 1, . . . , 5) = (0.98, 0.92,

0.88, 0.84, 0.80). For the initial state of MCj0, we let (MC10, . . . ,MC50) = (15, 14.5, 14, 13.5, 13).
Such specification ensures that product marginal cost, MCjt, has a declining trajectory,
which is consistent with durable goods models.

In addition, we let �j = 0.25 for any product j.1 Let �p = 0.5, ⇢ = 0.25, and �⌫ = 0.1.
Since ⇠jt is a stationary AR(1) process, it is easy to see that �2 = Var(⇠jt) = 0.12/(1�0.252),
that is � ⇡ 0.1033. Moreover, corr(⇠jt, pjt) = ⇢ by serial independence of both !jt and ⌫jt.

In Fig. 1, we present prices and the outside option’s market share in order to illustrate
that the data generation process (DGP) is consistent with a durable goods setting. Note the
declining prices and decreasing market share of the outside option in Fig. 1.

Suppose for J products and one market we have simulated panel data (st, pt,MCt, ⇠t) for
T periods. We first estimate ↵ with an instrumental variable regression. We use the marginal
cost variable above as a price instrument. Given the estimates of ↵ we have estimates of yt

1
We also performed simulations when ⇠jt has no serial correlation, i.e. �j = 0. Results are available upon

request.
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Figure 1: Monte Carlo Prices and Outside Market Share (J = 5)

and wt. We then estimate � using two stage least squares as discussed in §5.1.2, using the
demeaned price instrument as the instrument. Once � is estimated, we can estimate � by
multiplying the estimate of �̃ with 1��̂, if we included other observed product characteristics
to estimate. Yet, since the DGP only consists of a constant term, we estimate the constant
using step 3 in section 5.1.3. The estimation of Var(⇠jt) follows the steps in the previous
section. We also estimate E(⇠jt | pjt) using step 4 in §5.2.1 to recover ⇢ and �.

Each set of simulations we analyze was based on 250 replications. We also analyze sets
with varying number of markets (1 and 10), time periods (150, or 300) and the number of
J .

The first set of simulations in Table 1 and 2 illustrate how well and precise our method-
ology is able to identify the data generating process—including the discount factor. Fur-
thermore, if the discount factor is known (or assumed), the results exhibit less small sample
bias and more precision, particularly for the parameters that include the discount factor in
estimation, �, �, ⇢, and �. Specifically, we determine that estimation of ⇢ is quite challenging
in practice and requires a sizeable amount of data and products to precisely estimate when
the discount factor is estimated. This again is from the fact that

g3jt(✓) = z⇢,j,t(pjt)rjt

rjt = (1� �)(yj,t + �wj,t+1)� (1� �)�j � ⇢̃j(p̃j,t � �p̃j,t+1)
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Table 1: Monte Carlo Simulation Results: 10 Markets and 150 Periods

DGP: 10 Markets, T = 150

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7323 (0.0083) -0.5003 (0.0075) 0.0963 (0.0063) 0.1405 (0.0637) 0.2609 (0.0686) 0.8153 (0.0116)
J = 3 0.7381 (0.0082) -0.5003 (0.0075) 0.0941 (0.0088) 0.1199 (0.0655) 0.2538 (0.0480) 0.8192 (0.0161)
J = 4 0.7431 (0.0088) -0.5002 (0.0077) 0.0911 (0.0102) 0.1403 (0.0600) 0.2473 (0.0435) 0.8253 (0.0190)
J = 5 0.7463 (0.0109) -0.5001 (0.0074) 0.0913 (0.0121) 0.1736 (0.0582) 0.2422 (0.0436) 0.8257 (0.0222)

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7391 (0.0093) -0.5003 (0.0075) 0.1053 (0.0025) 0.2086 (0.0692) 0.2555 (0.0684) –
J = 3 0.7399 (0.0089) -0.5003 (0.0075) 0.1050 (0.0017) 0.1902 (0.0560) 0.2496 (0.0472) –
J = 4 0.7411 (0.0089) -0.5002 (0.0077) 0.1054 (0.0017) 0.2126 (0.0490) 0.2426 (0.0424) –
J = 5 0.7417 (0.0098) -0.5001 (0.0084) 0.1057 (0.0015) 0.2318 (0.0428) 0.2381 (0.0425) –
Mean and standard deviation for 250 simulations.

Table 2: Monte Carlo Simulation Results: 10 Markets and 300 Periods

DGP: 10 Markets, T = 300

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7494 (0.0058) -0.5003 (0.0074) 0.1065 (0.0062) 0.2171 (0.0408) 0.2360 (0.0313) 0.7972 (0.0116)
J = 3 0.7457 (0.0086) -0.5003 (0.0076) 0.1041 (0.0080) 0.2382 (0.0371) 0.2388 (0.0289) 0.8028 (0.0145)
J = 4 0.7473 (0.0114) -0.5002 (0.0079) 0.1018 (0.0090) 0.2546 (0.0321) 0.2363 (0.0359) 0.8078 (0.0168)
J = 5 0.7483 (0.0134) -0.5001 (0.0087) 0.1015 (0.0096) 0.2664 (0.0333) 0.2345 (0.0440) 0.8087 (0.0176)

