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Abstract

We investigate the use of the inclusive value based approach for estimating dynamic
discrete choice models of demand with aggregate data. The inclusive value suffi-
ciency (IVS) approach approximates a multi-dimensional state space with a single
“sufficient statistic” in order to mitigate the curse of dimensionality and tractability
estimate model primitives. Although in widespread use, the conditions under which
IVS is appropriate have not been examined. Theoretically, we show that the estimator
is biased and inconsistent. We then use Monte Carlo simulations (of a simple model
of dynamic durable goods adoption) to demonstrate the degree of bias associated
with the inclusive value approximation estimator under an array of parameterizations
and data generating processes. In our examination, we show that the estimator per-
forms better when the discount factor is smaller and/or when the price sensitivity
of the consumer is larger. Examining how the bias impacts economic quantities of
interest, we find that the IVS method under estimates the true long-run own-price
elasticities and over estimates the change in profits as prices change. Theses findings
highlight the importance of correctly specifying how consumers form expectations.
As a result, researchers should consider how to empirically support their assumption
for the underlying consumer belief structure.
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T. Derdenger, V. Kumar

1 Introduction

Dynamic Discrete choice (DDC) models are commonly used in marketing and eco-
nomics, where agents (e.g. consumers) choose from among a limited set of mutually
exclusive alternatives (e.g. products or brands). Moreover, many of these papers employ
aggregate data because it is typically more commonly available from market research
firms for a wide range of industries. Such data is specified as market shares for products
or brands over a number of time periods, and for a number of different markets.

With models of dynamic durable good adoption, estimation is typically computa-
tionally demanding, as each product characteristic may span a continuous range, and
the number of such observables may grow very large— increasing in the number of
products, the number of product characteristics, and the number of markets. Most, if
not all, models that use aggregate data have relied upon methods to reduce the state space
to overcome the curse of dimensionality through the selection of ad hoc important
state variables and markets with a small number of products, (Song and Chintagunta
2003) or through the use of a “sufficient statistic” to capture the relevant state.

The latter method developed in further detail in Melnikov (2013) and Gowrisankaran
and Rysman (2012) is widely used in the literature with aggregate data (Carranza
2010; Schiraldi 2011; Derdenger and Kumar 2013; Weiergraeber 2017; Ho 2015,
to cite a few) as well as individual data (Hendel and Nevo 2006). The method
tractably allows for the estimation of a high dimensional problem, but it also
allows the researcher a straight forward method to correct for price endogeneity—a
widely accepted problem for models with aggregate data. Specifically, in order to
mitigate the computational demands of consumers forming expectations of each
product’s characteristic evolution over time, Gowrisankaran and Rysman (2012)
(G&R) assume consumers track the evolution of the inclusive value as the only state
variable, where the inclusive value (McFadden 1974) represents the expected maxi-
mum utility of purchasing an “inside” good, i.e. excluding the no-purchase or outside
option. This inclusive value captures in one variable all the population level observ-
able and unobservable elements that could potentially be present in the state space.
The underlying assumption of this approach is that consumers make choice decisions
based upon how this market level inclusive value evolves, rather than on individual
product level attributes. Thus, the inclusive value is treated as “sufficient” to capture
the impact of all other variables. Despite its prevalence in the marketing and eco-
nomics literature and its computational simplicity, the accuracy of the inclusive value
assumption and how well it approximates the true underlying dynamics in which
consumers track all state variables individually has not been carefully examined.

First, we theoretically show that the estimator is biased and inconsistent. We then
use Monte Carlo simulations (of a simple model of dynamic durable goods adoption)
to demonstrate the degree of bias associated with the inclusive value approximation
estimator under an array of parameterizations and data generating processes. In our
examination, the IVS estimator performs better when the discount factor is small
(B = .8 vs B = .95) and/or when the price sensitivity of the consumer is large
(ap = —.3 vs a), = —.2). We further analyze the bias the IVS generates with respect
to short and long run elasticity measures. Within our Monte Carlo environment,
results illustrate that the IVS method underestimates the true long-run own-price
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elasticities and overestimates the change in profits as prices change. These findings
highlight the importance of correctly specifying how consumers form expectations
about the underlying dynamics. We conclude that researchers should begin to empir-
ically support their decisions about the underlying consumer belief structure in order
to affirm the reader about the validity of their results.

2 Structural model

Dynamic discrete choice models of demand assume consumers are forward looking,
and weigh a trade-off between making a purchase today versus the option value of
waiting. Before entering the market, consumers consider numerous product and mar-
ket characteristics that may affect their current and future purchase utilities, such as
price, age of product, quality, etc.

The sequence of events is as follows: consumer i € I considers whether or not to
purchase any product from the available set with 0 representing the outside option.
Thus, the choice setis J¢ € {0, 1, ...J}. In each period ¢ € T, a consumer purchases or
chooses not to purchase any product. Purchasing a product is a terminal action in our
model, and once a purchase is made, the consumer has no active role in the market.
The consumer decision process is thus equivalent to an optimal stopping problem
with many available choices.

