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Abstract. A critical element of word of mouth (WOM) or buzz marketing is to identify 
seeds, often central actors with high degree in the social network. Seed identification typi-
cally requires data on the relevant network structure, which is often unavailable. We exam-
ine the impact of WOM seeding strategies motivated by the friendship paradox, which can 
obtain more central nodes without knowing network structure. Higher degree nodes may be 
less effective as seeds if these nodes communicate less with neighbors or are less persuasive 
when they communicate; therefore, whether friendship paradox–motivated seeding strate-
gies increase or reduce WOM and adoption remains an empirical question. We develop 
and estimate a model of WOM and adoption using data on microfinance adoption across 
village social networks in India. Counterfactuals show that the proposed strategies with 
limited seeds are about 13%–30% more effective in increasing adoption relative to random 
seeding. These strategies are also on average 5%–11% more effective than the firm’s leader 
seeding strategy. We also find these strategies are relatively more effective when we have 
fewer seeds.
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1. Introduction
Firm-initiated and consumer-driven word of mouth 
(WOM) marketing (often referred to as buzz marketing) 
has received a lot of attention and has proven effective in 
increasing adoption across a wide range of products and 
services. WOM has been examined both theoretically 
and empirically using a wide range of modeling 
approaches to understand both the motivations to 
engage in it and its various impacts (Godes and Mayzlin 
2009, Iyengar et al. 2011, Berger and Iyengar 2013, Cai 
et al. 2015, Campbell et al. 2017).

An important question in WOM marketing is how to 
choose appropriate seeds. There are a few broad 
approaches considered in the literature. The first 
approach uses network data on connections to identify 
central individuals (e.g., degree or eigenvector central-
ity) to obtain the most WOM (Tucker 2008, Goldenberg 
et al. 2009, Libai et al. 2013). Recently, researchers have 
tried to combine multiple networks among the same 
individuals to identify seeds with specific relationship 
types that can lead to higher adoption (Chen et al. 2017). 
The second approach uses individual characteristics to 
identify how opinion leaders can be used to seed net-
works (Iyengar et al. 2011). But opinion leaders are often 

highly context specific and may not span multiple cate-
gories; for example, an opinion leader in fashion might 
not be an opinion leader for consumer electronics or 
healthcare (King and Summers 1970). Another approach 
is to identify seeds based on local network properties 
and community characteristics to achieve higher diffu-
sion (Yoganarasimhan 2012). But there might be trade-
offs in that network structures that enable high diversity 
of content might not be efficient at accelerating the flow 
of information (Aral and Van Alstyne 2011).1

Broadly, the emphasis in the recent literature has been 
to improve seed identification using more comprehen-
sive network data. However, even with easier access to 
online social networks, data on the relevant network for a 
particular purpose is often unavailable. For example, even 
if one had access to the Facebook (or similar) social net-
works of everyone including physicians, the relevant 
physician-to-physician network data for seeding a new 
drug may be unavailable. Even within a specific context, 
there are many challenges in gathering accurate network 
data, including the time and effort required to obtain this 
data (Stark 2018). Moreover, the dynamically evolving 
nature of connections and relationships requires fre-
quent updating of such data. Social media data, which 
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are relatively easier to access, also have the challenge 
that activity there maybe more of a substitute than a 
complement to offline or other social interactions and 
may not be effective in high-involvement applications 
(Borgatti et al. 2009). Given all the above challenges, a 
theoretically grounded seeding approach that can be 
used in the absence of complete data on network struc-
ture can be valuable.

The friendship paradox suggests such just such an 
approach to obtain higher degree seeds, by choosing 
among random friends of an initially chosen set of indi-
viduals. We empirically investigate whether the friend-
ship paradox can indeed be leveraged to choose seeds 
and generate higher WOM and adoption when the rele-
vant network structure information is unavailable. Specifi-
cally, we address the following research questions: 

1. Can friendship paradox based seeding strategies 
improve WOM and adoption relative to random seed-
ing? Can it improve on an opinion leader-based strat-
egy chosen by the firm?

2. Can hybrid approaches leveraging the friendship 
paradox along with leadership characteristics lead to 
higher adoption?

3. How does the extent of initial seeding (proportion 
of the network seeded) impact absolute and relative 
performance of the strategies?