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7496 (0.0057) -0.5003 (0.0074) 0.1050 (0.0018) 0.2091 (0.0514) 0.2365 (0.0318) –
J = 3 0.7451 (0.0062) -0.5003 (0.0076) 0.1057 (0.0014) 0.2438 (0.0392) 0.2383 (0.0285) –
J = 4 0.7443 (0.0070) -0.5002 (0.0079) 0.1061 (0.0013) 0.2653 (0.0340) 0.2354 (0.0354) –
J = 5 0.7443 (0.0083) -0.5001 (0.0087) 0.1064 (0.0013) 0.2661 (0.0318) 0.2337 (0.0436) –
Mean and standard deviation for 250 simulations.

is impacted by the discount factor. Thus, any bias associated with the discount factor will
propagates through and into the estimation of the correlation parameter. Lastly, as is the
case in much of the static choice literature where the variance covariance matrix is estimated,
it is known that sizeable amounts of data are required to precisely estimate the parameter.
This is made more clear with our second set of simulations which increases the time duration
to 300 periods from 150. This increase doubles the amount of data and provides improvement
in the estimation of ⇢ and the discount factor.

Finally, Table 3 and 4 present the analysis where only 1 market is employed and T equals
150 or 300 periods. The results are similar to the set of simulations which employ 10 markets,
but with less precision—most notably for ⇢ and �.
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Table 3: Monte Carlo Simulation Results: 1 Market and 150 Periods

DGP: 1 Market, T = 150

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7339 (0.0265) -0.5041 (0.0249) 0.0990 (0.0402) 0.1462 (0.2087) 0.2471 (0.1975) 0.8167 (0.0386)
J = 3 0.7419 (0.0247) -0.5048 (0.0234) 0.0971 (0.0314) 0.1301 (0.2272) 0.2380 (0.1293) 0.8190 (0.0503)
J = 4 0.7447 (0.0264) -0.5040 (0.0233) 0.0922 (0.0607) 0.1374 (0.1906) 0.2273 (0.1181) 0.8260 (0.0607)
J = 5 0.7487 (0.0331) -0.5034 (0.0250) 0.0893 (0.0369) 0.1678 (0.1825) 0.2220 (0.1246) 0.8324 (0.0684)

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7439 (0.0300) -0.5041 (0.0249) 0.1075 (0.0091) 0.2211 (0.2205) 0.2407 (0.1951) –
J = 3 0.7462 (0.0273) -0.5084 (0.0234) 0.1077 (0.0143) 0.2088 (0.1964) 0.2364 (0.1304) –
J = 4 0.7456 (0.0268) -0.5040 (0.0233) 0.1069 (0.0068) 0.2178 (0.1774) 0.2227 (0.1154) –
J = 5 0.7462 (0.0290) -0.5034 (0.0250) 0.1078 (0.0147) 0.2464 (0.1597) 0.2168 (0.1205) –
Mean and standard deviation for 250 simulations.

Table 4: Monte Carlo Simulation Results: 1 Market and 300 Periods

DGP: 1 Market, T = 300

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7510 (0.0197) -0.5041 (0.0248) 0.1083 (0.0293) 0.2265 (0.1653) 0.2256 (0.0966) 0.7994 (0.0344)
J = 3 0.7486 (0.0267) -0.5048 (0.0238) 0.1047 (0.0246) 0.2424 (0.1462) 0.2354 (0.0960) 0.8040 (0.0449)
J = 4 0.7503 (0.0337) -0.5041 (0.0239) 0.1008 (0.0276) 0.2543 (0.1084) 0.2381 (0.1094) 0.8109 (0.0512)
J = 5 0.7515 (0.0416) -0.5035 (0.0259) 0.1011 (0.0317) 0.2697 (0.0984) 0.2412 (0.1322) 0.8111 (0.0578)

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7527 (0.0191) -0.5041 (0.0248) 0.1069 (0.0098) 0.2209 (0.1841) 0.2250 (0.0964) –
J = 3 0.7490 (0.0206) -0.5048 (0.0238) 0.1069 (0.0050) 0.2566 (0.1335) 0.2350 (0.0951) –
J = 4 0.7477 (0.0223) -0.5041 (0.0239) 0.1070 (0.0040) 0.2705 (0.1097) 0.2364 (0.1068) –
J = 5 0.7483 (0.0253) -0.5035 (0.0259) 0.1071 (0.0036) 0.2828 (0.0927) 0.2400 (0.1303) –
Mean and standard deviation for 250 simulations.
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Table 5: Nested Logit Monte Carlo Simulation Results: 10 Markets and 150 Periods

DGP: 10 Markets, T = 150

� = 0.75 ↵ = �0.5 ⇣ = 0.8 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 3 0.7339 (0.0352) -0.5018 (0.0274) 0.7920 (0.1021) 0.0954 (0.0215) 0.1358 (0.0967) 0.2326 (0.0567) 0.8176 (0.0319)
J = 4 0.7367 (0.0381) -0.5015 (0.0266) 0.7967 (0.0674) 0.0917 (0.0183) 0.1503 (0.1086) 0.2447 (0.0516) 0.8245 (0.0288)
J = 5 0.7405 (0.0243) -0.5005 (0.0156) 0.8005 (0.0432) 0.0902 (0.0135) 0.1730 (0.0899) 0.2411 (0.0439) 0.8261 (0.0262)

� = 0.75 ↵ = �0.5 ⇣ = 0.8 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 3 0.7416 (0.0387) -0.5018 (0.0274) 0.7920 (0.1021) 0.1039 (0.0057) 0.2029 (0.1625) 0.2261 (0.0527) –
J = 4 0.7415 (0.0403) -0.5015 (0.0266) 0.7967 (0.0674) 0.1041 (0.0051) 0.2186 (0.1476) 0.2384 (0.0477) –
J = 5 0.7401 (0.0263) -0.5005 (0.0156) 0.8005 (0.0431) 0.1038 (0.0036) 0.2327 (0.0810) 0.2412 (0.0423) –
Mean and standard deviation for 250 simulations.