2.1 Consumer utility

Consumer i determines in period ¢ whether or not to purchase any product j, by
observing a vector of individual-level state variables ©; ; specific to the consumer and
time period. The state can be described as ¥; ; = (x;, &, €;.1), where x; is a matrix
of observed market level states, & is a vector of the unobserved product characteris-
tics for each product (also called the unobserved population level states), and ¢; ; is
the vector of individual choice-specific idiosyncratic private shocks, which are not
observable to the researcher.

Typically, in a product choice model, we include all the product variables in the

state space, x; = (X1, ...,xy;) where x;; = (x;l, pjt>, with xjc.t denoting a vector

of observable product characteristics and pj, the price for choice j in period . The
unobservable states or “structural errors” in the model are denoted:

El = (Slt,&t"-wéjt)

where £, is a time-varying choice-specific variable that is unobservable (to the
econometrician), typically thought of as a measure of functional or design quality. If
the consumer does not purchase in period ¢, he receives a period utility of 0.

Denote the market-level states as 2, = (x;, &), which includes both observable
and unobservable states. Thus, the vector of state variables ©¥;; = (x;, &, €i¢) =
(€2, €ir). When a consumer chooses to purchase product j at time ¢ he receives a net
flow utility in each of the following periods 7 > ¢

Fie (6F &) = aj +axx§, + &
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Note that this flow utility in period t is fixed at the time of purchase ¢ and depends
on the observable and unobservable characteristics at . Thus, when a consumer i
purchases j at time ¢, his utility during the purchase period t is:

uir (S, Eijt) = fj,t (x[c’ gt) + otippj, + €ijt (1)

where aip is the consumer price coefficient.
2.2 Dynamic decision problem

The consumer makes a trade-off between buying in the current period ¢ and waiting
until next period to make a purchase. The crucial inter-temporal trade-off is in the
consumer’s expectation of how the state variables x; evolve in the future. For exam-
ple, if the product characteristics (or price) are expected to improve over time, then
the consumer has incentive to wait.

Consumer i in period ¢ chooses from the set of choices J;, which includes the
option 0 to wait without purchasing any product. However, if the consumer purchases,
he exits the market immediately upon purchase. A consumer’s purchase period utility
is impacted by the observable state vector x;, the unobservable &; (both included in
Q;) as well as the idiosyncratic shocks as specified in Eq. 1.

For a consumer in the product market faced with a state €2; in period ¢, we can
write the Bellman equation in terms of the value function V (€2, €;) as follows:

Vi(Q, &) = max | €ior + B Eau e [ Vi (Quat, €] ], max | vij Q) + €iji
JEJt —_——
No Purchase Purchase j

where the first term within brackets is the present discounted utility associated with

the decision to not purchase any product in period ¢. The choice of not purchasing in
period ¢ provides zero flow utility per period, the realized value of an error term for
option j = 0 in period ¢ and a term that captures expected future utility associated
with choice j = 0 conditional on the current state being €2;. This last term is the
option value of waiting to purchase. The second term within brackets indicates the
value associated with the purchase of a product. Given the fact that consumers exit the
market after the purchase of any product a consumer’s choice specific value function
can be written as the sum of the current period ¢ utility and the stream of utilities in
periods following purchase: !

1

vij (@) = 5 fis (xf &) +af pje )
1

= 75 [0 +exxi+ &+l pii 3)

=

The below assumes a constant flow of utility after the purchase of a product, but this can be generalized
to the case were flow utilities are time-varying (e.g. in the presence of complementary products).
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We write the ex-ante value function V, which represents the value of being in state
Q; before the value of the shock ¢; is realized, as the expectation over the shocks:

Vi(Qz)=/ Vi(Q:, )¢ (er)de;.

where ¢ is the multivariate distribution of idiosyncratic errors across the choice set.

With assuming that the idiosyncratic errors € are distributed as Type I extreme
value random variables centered at zero, we can rewrite the Bellman equation in
terms of the ex-ante value function as:

Vi (@) =log | Y exp (vij (20)) | = log (exp [B By [Vi (1) 192]]
=

+ Y expluj(@0]].

JEJ\{0}
which is obtained from the choice-specific value function of waiting, i.e. with
v (21) = B Eq 12 [V,- (Qt+1)| Q,]. The market shares s; ; (€2;) of choosing each
J € J given the state ; can then be written in closed form as:
exp (vi,j ()
Y jres exp (vij(Q0))

5i,j(82r) =

2.3 The inclusive value sufficiency assumption (IVS)

The idea of an inclusive value works as follows. First, define and compute the
expected value of the maximum of utilities from the purchase choice set (excluding
the no-purchase option) as the inclusive value. Second, it is assumed that the inclu-
sive value is sufficient to capture all the dynamic factors into one state variable. This
assumption is termed inclusive value sufficiency (Gowrisankaran and Rysman 2012),
and implies that all states with the same inclusive value term have the same value for
the expected value function. Third, the inclusive value is modeled as evolving over
time according to a specified process, typically AR(1), and assumes consumers have
rational expectations regarding its evolution.

This inclusive value simplification ensures that the state space is tractable by
dramatically reducing the state space to one dimension, defined as §; (€2;):

81 () = Ee [max vi,j () +e,,} =log | D exp (viks)
jeJ\O kel

The Bellman equation can consequently be expressed in terms of the inclusive
value, §; ;:

V; (8i) = log | exp (8i) +exp (B E[V;i(Si.i+1)18i.¢])
N’

Purchase No Purchase
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The evolution of the inclusive value is specified as evolving according to an AR(1)
process:

Sitt1 = Y0,i +V1,i6ir + &t

where ¢; ; is normally distributed and is iid across consumers and time periods. The
individual-specific parameters ) ; and y; ; characterize the evolution of the inclusive
value state, and yield a probability distribution for the future state, conditional on the
current state.

2.4 Implications of the inclusive value sufficiency assumption

Although the benefit of this method is that it reduces the computational burden of
estimating the model primitives, it comes with the cost that consumers are assumed
to react identically to different types of changes only through the inclusive value.
Thus, a new product introduction or increased product availability could have the
same positive impact on the inclusive value as a price reduction. In the smartphone
market, for example, the model might view the following as equivalent since they
each improve the expected utility of the “best” choice option for consumers:

introduction of a new model of high-quality iPhone

introduction of multiple low-quality phones

price reduction for existing products on the market.

improvement in product characteristics of existing models (e.g. more memory
capacity)

b

The problem with the approach is that a consumer’s decision might be quite
different under each of the above scenarios. We examine how accurately this assump-
tion approximates the true data generating process for estimation: when does this
approximation method work best and when might it not?

3 Evaluating the inclusive value assumption

We first present a theoretical analysis of the IVS estimator and follow with Monte
Carlo simulations. The Monte Carlo data generating process (DGP) is created to
reflect the essential feature of dynamic forward-looking models with consumers
facing intertemporal tradeoffs between purchasing a product in the current period,
compared to waiting for better product characteristics or prices. We use a simple
model where there are no observable product characteristics and consumers value
price and the unobservable characteristic. Consumers exit the market following a pur-
chase, and continue if they have not made a purchase. It is important to note that
the DGP (“true model”) differs significantly from the IVS method. Specifically, the
underlying model assumes consumers track a multidimensional state variable to form
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expectations, whereas the IVS method assumes that consumers track only the inclu-
sive value. Thus, the IVS method might not be unable to fully capture a consumer’s
decision process due to this assumption.

4 Theoretical Properties of the Inclusive Value Approximation

In this subsection, we theoretically analyze the small and large sample properties of
the IVS estimator.

Proposition 1 The IVS estimator is biased and inconsistent even when there is no
price endogeneity.

Proof Assume the data generating process follows from above with homogeneous

consumer preferences. For sake of the proof, assume that the DGP value of

Eq 1o [V(Q,+]) |Qt] is known.2 Under this scenario the complex dynamic dis-
Eir

crete choice model can be transformed into a linear model, where &;, = 125 and

a= ﬁ and Y, is known.

S _ _ .
Yo =log <§> + BEq 1 [V (2/41) |Qt] =a+alpj+&;.
¢

Define the first-stage reduced form relationship between the instrument Z and
endogenous variable p as specified below with parameters ¢ and y and reduced form
error v:

Pjt=6+vZji+vj
Denote the defined instrumental variable (IV) estimate of a” as
Cov(Z, Yg)
Cov(Z, p)

Similarly, the IVS estimator can be specified via the DGP of Eq,, 10, [V (Ri41) €]
and an approximation error, n(8;) where 1(8) = Eq 0 [V (Qu+1) 1] —
I:]5t+1|5[ [V(6t+1)| 8;] and E5t+l|8r [V (8,+1)| 8,] is the IVS approximation-estimate
of the expected value function. Under this setting, the model can be written as:

aP

S ~ . R B
log <£) = arvs +ajyspji + Xjo— B Es s [V G| ]
2 ) VvV y, ~
oe (S_(])t> +B By [V G| ] =arvs +ajygpie + L
t

Yivs

2This assumption is only for the sake of proving biasedness. However, note that if we were interested
in proving unbiasedness, this argument would be problematic. We thank an anonymous reviewer for this
point.
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Importantly, the structural error in this model is x;,, which is different from the
structural error in the true model as it encompasses the approximation error of the IVS
method from the true model. With Es,, 5, [ V (3:+-1)| 8/ ] = Eqq i, [V (Q441) 194 ] —
n(8¢), the structural errors under the IVS estimator are related as :

Rja = &+ B (&)

The IVS estimate &‘; vs then equals:

o CovZ Yivs) _ Cov(Z,dy+alp+5%)
1VS Cov(Z, p) Cov(Z, p)
Cov (Z, ap+alp+ gj,t + ,Bn(5t)>
al, o =
vs Cov(Z, p)
_ Cov(Z,Yq)+ Cov(Z, Bn(8y))
- Cov(Z, p)
R . Cov (Z,n(8))
P _ & —om e R
“vs =P CZ )
R Cov(Z,n(8)) ] . N
Bias

Thus, we find that &fv g is biased above and beyond the small sample bias that
may occur with an IV estimator.? The additional bias associated with this estimator
is a function of Cov (Z, n(8;)) where Z is an instrument for price given it is typically
assumed that the Cov (p, §) # 0. As the covariance between the instrument and the
approximation error increases in absolute value, the magnitude of that bias increases,
holding all other things constant.*