Table 6: Nested Logit Monte Carlo Simulation Results: 10 Markets and 300 Periods

DGP: 10 Markets, T = 300

� = 0.75 ↵ = �0.5 ⇣ = 0.8 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 3 0.7449 (0.0192) -0.5008 (0.0156) 0.7974 (0.0426) 0.1024 (0.0115) 0.2390 (0.0515) 0.2300 (0.0415) 0.8019 (0.0204)
J = 4 0.7435 (0.0351) -0.5003 (0.0241) 0.7991 (0.0477) 0.1011 (0.0151) 0.2507 (0.0769) 0.2386 (0.0322) 0.8058 (0.0247)
J = 5 0.7460 (0.0284) -0.5003 (0.0197) 0.7998 (0.0442) 0.1002 (0.0112) 0.2609 (0.0773) 0.2420 (0.0298) 0.8071 (0.0223)

� = 0.75 ↵ = �0.5 ⇣ = 0.8 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 3 0.7455 (0.0157) -0.5008 (0.0156) 0.7974 (0.0426) 0.1032 (0.0024) 0.2461 (0.0886) 0.2288 (0.0441) –
J = 4 0.7440 (0.0238) -0.5003 (0.0241) 0.7991 (0.0477) 0.1039 (0.0037) 0.2584 (0.0978) 0.2378 (0.0327) –
J = 5 0.7437 (0.0273) -0.5003 (0.0197) 0.7998 (0.0442) 0.1040 (0.0039) 0.2697 (0.0764) 0.2413 (0.0292) –
Mean and standard deviation for 250 simulations.

1.2 Nested Logit Model

Next, we present the result of several Monte Carlo simulations with a nested logit data
generating process. Particularly, we analyze the case where there of 3-5 products with
product one relegated to one nest and all other products to a second nest. The within
nested correlation for product one is normalized to 1 with the second nest taking the value
of 0.80. The remaining data generating processes follows exactly as above in the simply MNL
case.

We present the same variation of simulations as in the Logit case. The tables below
illustrate that our estimator is able to precisely estimate the model primitives associated
with the nested logit model. Finally, the presence of multimarkets aids in the recovery of
model parameters.

1.3 Heterogeneous Logit Model

Lastly, we present the result of several Monte Carlo simulations where the DGP includes
consumer heterogeneity in price, but we estimate a multinomial logit model. Doing so
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Table 7: Nested Logit Monte Carlo Simulation Results: 1 Markets and 150 Periods

DGP: 1 Market, T = 150

� = 0.75 ↵ = �0.5 ⇣ = 0.8 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 3 1.0176 (4.7648) -0.5113 (0.0926) 0.7635 (0.3300) 0.3646 (3.4888) 0.2148 (0.3081) 0.2253 (0.1907) 1.0357 (3.7963)
J = 4 0.6528 (0.5058) -0.5057 (0.0838) 0.7943 (0.2161) 0.1424 (0.2823) 0.1982 (0.2974) 0.2718 (0.1648) 0.7696 (0.3559)
J = 5 0.7338 (0.1032) -0.5020 (0.0533) 0.8038 (0.1406) 0.1011 (0.0577) 0.1907 (0.2524) 0.2700 (0.1343) 0.8133 (0.1044)

� = 0.75 ↵ = �0.5 ⇣ = 0.8 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 3 0.7561 (0.1276) -0.5113 (0.0926) 0.7635 (0.3300) 0.1113 (0.0247) 0.2533 (0.4121) 0.2134 (0.1427) –
J = 4 0.7469 (0.1241) -0.5057 (0.0838) 0.7943 (0.2161) 0.1117 (0.0219) 0.2374 (0.3609) 0.2576 (0.1211) –
J = 5 0.7420 (0.0852) -0.5020 (0.0533) 0.8038 (0.1406) 0.1089 (0.0150) 0.2416 (0.2417) 0.2694 (0.1220) –
Mean and standard deviation for 250 simulations.

Table 8: Nested Logit Monte Carlo Simulation Results: 1 Markets and 300 Periods

DGP: 1 Market, T = 300

� = 0.75 ↵ = �0.5 ⇣ = 0.8 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 3 0.7393 (0.0703) -0.5073 (0.0523) 0.7828 (0.1284) 0.1092 (0.0437) 0.2667 (0.2042) 0.2199 (0.1165) 0.7931 (0.0751)
J = 4 0.7200 (0.1497) -0.5038 (0.0803) 0.7933 (0.1558) 0.1170 (0.0700) 0.2545 (0.2325) 0.2460 (0.1100) 0.7917 (0.1058)
J = 5 0.7410 (0.1155) -0.5023 (0.0666) 0.8030 (0.1465) 0.1129 (0.0495) 0.2542 (0.2112) 0.3188 (0.1143) 0.7976 (0.0827)