The IVS estimator is also inconsistent since plimy—ooN~! (ZT5(8;)) # 0.> By
Slutsky’s limit theorems, we can write

plimysooN~' (2"§)  plimy—aN~' (ZT0(8)))

plimy—ooN~1(Z7 p) plimy—coN~1(ZTp)

plimy_ooN~1 (ZT1(8;))
plimy_oN~1 (ZTP)

plimy_oo [&7y 5] = a +

plimy_ 00 [&;’VS] =al + B

3 Andrews and Armstrong (2017) illustrate that an IV estimator under certain conditions is an unbiased
estimate of «”. Thus,E[a”] = aP.
4In our Monte Carlos simulations below we find that Cov (Z, 7(8¢)) <0 leading to a negative bias

associated with &fvs given Cov(Z, p) > 0. Additionally, note in small samples E [%}“ﬁ’)))] #

EICouZad) Thy, if the E[Cov (Z, 7(8))] = 0. the bias would still remain.
SIn this case, we use the number of observations N = |J| x T.
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While plimy_..oN~' (ZT&) = 0, the challenge for the IVS estimator is finding an
instrument for price (Z) that is uncorrelated with the structural errors (§) and the
approximation error 3(8;) such that plimN_,ooN_1 (ZTn(é't)) =0.

Consider the case without endogeneity, i.e. price p; is not correlated with &; ;.
We can use pj; as an instrument directly. In such a case, the term Cov (Pj,,, n(&t))
is not zero since the inclusive value §, depends on price p;,, implying the estimator
is biased and inconsistent. This finding highlights that the IVS estimator generates
bias estimates for exogeneous (product characteristics) variables as well. O

Proposition 2 In the case where there is an endogenous variable price present, there
can be no valid instrument that can provide an unbiased and consistent estimate.

Proof We consider here the endogenous price case. For Z to be a potential instru-
ment, it needs to be correlated with price and uncorrelated with the structural error
Xj.i- Since x;; = &;; + Bn(S:(p)), any instrument Z that is correlated with price
will also be correlated with the error given n(8;(p;)). However, this leads to a prob-
lematic situation. We know from the model structure that any price instrument (Z)
that is correlated with p; will also be correlated with 7(8;), since 6 is a func-
tion of p;. This correlation results in Cov (Z, 7(8;)) # O in small samples and
plimN_)OON_1 (ZTn(é't)) # 0 in large sample, which leads to &fvs being a biased
and inconsistent estimate of a”. O

The above proof illustrates that the bias and inconsistency associated with the
IVS estimator is a function of the relationship between Z and the approximation
error, 1)(8;) when the true data generating process has consumers tracking each state
variable. Our research is the first to theoretically highlight the small and large sample
properties of the IVS estimator. While we illustrate the theoretical properties of the
IVS estimator, we also want to understand their practical accuracy across different
plausible scenarios. It may be possible that while the IVS estimator is biased and
inconsistent, its bias may be low in practice. The above proposition motivates the
use of Monte Carlo simulations to illustrate the degree of bias associated with the
IVS method under a variety of realistic parameterizations and conditions. Finally, we
should note the obvious in that as § — 0 any bias generated by the approximation
method also tends toward zero.

It is important to highlight that Andrews and Armstrong (2017) show that in the
case of a single instrument, their estimator for the price parameter «” is unbiased
if the sign of y is known and the errors of the first and second stage equations are
normally distributed. They further show the IV estimator behaves equivalent to their
unbiased estimator when the first stage instrument is strong. Note, the sign of the
relationship between price and the instrument, e.g. a BLP instrument, is a fairly weak
assumption in our context. Thus, they show that an instrumental variable estimate
of «? is unbiased when Cov(Z, &) = 0, Cov(Z, p) # 0, the sign of y is known,
the instrument is strong, and the reduced form errors of the first and second stage
equations (£, v) are normally distributed. This finding is important as it enables our
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Monte Carlo simulations in Section 5 to characterize the bias attributed to the IVS
approximation error.

4.1 When might IVS not be biased / inconsistent?

It is worthwhile to understand the boundary conditions to examine the source of the
error in IVS. We consider two cases, first when we might have a measurement error
and second when IVS is a behavioral assumption.

1. Measurement Error: First, suppose that the approximation error 1(§;) is truly
a measurement error, or if the approximation error merely added some noise to
the expected value function. However, we note that the approximation error is
due to the nonlinear mapping from a multidimensional state-space to a single-
dimensional state space. Therefore, in general it is likely to depend on the state
variables, including product characteristics and prices.

2. Behavioral Assumption: Second, while the proposition does illustrate an asso-
ciated bias and inconsistency of the IVS estimator, it is important to highlight
that our conclusion is based on the true data generation process consisting of
consumers forming expectations over all relevant state variables. In practice, the
econometrician is not informed of the frue underlying model. For example, con-
sumers might look to a sufficient statistic to track as an aggregate measure of
the state when the number of products and state space is large. Thus, in order to
unconditionally make a claim that the IVS estimator is inferior to the full solution
method, one needs a different analysis of these two settings with a test that can
determine which model of dynamic product adoption is more likely to be valid.®
Therefore, it is possible that the IVS estimation procedure may perform better
than the full solution if consumers do in fact form future expectations employing
the inclusive value statistic.