� = 0.75 ↵ = �0.5 ⇣ = 0.8 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 3 0.7526 (0.0510) -0.5073 (0.0523) 0.7828 (0.1284) 0.1050 (0.0083) 0.2475 (0.2563) 0.2227 (0.1171) –
J = 4 0.7481 (0.0927) -0.5038 (0.0803) 0.7933 (0.1558) 0.1108 (0.0168) 0.2481 (0.2835) 0.2757 (0.1040) –
J = 5 0.7456 (0.0913) -0.5023 (0.0666) 0.8030 (0.1456) 0.1122 (0.0177) 0.2612 (0.2126) 0.3180 (0.1091) –
Mean and standard deviation for 250 simulations.

allows us to determine how model primitives are impacted from this model misspecification.
These sets of Monte Carlo studies differ from the above in that the number of simulations
run is 100 vs 250 and the number of markets is equal to 1. This change is due to the
computational complexity and the time it takes to generate the data. That said, the process
does follow the above multinomial logit data generating process with the exception that
there are three different consumer types rather than one. The three consumers have price
preference parameters equal to ↵1 = �0.4, ↵2 = �0.5, ↵3 = �0.6. The initial weights
for each of these consumers in period 0 takes four different parameterizations in order to
capture varying degrees of consumer heterogeneity, with case (1) the most heterogeneous
and (4) being no heterogeneity.

(1) !1,0 = 0.33, !2,0 = 0.34, !3,0 = 0.33

(2) !1,0 = 0.20, !2,0 = 0.60, !3,0 = 0.20

(3) !1,0 = 0.10, !2,0 = 0.80, !3,0 = 0.10

(4) !1,0 = 0.00, !2,0 = 1.00, !3,0 = 0.00

Below we present four different tables, one for each of the above cases along with varying
the number of product from 2 to 5. Within each table, we present the results for all the
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Table 9: Heterogeneous Monte Carlo Simulation Results Case (1): 1 Market and 300 Periods

DGP: 1 Market, T = 300

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7375 (0.0176) -0.5573 (0.0278) 0.0850 (0.0149) 0.2482 (0.2398) 0.1741 (0.0838 0.8344 (0.0291)
J = 3 0.7402 (0.0200) -0.5604 (0.0255) 0.0794 (0.0205) 0.2890 (0.1878) 0.1425 (0.0907) 0.8459 (0.0389)
J = 4 0.7449 (0.0233) -0.5602 (0.0245) 0.0727 (0.0214) 0.2277 (0.2052) 0.0936 (0.0971) 0.8592 (0.0411)
J = 5 0.7462 (0.0290) -0.5583 (0.0273) 0.0715 (0.0232) 0.2710 (0.1674) 0.0496 (0.1135) 0.8619 (0.0439)

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7423 (0.0213) -0.5573 (0.0278) 0.1028 (0.0050) 0.3534 (0.1845) 0.1681 (0.0822) –
J = 3 0.7342 (0.0211) -0.5604 (0.0255) 0.1029 (0.0033) 0.3670 (0.1976) 0.1327 (0.0870) –
J = 4 0.7290 (0.0223) -0.5602 (0.0245) 0.1033 (0.0025) 0.3715 (0.2036) 0.0828 (0.0905) –
J = 5 0.7239 (0.0268) -0.5583 (0.0273) 0.1034 (0.0024) 0.3678 (0.0931) 0.0435 (0.1083) –
Mean and standard deviation for 100 simulations.

Table 10: Heterogeneous Monte Carlo Simulation Results Case (2): 1 Market and 300 Periods

DGP: 1 Market, T = 300

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7337 (0.0182) -0.5464 (0.0276) 0.0872 (0.0152) 0.1913 (0.2566) 0.1547 (0.0881) 0.8298 (0.0300)
J = 3 0.7349 (0.0211) -0.5490 (0.0255) 0.0810 (0.0208) 0.2278 (0.2159) 0.1161 (0.0911) 0.8425 (0.0395)
J = 4 0.7394 (0.0246) -0.5486 (0.0242) 0.0737 (0.0217) 0.2045 (0.1532) 0.0583 (0.0964) 0.8573 (0.0417)
J = 5 0.7401 (0.0305) -0.5464 (0.0271) 0.0721 (0.0234) 0.2364 (0.1349) 0.0042 (0.1066) 0.8610 (0.0441)

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7373 (0.0211) -0.5464 (0.0276) 0.1026 (0.0049) 0.3218 (0.1837) 0.1493 (0.0829) –
J = 3 0.7280 (0.0210) -0.5490 (0.0255) 0.1028 (0.0033) 0.3262 (0.1736) 0.1082 (0.0889) –
J = 4 0.7218 (0.0221) -0.5486 (0.0242) 0.1033 (0.0025) 0.3278 (0.1908) 0.0507 (0.0916) –
J = 5 0.7154 (0.0267) -0.5464 (0.0271) 0.1036 (0.0025) 0.3331 (0.0945) 0.0023 (0.1043) –
Mean and standard deviation for 100 simulations.

model parameters. First, our method does a fair job at recovering consumer preferences
for varying degrees of heterogeneity. Naturally, as the degree of heterogeneity decreases
the precision and lack of bias increases. However, recovering parameters associated with the
unobservables is quite difficult, particularly when J increases and even with modest amounts
of consumer heterogeneity.
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Table 11: Heterogeneous Monte Carlo Simulation Results Case (3): 1 Market and 300 Periods

DGP: 1 Market, T = 300

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7294 (0.1900) -0.5333 (0.0272) 0.0897 (0.0157) 0.1342 (0.2514) 0.1264 (0.0838) 0.8245 (0.0311)
J = 3 0.7289 (0.0224) -0.5352 (0.0253) 0.0828 (0.0213) 0.2085 (0.1975) 0.0790 (0.0916) 0.8459 (0.0403)
J = 4 0.7332 (0.0262) -0.5345 (0.0240) 0.0747 (0.0221) 0.1588 (0.1936) 0.0150 (0.0941) 0.8556 (0.0424)
J = 5 0.7336 (0.0323) -0.5319 (0.0269) 0.0726 (0.0236) 0.1909 (0.1207) -0.0429 (0.1031) 0.8607 (0.0444)

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7318 (0.0209) -0.5333 (0.0272) 0.1024 (0.0049) 0.2569 (0.2332) 0.1219 (0.0839) –
J = 3 0.7211 (0.0210) -0.5353 (0.0253) 0.1027 (0.0032) 0.2776 (0.1979) 0.0748 (0.0893) –
J = 4 0.7136 (0.0219) -0.5345 (0.0240) 0.1034 (0.0025) 0.2691 (0.1708) 0.0126 (0.0900) –
J = 5 0.7058 (0.0265) -0.5319 (0.0269) 0.1040 (0.0025) 0.2931 (0.0977) -0.0438 (0.0988) –
Mean and standard deviation for 100 simulations.

Table 12: Heterogeneous Monte Carlo Simulation Results Case (4): 1 Market and 300 Periods

DGP: 1 Market, T = 300

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7509 (0.0216) -0.5034 (0.0260) 0.1055 (0.0179) 0.2241 (0.1685) 0.2262 (0.0888) 0.7943 (0.0361)
J = 3 0.7491 (0.0271) -0.5057 (0.0246) 0.1025 (0.0240) 0.2542 (0.1299) 0.2449 (0.0975) 0.8012 (0.0459)
J = 4 0.7543 (0.0322) -0.5065 (0.0233) 0.0964 (0.0253) 0.2547 (0.1141) 0.2429 (0.1069) 0.8134 (0.0494)
J = 5 0.7562 (0.0402) -0.5068 (0.0263) 0.0969 (0.0288) 0.2762 (0.1009) 0.2519 (0.1312) 0.8128 (0.0548)

� = 0.75 ↵ = �0.5 � = 0.1033 ⇢ = 0.25 � = 0.25 � = 0.8

J = 2 0.7528 (0.0203) -0.5034 (0.0260) 0.1028 (0.0051) 0.2138 (0.1941) 0.2261 (0.0889) –
J = 3 0.7503 (0.0206) -0.5057 (0.0246) 0.1031 (0.0034) 0.2543 (0.1377) 0.2441 (0.0957) –
J = 4 0.7508 (0.0216) -0.5065 (0.0233) 0.1034 (0.0026) 0.2719 (0.1217) 0.2411 (0.1045) –
J = 5 0.7520 (0.0261) -0.5068 (0.0263) 0.1034 (0.0024) 0.2896 (0.0964) 0.2512 (0.1302) –
Mean and standard deviation for 100 simulations.
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2 Assumption Table

Here we detail the nature of the assumptions we have made in the paper, noting situations
that are consistent with our assumptions as well as those that are inconsistent with the
assumption. We expect this might help the reader understand and evaluate the suitability
of the method to their application.

Table 13: Summary of Assumptions

A# Interpretation Consistent Inconsistent

A5(i) Time invariance of

marginal and con-

ditional (on x, p)
unobservable state

distribution

Unobserved quality control process is constant

over time, or changes in distribution of unob-

servable quality are accompanied with changes

in observed product characteristics or prices. If

we interpret ⇠jt as advertising (or quality con-

trol) of the product (either hardware or soft-

ware in our empirical application), and if the

observables (price and characteristics) for the

products don’t change, then the conditional

distribution of unobservable quality remains

the same.

If we interpret ⇠ as advertising,

then the advertising expenditures

becomes less (or more) volatile over

time, while product characteristics

and price remain constant. Sim-

ilarly, quality control process im-

proves while x and p remain the

same. Note: Since this is a con-
ditional expectation (on p and x),
it does not restrict advertising from
increasing in volatility when prices
decrease, for example. Thus, in
practice it is fairly flexible.

A5(ii) Future unobserv-

able state ⇠j,t+1

is independent of

current observable

state (xjt, pjt),
conditional on fu-

ture observed state

(xj,t+1, pj,t+1).

If ⇠j,t+1 is set based on xj,t+1 and pj,t+1, then

we are ok. Similarly, advertising expenditures

are made after the product is manufactured

and price is set. Also, if product quality control

process is independent of past period features

and prices.

In period t + 1, firm observes only

the prior period’s xjt and pjt and

sets advertising (or quality control)

levels ⇠j,t+1 based on that, and

before current period’s xj,t+1 and

pj,t+1.

A6(i) (Conditional

on xt, pt) in-

dependence of

contemporane-

ous unobservable

states (⇠jt) across

products j

Each firm makes its quality control or adver-

tising choices independently based on x and p.
Note that these choices can depend on the ob-

servable characteristics of the prices and char-

acteristics of products made by competitors.