5 Monte Carlo model and results

The data generating process follows the above full state variable model. For simplic-
ity, we only include price and not product characteristics. The number of products
varies as J € {2, 3,4,5} . We parameterize the DGP so that prices are decreasing
over time, consistent with the durable goods adoption market setting, and that the
generated long term elasticity estimates are realistic (fall with in range of -1 and -
3). The state variables in our Monte Carlo model are (p,&) with parameters set at
aj = a = 0.5. We consider two price parameterizations where a? € {—0.2, —0.3}
with two values of the consumers’ discount factor (8 = 0.80 and = 0.95). Note, we
vary f to illustrate numerically, that the bias shown in the proof above does decreases
when B8 — 0. We also allow the price processes to vary. In the first set of simulations

SWe thank the co-Editor for pushing us to clearly state under what conditions and assumptions these
theoretical results hold.
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we restrict these processes to be identical across products. In the second set, we relax
this restriction and allow for differing price processes for each product.

We characterize the performance of the IVS estimator compared to that of a full
solution method. Note that this might not always be possible since in many cases,
the full solution method is computationally intractable. We present the results from
a benchmark full-solution method in order to identify the relative applicability of the
IVS estimator over its full solution counterpart.

5.1 What parameterizations should be chosen?

When generating our simulated data, it is important that the parameterization gen-
erates realistic data. The measure we use to determine the realistic nature of the
data is long run elasticity. Many empirical IO and marketing papers using data from
different industries generate own price elasticities within the range of [1 to 3] (see
for example Nair (2007)). For our simulations, the above parameterizations generate
long run elasticities in the above range. The actual elasticity depends upon several
factors including the number of products in the market place, the discount factor and
the price coefficient.

In addition, we employ long run own-price elasticities and profits to inform the
reader of the difference between the data generating process and the results of the
estimation methodologies, as both of these measures are economically meaningful
to researchers. Specifically, our measure of long run own-price elasticity is the %
change in total quantity for good j for the first 25 periods resulting from a 1% perma-
nent decrease in the price of good j.” While we are are agnostic to the time interval
of the 25 periods, they can represent weeks, months or even quarters. At the quarterly
interval an annualized discount factor corresponding to § = 0.95 is slightly larger
than what was found in Dubé et al. (2014) of 0.8. We determine this measure for each
good and average over the number of products as follows:

J =25 /
1 1 QP )= Qji(pje)
Ep=100x - S| =EL =il 2
Jj:1 =1 Qj,t(Pj,t)

The profit measure is computed as the sum of discounted period profits and com-
puted based on prices, marginal costs and sales in each period. We then determine
the percent change in profit from a 1% decrease in price, assuming an initial market
size of I = 10, 000, 000 consumers and a discount factor of Y = 0.975 for the firm.
The “profit elasticity” is defined as:

s [z (v = MCiu) Q1P = (P = MC) Qa(pin)]

E7T=100><§Z

= 0 Y (pjs = MC) Qj(pjin)

7In implementing the price change, we use changes from a generated price and marginal cost trajectory,
and retain the same error terms under the changed prices.
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5.2 Price process: Identical across products

In this first set of simulation results we assume the data generating process is identi-
cal for all products, allowing us to focus on investigating how the estimation method
performs as a”, J and B vary. The price process for all simulations is a function
of marginal cost and an error term v, ~ N (O, Uvz) with o, = 0.25 that is corre-
lated with &; ;. Such a formulation is motivated by the price endogeneity problem
researchers face when employing aggregate data, where firms can observe &;; and
then set prices optimally. We use a reduced form model to specify this dependence:

Pjt = 01 + MCij:+vj;
where ¢y = 3 and M Cj ;, is uncorrelated with the current period unobserved product

characteristic (structural error) &§;;, ~ N (0, a§> iid across J and T, with o =

0.005. Finally, the initial marginal cost for each of the J products take the value
MCj o = 9. Consumers are homogeneous in preferences, o, = 0.

Given that current prices are correlated with &;,, it is required that we have
an excluded instrument correlated with p; ;, but is uncorrelated with &; ;. Absent
product characteristics that could help generate BLP-type instruments, the natural
instrument here is the product’s marginal cost, which has a decaying trajectory,
consistent with a durable goods model:

MCj, =035+0925MCj,—i +«j,

where «;; ~ N (0,072) and o, = 0.25. Note that «;,, is uncorrelated with price or
the structural error.

With three random variables associated with the data generating process, we
summarize the distributional properties of §; ;, v;; and k ;:

ng pogo, 0
v | ~nN (o, Z) with = [ pogo, 02 0 |andp=1
K 0 0 o?

K

This specification is useful in generating sizeable correlation between the unobserved
structural error and price, as is typically the case with aggregate sales data.

In Fig. 1, we present the corresponding market share for the outside option (for
J = 5 products) for the two different price parameterizations along with the price
paths for each of the five products (for the simulation NS=1). As is evident, the
outside option declines over time, and its market share is smallest under the param-
eterization of @” = —0.2 and largest with «”? = —0.3. Furthermore, given the
underlying state transition process is identical across all products, the price paths for
all five products are similar, with differences only driven by the random noise in the
marginal cost and price processes.

Table 1 below presents the estimation results of the IVS solution and the full
solution when the state transition variables follow an identical transition process. In
Appendix A, we outline the steps taken to estimate the IVS model. Table 2 includes
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[——Outside Marketshare alphaP—0.20]
- - - Outside Marketshare alphaP=-0.30

Outside Option Market Share

10 15 20 25 30 3 w0 s 50 o s 10 15 20 25 20 35 40 a5 50
Periods Periods

(a) DGP Outside Market Share (b) DGP Product Prices

Fig. 1 Outside market share and prices

the % difference in the long run elasticity and profit from the data generating process
values for each estimation method. Within Table 1, the most notable fact is the differ-
ence in parameter estimates employing the IVS and full solution methods. The IVS
method demonstrates a larger bias and less precision for all price parameters, number
of products and discount factor. That said, the estimates do improve as the number of
products J increases, but at a diminishing rate. For example, with the discount factor
set at 8 = 0.95 and a” = —0.3 the marginal improvement from adding one more
product changes from 0.09 (j = 2toj = 3) t0 0.02 (j = 3toj = 4) and 0.01 for
(j = 4to j = 5). This same pattern is evident with @” = —0.2 and with g = 0.80.8

In order to translate the illustrated bias into economically meaningful terms, we
characterize the long term own-price elasticities from a permanent 1% decline in
price as well as the percent change in profit from this permanent price change. These
measures are determined using the first 25 periods of data. Like in the case of the
parameter estimates, the full solution model dominates the IVS estimator when it
comes to recovering each statistic. The IVS estimator is also found to underestimate
the model’s long term own-price elasticities whereas profits are over estimated. Addi-
tionally, note that the own-price elasticity measures do improve as J increases, but
the profit measure does not. It is important to recognize why. With the own-price
elasticity, the model only tracks the total number of units sold over the first 25 peri-
ods, regardless of when they are sold. However, with respect to profit, what matters
is not simply quantity but the timing of which those quantities are sold, given prices
decline with time and future periods are discounted. Thus, our Monte Carlo simu-
lations illustrate that the IVS procedure is better at recovering own-price elasticities
than shifts in profits when price sensitivities are large (o, = —3 vs @), = —.2).
and/or when the discount factor is small (8 = .8 vs § = .95).

In summary, we observe that the full solution estimates are almost identical to the
true parameter values as expected. The parameter estimates from the IVS method, on

8We do generate data associated with J=8 but we do not report these results given the computational
time that is required to form elasticity estimates given the DGP. With 8 products we must determine new
equilibrium beliefs for each measure of own-price elasticity for each NS simulation run. We have estimated
the model using this data for both estimators and have found that the IVS parameter estimates exhibit more
bias than the setting of J=5 and in some cases J=2. Thus, it appears the improvement of the IVS estimator
is nonlinear and is eliminated when J is large (J=8).
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the other hand are significantly different from the true values. Specifically, we find
the following:

1. The price coefficient recovered through the IVS method is biased towards zero,
thus implying that consumers are less price sensitive than they actually are. We
note that this has a strong impact on elasticities, that we examine in detail below.
The constant term also seems biased towards zero, although in our parametriza-
tion the error seems relatively smaller for this term compared to the price
coefficient.

2. The standard errors recovered from IVS are almost always higher than for the
full solution model. The confidence interval for the IVS parameter estimates in
most cases does not include the true parameter values.

3. Asthe number of products in the market J increases from 2 to 5, the error in both
the price coefficient and for the constant terms diminishes, although the rate of
decrease is small.

4.  When consumers are more price sensitive in reality, it increases the accuracy of
the estimates from the IVS method. The full solution method is accurate for both
lower and higher price sensitivities.

5. For a lower discount factor § = 0.8 relative to 8 = 0.95, the error in estimating
the price coefficient is significantly diminished. This finding is consistent with
the theory, where the bias has § as a proportional term.

From Table 2, we we make the following observations about the results of elasticities
and profit changes resulting from a small change in prices:

1. With a high discount factor of § = 0.95, the elasticities derived from the IVS
model estimates are between 35% and 47% different from the true elasticities.
The profit changes with respect to the price change also vary in the range of
20-30%.

2. With higher price sensitivity, the error in the price elasticities is lower, but the
profit elasticities can be higher. Thus, the range of parametrizations that IVS is
suitable for might depend on what the estimates are used for (profit or elasticity).

3. Again, similar to the parameter estimates, we find that with a lower discount
factor, the error with IVS is not as high.