Note: Even in the strategic case, if the strat-
egy only depends on observable characteristics
of all products, this assumption will be valid.

Firms set advertising expenditures

based on expected strategic re-

sponses of competitors and they

have some information about com-

petitor’s advertising choice.

A6(ii) Two or more

products with

same variance of

unobservable (⇠)
conditional on

(xt, pt)

We have some subset of products that have

same variance, conditional on observables

(i.e. when their observable characteristics and

prices are the same). If we have at least one

firm with multiple products, and we expect

that the (conditional) variance for these mul-

tiple products is identical, then the condition

is satisfied. This might happen when the firm

has a single quality control process across all

products.

Each product has different condi-

tional variance. This maybe possi-

ble if each firm has only one prod-

uct, and each firm has very different

advertising policy or quality con-

trol policy even when the observable

product characteristics and prices of

these products are same.
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A# Interpretation Consistent Inconsistent

A7 (Conditional on

xt, pt) unobserv-

able states (⇠jt)
across products

j have same dis-

tribution (except

mean)

At least two products made by similar man-

ufacturer with same quality control process,

or similar advertising policies. Note that only

the (conditional) distribution is required to be

identical, not the actual realizations. Also

the conditional mean can be different, so only

higher-order moments, that is the shape, not

the location, of their probability density func-

tions, need to be same.

There are no two products with sim-

ilar advertising or quality control

policies, implying all products have

materially different processes that

vary in higher-order moments, con-

ditional on observable state.

A8 State Evolution

Dependence Struc-

ture

Observable characteristics evolve based on pre-

vious period observables (characteristics and

prices). Observables characteristics do not de-

pend on current or prior unobservables, except

price. Unobservables can be quality control

process that impact fit and finish of product

which do not impact the features developed in

future. Note: price and quality control may
be contemporaneously related, as might be ex-
pected, since firm can set price based on real-
ization of unobservable quality.

Firm invests more in observable

product characteristics (e.g. bet-

ter camera) because its unobserv-

able quality control (or finish) was

poor.

A8’ State Evolution

Dependence Struc-

ture

Current advertising or quality control process

does not impact future prices or product char-

acteristics. Current advertising only depends

on current prices and product characteristics,

but not on past observable characteristics or

prices

Firm sets higher advertising level to

compensate because its past observ-

able product characteristics did not

drive demand.

A9 Unobservable State

Evolution

Unobservable characteristics do not depend on

competitor’s price levels. In the quality control

interpretation of ⇠jt, this is very likely since

the quality control processes are long-term and

are unlikely to be changed in response to a

competitor’s contemporaneous price level. In

the advertising interpretation, it implies that

advertising or promotional budgets are set in-

dependent of current competitor prices. They

can depend on own prices.

A firm (Apple) sets advertising bud-

get to be higher to respond to a

competitor (Samsung) slashing its

price levels.
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3 Alternative Counterfactual Procedure

Here we present an alternative to solving the ex-ante value function that does not require
value function iteration, the discretization of state variables, nor the use of interpolation.
Our counterfactual method is implemented in two steps. The first step recovers the counter-
factual impact on within market shares, relative to a given product. This step thus captures
the competitive substitution effects between products and does not depend on consumer be-
liefs in our model specification. The second step moves beyond the competitive effects and
determines the impact on the outside market share. The second step allows the researcher
to quantify the impact on overall demand, and evaluates whether the counterfactual change
leads to expansion or contraction of overall demand.

We consider the counterfactual change of a current product characteristic xjt to counter-
factual xc

jt without changing product fixed effect, �j, or unobserved product characteristic
⇠jt. Other counterfactuals, such as changes to the distribution of state variables, can be ad-
dressed similarly. As is standard in structural models, we assume the counterfactual does not
affect consumers’ preference, product fixed effects and unobserved characteristics. Hence we
use the estimated coefficients and unobservable residuals (↵, �, �, �j, ⇠jt). In the sequel, we
use superscript “c” to denote counterfactual objects, e.g. scjt denotes counterfactual market
share of product j. We also assume the counterfactual price pcjt is held constant.

The first step is to generate the counterfactual within or relative market share. By eq. (6),
we have counterfactual relative market share as a function of counterfactual (xc

jt, p
c
jt),

ln

✓
scjt
sc1t

◆
= (xc

jt � xc
1t)

0�̃ � ↵(pcjt � pc1t) +
�j � �1
1� �

+
⇠jt � ⇠1t
1� �

.

After estimation of (↵, �, �̃, �j, (⇠jt� ⇠1t)), we are able to express scjt/sc1t as a known function
of (xc

jt, p
c
jt, �j, ⇠jt). For simplicity of exposition, let

s̃cjt = scjt/s
c
1t,

and let mc
t denote the vector of all counterfactual state variables.

We can express the counterfactual market share sc1t as a function of the counterfactual
relative market shares and the counterfactual outside market share sc0t:

sc1t =
1� sc0t(m

c
t)PJ

j=1 s̃
c
jt(m

c
t)
. (1)
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We write sc0t(m
c
t) to emphasize that the counterfactual outside market share sc0t is a function

of counterfactual market state variables.
The second step finds the counterfactual outside market share sc0t(m

c
t) from the following

equation:

ln

✓
1� sc0t(m

c
t)

sc0t(m
c
t)

◆
= �(mc

t) + � E
h
ln(1� sc0,t+1(m

c
t+1))

���mc
t

i
, (2)

where

�(mc
t) = ln

 
JX

j=1

s̃cj,t

!
� � E

"
ln

 
JX

j=1

s̃cj,t+1

! �����m
c
t

#
+ vc1t(m

c
t)� � E

�
vc1,t+1(m

c
t+1)

��mc
t

�
,

vc1t(m
c
t) = xc

1t�̃ � ↵pc1t +
�1

1� �
+

⇠1t
1� �

. (3)

From the first step, we have determined ln
⇣PJ

j=1 s̃
c
j,t

⌘
. If ⇠1t was known, vc1t(mc

t) and hence
�(mc

t), are known as well. We discuss how to determine ⇠1t below.
Eq. (2) follows from eq. (11), from which we have

ln

✓
sc1t
sc0t

◆
� vc1t(m

c
t) = �� E

�
vc1,t+1(m

c
t+1)� ln sc1,t+1

��mc
t

�
.

Substituting sc1t above with its formula from eq. (1), we get eq. (2). For a stationary dynamic
programming problem, sc0t(m

c
t) is a time invariant function. Eq. (2) is then an integral

equation of sc0t, from which one solve sc0t.

3.1 Dimension reduction and other details

In many applications, the dimension of the market state variables mc
t is proportional to the

number of states per product with the number of products as an exponential, and could
be computationally infeasible to solve. The curse of dimensionality could arise if either the
number of products or observed characteristics is large. For example, in our mobile phone
application, there are 7 brands and 9 product characteristics (including 7 product features,
price and 1 unobservable characteristic), leading to a 9⇥ 7 = 63-dimensional continuous
state space. Thus, if we discretize the continuous variables and represent them each with n

points, the dimension of the state space mc
t is n63. Thus, if we choose n = 10, we have 1063

points in the state space. Solving this problem with value function iteration, for example,
becomes computationally infeasible.

Thus, we consider using alternative approaches to computing the value function. Tradi-
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tionally, researchers assume consumers track all state variables, but as noted above this leads
to a curse of dimensionality. One widely known approach that eliminates this problem is to
assume consumers track the inclusive value as the relevant state variable (Melnikov, 2013;
Gowrisankaran and Rysman, 2012) so that consumers make choices based on the evolution
of the inclusive value. An alternative and less restrictive option as it does not rely on the in-
clusive value sufficiency assumption (which implies that if two different states have the same
option value, then they also have the same value function) is to assume consumers track the
conditional value function vjt of all products. Thus, the state space in this latter example is
of dimension J . This is more general than the inclusive value assumption, since the inclusive
value is a deterministic function of the conditional values of all products. Broadly speaking,
our counterfactual approach could accommodate any conceivable set of assumptions that
can be used to generate the consumer choice data. Depending on the application context,
different methods might be more or less suitable.

Below we reduce the dimension by replacing mc
t with (vc1t, . . . , v

c
Jt), which is defined by

eq. (3). Then eq. (2) reads

ln

✓
1� sc0t(v

c
1t, . . . , v

c
Jt)

sc0t(v
c
1t, . . . , v

c
Jt)

◆
= �(vc1t, . . . , v

c
Jt)+� E

h
ln(1�sc0,t+1(v

c
1,t+1, . . . , v

c
J,t+1))

���vc1t, . . . , vcJt
i
,

(4)
In practice the conditional expectation terms in the above display and �(vc1t, . . . , vcJt) can be
estimated by a nonparametric regression. Because sc0t(vc1t, . . . , vcJt) is a conditional probability
of choice, one can use the series logit method in the treatment effects literature (Hirano,
Imbens, and Ridder, 2003) to approximate it:

s0(v
c
1t, . . . , v

c
Jt; ⇢) =

exp( (vc1t, . . . , v
c
Jt)

0⇢)

1 + exp( (vc1t, . . . , v
c
Jt)

0⇢))
, (5)

where  (vc1t, . . . , v
c
Jt) is a vector of known approximating functions, e.g. polynomials, of

vc1t, . . . , v
c
Jt. We use this functional form for convenience since the market share is bounded,

i.e. s0 2 [0, 1], and other functions that constrained it in such a manner would be applicable
as well. We then use eq. (4) to find ⇢, e.g. by least squares, to recover the counterfactual
outside market share. Once we calculate the counterfactual outside market share, we can
determine scjt from eq. (1).

As we discussed in §5 of the main text, we also need to know ⇠1t, which appears in
�(vc1t, . . . , v

c
Jt) above, but more generally in order to solve for the ex-ante value function.

There are two different ways to implement this, which trades off an additional assumption
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for computational simplicity. The first is discussed in the text and consists of drawing from
the estimated distribution of ⇠jt. The second is to take an alternative approach that uses
the following formula for ⇠1t, which follows from eq. (11),

✓
1� ��1

1� �

◆
⇠1t = y1t � �1 + � E(w1,t+1 | xt, pt, ⇠t). (6)

If we assume that

E(w1,t+1 | xt, pt, ⇠t) = E(w1,t+1 | xt, pt, ⇠2t � ⇠1t, . . . , ⇠Jt � ⇠1t), (7)

we can identify and estimate ⇠jt, because ⇠jt � ⇠1t is identified (c.f. eq. (18)). When ⇠1t and
p1t is highly correlated, the bias (difference between the left-hand side and the right-hand
side in the above display) is expected to be small. The extreme case is when (p1t, ⇠1t) follow a
bivariate normal distribution (as we assumed in estimation), and their correlation coefficient
is one. In this extreme case, knowing p1t is equivalent to knowing ⇠1t, hence eq. (7) holds.