The elasticities and profit impact are directionally similar, however, the quantita-
tive impact is different. Observe that the elasticity measure is only characterized by
the aggregate quantity, whereas the profit measure depends on when products are
purchased, and how they are discounted. If price changes affect the intertemporal
purchase patterns, that will have more of an impact on profits but not on elasticities.
Above, we have detailed the main results when all products follow the same price
process. Next, we examine the parameter estimates and elasticities and profit impact
when the products follow different price processes respectively in Tables 3 and 4. We
find very similar patterns of results as we had reported above, with some quantitative
differences. The error variation is directionally the same with respect to the price
sensitivity, discount factor and the number of products in the market when we have
different price processes across products. Again, the full solution method does not
suffer from these inaccuracies, but at the cost of higher computational complexity.
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5.3 Price process: Different across products

The next set of Monte Carlos simply expands on the simulations above by creat-
ing further heterogeneity in the price process by increasing the range of p; from
[0.925] to [0.965, 0.895]. The marginal cost constant also adjusts from 0.35 to a range
of [0.21, 0.49]. Everything else remains identical to the above previously discussed
price process.

MCjs = Ope,j+po;MCj1+kKj;
pj = [0.965;0.94;0.925;0.91;0.895]
Ome,j = [0.21; 0.28; 0.35; 0.42; 0.49].

Like above, we provide Fig. 2 to illustrate the outside market share under each
price parameterization and in sub-figure two the greater dispersion of price across
all five products than presented above. The results in Table 3 are very much simi-
lar to the results in Table 1- the IVS approximation has the potential for substantial
bias under all parameterizations relative to the full solution method and that its per-
formance also improves as the discount factor declines and/or when the consumers
price sensitivity is large («, = —.3). There is also a similar trend with respect to the
bias associated with the price parameter estimate; it too improves as the number of
products J increases, but again at a diminishing rate.

From the presented Monte Carlo simulations in Tables 1 and 3, we determine
the performance of the IVS estimator varies depending upon the setting. Given that
we have discussed the results of the IVS estimator under the two price processes
separately, we limit our discussion to analyzing the similarities and differences across
these two settings. It is clear that when the underlying data generating process of
the relevant state variables becomes more differentiated across products, estimates of
the parameters improve, regardless of the consumer’s price sensitivity. The percent
change from the DGP elasticities also improves as the price process across products
becomes more differentiated and as J increases.

However, these improvements do not compete with the results of the full solution
method, where little to no bias is observed in parameter estimates and in the estimates
of long term (quantity) elasticities. With respect to the long term change in profits

Product Price

uiside Option Market Share

o

25 30 5 40 s 50 o s 10 15 20 25 20 35 0 4 50
Periods. Periods

(a) DGP Outside Market Share (b) DGP Product Prices

Fig.2 Outside market share and prices
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from a permanent 1% reduction in price, the full solution does exhibit some deviation
from the DGP value but this deviation is smaller than the what is found employing
the IVS method. Finally, the IVS method appears to perform better in recovering
parameter estimates and in matching the long term elasticies when the consumer
price sensitivity is large (o, = —.3vsa, = —.2) and/or when the consumer discount
factor is small (8 = .8 vs B8 = .95), regardless of the price process. The latter result
is unsurprising given Proposition 1- the bias associated with the parameter estimates
decreases as g — 0.0

Additionally, the Monte Carlo results for both price processes illustrate that the
IVS method under estimates the model’s own-price elasticities and over estimates the
change in profits as prices change. This finding highlights the importance of correctly
characterizing how consumers form expectations. If consumers form expectations by
tracking each individual state variable, the result of the model misspecification by
employing an IVS estimator can be quite large with deviations of own-price elas-
ticities upward of -50% in our Monte Carlo settings. Moreover, with the IVS price
parameter estimate biased toward zero, the associated cross-price elasticities will
be biased toward zero as well. This implies a less competitive environment than
what is true. The downward bias of a product’s own-price and cross-price elasticities
can have important ramifications for antitrust/merger analysis as regulators would
incorrectly assume that a firm has to much market power. Thus, when employing
dynamic demand models to understand important policy interventions, its is vital
the researcher empirically supports his/her decision about the underlying consumer
belief structure. One such method is for regulators or policy analyst to directly survey
consumers about their beliefs as is discussed in Manski (2004).

6 Discussion and conclusion

Dynamic discrete choice models are typically computationally intractable without
using approximation methods (Aguirregabiria and Mira 2010). The inclusive value
is one such approximation that makes estimation tractable. In our examination, we
show that the estimator generates bias in the parameter estimates when compared to
the full solution method. We also show that it performs better when the discount fac-
tor is small (8 = .8 vs B = .95) and/or when the price sensitivity of the consumer
is large (ap = —.3 vs ), = —.2). Additionally, predictions of economic quantities
of interest (long-run demand and profits) indicate potential for substantial bias. Our
analysis does have one important limitation and that it excludes the inclusion of unob-
servable consumer heterogeneity with respect to the price. We have experimented
with allowing for unobserved heterogeneity, but found that without the right type of
data variation the estimator performs poorly. In order to estimate this parameter we

9In Appendix A, we present the results of our analysis of a short-term temporary price increase.
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require significant variation in the data, which is computational challenging to gen-
erate given the need for variation across multiple markets, time periods and products.
Moreover, we have no reason to expect that the introduction of heterogeneity makes
the inclusive value estimator less biased.