4 Derivatives for Calculating Asymptotic Variance

We derive the formulas for @g1,(j,k),t(✓1)/@✓, @g2,(j,0),t(✓1)/@✓, @g3,j,t(✓)/@✓, @g4,(j,k),t(✓)/@✓,
and @g5,(j,k),t(✓)/@✓. It is easier to calculate the derivatives for ✓1 = (↵, �, �̃0, �0)0 and ✓2 =

(⇢̃0 , �2,�0). For @g1,(j,k),t(✓1)/@✓, we have

g1,(j,k),t,↵(✓) = z(j,k),t(pjt � pkt)

g1,(j,k),t,�(✓) = �z(j,k),t(�j � �k)/(1� �)2

g1,(j,k),t,�̃(✓) = �z(j,k),t(xjt � xkt)
0

g1,(j,k),t,�i(✓) =

8
>>><

>>>:

0 if i 6= j, i 6= k

�z(j,k),t/(1� �) if i = j

z(j,k),t/(1� �) if i = k

g1,(j,k),t,✓2(✓) = 00.
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For @g2,(j,0),t(✓1)/@✓, we have

g2,(j,0),t,↵(✓) = xj,t,IV,t(pjt � �pj,t+1)

g2,(j,0),t,�(✓) = xj,t,IV,twj,t+1

g2,(j,0),t,�̃(✓) = xj,t,IV,t(�x0
jt + �x0

j,t+1)

g2,(j,0),t,�i(✓) =

8
<

:
0 if i 6= j

�xj,t,IV,t if i = j

g2,(j,0),t,✓2(✓) = 00.

For @g3,j,t(✓)/@✓, we have

g3,j,t,↵(✓) = z⇢,jt(1� �)(pjt � �pj,t+1)

g3,j,t,�(✓) = z⇢,jt[�(yjt + �wj,t+1) + (1� �)wj,t+1 + ⇢̃j p̃j,t+1]

g3,j,t,�̃(✓) = z⇢,jt(1� �)(�x0
jt + �x0

j,t+1)

g3,j,t,�(✓) = 00

g3,j,t,⇢̃i(✓) =

8
<

:
0 if i 6= j

�z⇢,jt(p̃jt � �p̃j,t+1) if i = j

g3,j,t,�2(✓) = 00

g3,j,t,�(✓) = 00.

For @g4,(j,k),t(✓)/@✓, we will need @d(j,k),t(✓)/@✓:

d(j,k),t,↵(✓) = (1� �)(pjt � pkt)

d(j,k),t,�(✓) = �

ln

✓
sjt
skt

◆
� (xjt � xkt)

0�̃ + ↵(pjt � pkt)

�

d(j,k),t,�̃(✓) = �(1� �)(xjt � xkt)
0

d(j,k),t,�i(✓) =

8
>>><

>>>:

0 if i 6= j, i 6= k

�1 if i = j

1 if i = k

d(j,k),t,✓2(✓) = 00.
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We have

g4,(j,k),t,✓1(✓) = d(j,k),td(j,k),t,✓1(✓)

g4,(j,k),t,⇢̃i(✓) =

8
>>><

>>>:

0 if i 6= j, i 6= k

⇢̃kp̃jtp̃kt if i = j

⇢̃j p̃jtp̃kt if i = k

g4,(j,k),t,�2(✓) = �1

g4,(j,k),t,�(✓) = 00.

For @g5,(j,k),t(✓)/@✓, we have

g5,(j,k),t,↵(✓) =
d(j,k),t
��2

d(j,k),t,↵(✓)�
✓
1� �

�

◆
(pjt � �pj,t+1)

d(j,k),t
�2

�
✓
1� �

�

◆
(yjt + �wj,t+1)

d(j,k),t,↵(✓)

�2

g5,(j,k),t,�(✓) =

 
d(j,k),td(j,k),t,�(✓)

��2
�

d2(j,k),t
2�2�2

!
+

1

�2
(yjt + �wj,t+1)

d(j,k),t
�2

�
✓
1� �

�

◆
wj,t+1

d(j,k),t
�2

+ (yjt + �wj,t+1)
d(j,k),t,�(✓)

�2

�

g5,(j,k),t,�̃(✓) =
d(j,k),t
��2

d(j,k),t,�̃(✓)�
✓
1� �

�

◆
(�x0

jt + �x0
j,t+1)

d(j,k),t
�2

+ (yjt + �wj,t+1)
d(j,k),t,�̃(✓)

�2

�

g5,(j,k),t,�(✓) =


d(j,k),t
��2

�
✓
1� �

�

◆
(yjt + �wj,t+1)

1

�2

�
d(j,k),t,�(✓)

g5,(j,k),t,⇢̃(✓) = 00

g5,(j,k),t,�2(✓) = �
"
d2(j,k),t
2�

�
✓
1� �

�

◆
(yjt + �wj,t+1)d(j,k),t

#
1

�4

g5,(j,k),t,�i(✓) =

8
<

:
0 if i 6= j

�1 if i = j
.
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