Many practical settings of interest feature a large number of products. For exam-
ple, Gowrisankaran and Rysman (2012) consider the market for digital camcorders
with J = 383 products, and similarly the automobile market modeled in Berry et al.
(1995) had hundreds of models as well. We note that in such settings, it might not
even be possible to check whether the IVS approach is appropriate, given that the full
model might be quite intractable. Thus, an alternative approach might be to model the
primary observable product characteristic or a small subset of characteristics as the
state variables of interest (Gordon 2009; Song and Chintagunta 2003), However, this
approach has the disadvantage that crucial unobservable time-varying product char-
acteristics that determine consumer choices could be left out of the model. In some
special cases, it might be possible to avoid making the inclusive value approximation
by using an estimation approach that sidesteps the need to compute a value function,
similar to Bayer et al. (2016), who examine the demand for housing with an indi-
vidual model or Chou et al. (2019) who estimate dynamic discrete choice demand
models using aggregate data. Broadly, it points to the need for further research into
dynamic discrete models to develop better approximations or alternative methods to
address this challenging issue.

The concern regarding approximations used in dynamic discrete choice models
are not limited to those of the inclusive value kind. Rather, there are other widely
used approximations in dynamic discrete choice models, particularly with individual
level data. The impact of these approximations has been an under-explored area of
research. They are important because they can result in significant bias not only in
the obtained parameter estimates, but in counterfactual objects of interest, including
elasticities and welfare measures.

Our work also produces additional questions that are worth building upon in fur-
ther research. First, the approximations errors identified here are conceptually present
even when IVS is used with individual-level data in stockpiling models, e.g. Hendel
and Nevo (2006). It would be useful to examine whether there are specific features
of problem settings that might make such a method more accurate, e.g. having a
relatively low number of products. Second, if we are able to identify the expected
asymptotic error from IVS, it might be possible to develop a “bias correction” for
it. Even if that proves challenging, it might be useful to explore whether we might
be able to bound the errors identified in the paper. This is likely to depend on the
specifics of the model, but some classes of problems (e.g. with exit choices similar
to our setting of interest) might have simplifications to allow such bounding.

Appendix A: Short term elasticity

In addition to estimates of a long run own-price elasticities and profits to inform
the reader of the difference between the data generating process and the results of
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the estimation methodologies, we also present short-term elasticities. Specifically,
this short-term own-price elasticity is the % change in total quantity for good j for
the first tghorr = 4 periods resulting from a 1% temporary decrease in the price of
good j in period 1. We determine this measure for each good and average over the
number of products as done above with the long-term elasticity measures.The profit
measure is computed as the sum of discounted period profits and computed based
on prices, marginal costs and sales in each period. We then determine the percent
change in profit from a 1% temporary decrease in price in period 1, assuming an
initial market size of 10,000,000 consumers and a discount factor of 8; = 0.975 for
the firm.

We present the results of a short-term temporary price change in Tables 5 and 6
for the setting of identical price transitions and heterogeneous transitions, respec-
tively. When analyzes the results we find the results from the own-price elasticity
differs from the long term elasticity above. Specifically, the tables below indicate
that % change from the short-term own-price DGP elasticity becomes more negative
as J increases whereas the long-term own-price elasticity improves as J increases.
Moreover, it appears that with respect to both elasticity measures that the IVS is
competitive with the full solution when J=2 or J=3.

Appendix B: Computational details

We use the following computational algorithm to estimate the model parameters. We
employ a GMM procedure using mathematical programming with equilibrium con-
straints (MPEC). Model parameters are 8 = («”, «). Let W be the GMM weighting
matrix. The constrained optimization formulation is

. / /
min [§'ZWZ & |,
min[¢ £]
st:85j(8,0)=Sj;
with the market share equations imposed as constraints to the optimization problem.
Overall procedure
1. Given a guess of & = (a”, o) and &;; determine the simulated market share for
each product in each time period.
2. With the same guess of § = (@”,«) and &;; compute the GMM objective
function defined in the equation above.
3. Search over & = (a”, «) and &;,to minimize the objective function given the
constraint that the observed market share equals the simulated share.

Formation of the market share constraint

1. Given a guess of 0 = (@”, a) and &; formulate f ; (xf, Et) for each product k,
and for each period 7.
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2. Obtain 8,’:[ for each product k and period ¢, using the following equation:

Fkt _
Sy = ——— p k e
kt a-p + o’ pr s Jt

3. Compute the inclusive value for each consumer:

8 =log [ D exp (8ur)
k

4. Obtain the coefficients through estimation of an AR(1) regression of §;;:

(a) estimate 8,41 = yo + y18; + &
(b) given estimates of y; and the variance of ¢; discretize (N=30) formulate the
transition matrix of §; using the Rouwenhorst method

5. Obtain consumer-specific expected value of not purchasing (and hence continu-
ing):
EV (8) = log (exp (8) + exp (B E[EV (8")18]))

(a) Given the discretized values of §; and the corresponding transition matrix
perform a value function iteration to determine E'V (§)

(b) Perfrom a linear interpolation of the expected value function back to the
estimated values of §;;

6. The model-predicted purchase probability or market share for each product k in
each period ¢ is then given as:

. exp (&)  exp (k)

- [exp (EV (8,))] exp (6;)

7. Determine the difference between the observed and simulated market shares at a
given parameter set si ; — Skr (8¢)
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