1.1. Friendship Paradox–Motivated Network 
Seeding Strategies

The friendship paradox statement “On average, your 
friends have more friends than you do” is based on a 
mathematical result that holds independent of network 
structure, because popular people are always over- 
represented in the set of friends (Feld 1991, Kumar et al. 
2024). This strategy has been suggested for immuniza-
tion of networks and sensors on networks (Cohen et al. 
2003, Christakis and Fowler 2010). The basic intuition is 
simple: suppose we choose an initial node at random (so 
each node has an equal probability of being selected) 
and then choose one friend of that node at random. This 
approach is termed the ego-based or Local Friend strat-
egy. The chosen friend of the initial mode is likely to be 
more highly connected than average, because, by selec-
tion, a highly connected node will be in the friend set of 
more people and therefore more likely to be nominated 
as a friend. For intuition, consider two extreme exam-
ples: (i) a simple hub-spoke network with a central node and 
several peripheral nodes, all connected only to the central 
node. Each node has equal probability of being initially 
selected, so we are very likely to get a peripheral node. 
When asked to nominate a friend, each of the peripheral 
nodes can only suggest the central node, who is their 
only friend; (ii) an isolated node without any connections. 
That node would never be chosen by anyone on the net-
work as a friend.

The friendship paradox thus suggests potential strate-
gies for sampling higher degree individuals (those with 
more friends) in any network, without knowing network 
structure. For example, one could select a random friend 
each for a set of randomly chosen individuals. This strat-
egy only requires access to a set of randomly sampled 
individuals, and the ability to obtain a random friend 
from them. Further, one can easily obtain the relevant 
network, by choosing the list of relevant friends from 
which to sample for the particular seeding problem at 
hand; for example, for physician influence networks, we 
might ask a doctor to suggest the contact of a random 
physician friend with whom they discuss professional 
matters.

The theoretical results on the friendship paradox guar-
antee that individuals with a higher-than-average degree 
are obtained in expectation no matter what the underlying 
network, allowing for potentially better seeds (Kumar 
et al. 2024). However, even though the sampled indivi-
duals have higher expected degree, their use as seeds can-
not guarantee greater WOM or product adoption, 
because the extent to which higher degree individuals 
communicate with friends in their network about the 
product is an empirical question. For instance, Kim et al. 
(2015) found that selecting the highest degree nodes did 
not always yield greater adoption than with random 
seeding.

1.2. Challenges in Evaluating Network 
Seeding Strategies

A seemingly straightforward approach to empirically 
evaluating the effectiveness of alternative seeding chal-
lenges is to conduct a field experiment where different 
seeding strategies are assigned at random to different 
networks. However, it is a challenge to obtain credible, 
robust answers on the effectiveness of various seeding 
strategies using standard experimental approaches 
because effective matching of treatment and control 
groups at the level of network structure is not typically 
feasible through randomization.2 Network structure 
plays a crucial role in diffusion processes, and even small 
changes in structure can make contagion cascades possi-
ble (Centola 2010, Katona et al. 2011). Therefore, merely 
comparing adoption differences across seeding strate-
gies, without appropriate controls for how network 
structure impacts communication and adoption within 
each network, would not be credible or robust.

Kim et al. (2015) conducted a field experiment by 
randomizing seeding treatments for two health- 
related interventions across 32 Honduran villages 
and compared the average adoption performance of 
random seeding and friend of random individual 
seeding. They found mixed results about the effec-
tiveness of friendship paradox–based seeding in two 
health-based interventions—adoption of multivita-
mins and chlorine-based water purification. Beyond 
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the challenges in assessing differences in treatment 
and control groups (discussed earlier), there are 
important differences in empirical contexts. First, tar-
get seeds in Kim et al. (2015) received an intervention 
(a product along with education), whereas in our 
case, the seeds only decide whether to adopt the 
product. Second, seeds received tickets to distribute 
to their friends and the outcome measure was ticket 
redemption. Because of the focus on ticket redemp-
tion, WOM communication beyond neighbors of 
nonticketed households and the role of nonadopters 
in information diffusion is ignored. But these aspects 
of communication that we model and account for are 
typically important in new product adoption.

Relatedly, the issue of better control and precision to 
detect differences in effectiveness of stochastic seeding 
strategies using field experimental data treated at the 
network level has been considered by Chin et al. (2022) 
using the potential outcomes framework (Rubin 2005). 
This is a useful approach, but there remain important 
practical challenges. First, the approach only works for 
stochastic seeding, while our approach works for both 
deterministic and stochastic seeding. In fact, for the data 
we use from Banerjee et al. (2013), the approach would 
not be applicable, because leaders are chosen determinis-
tically as seeds in all villages. Further, it is unclear if the 
technique can be adapted to answer the richer set of 
questions around leader and hybrid seeding strategies. 
Second, because of the nature of the algorithm, the 
improvements in precision occur only with relatively 
small seed sets (<5), which is unrealistic for many mar-
keting settings except with very small network sizes. 
Substantively, unlike our results, they detect no differ-
ence between random friend and random strategies. 
This difference could be because the networks they con-
sider have relatively small degree range—a factor that is 
known to make random friend strategies less effective 
(Kumar et al. 2024).3

1.3. Our Approach
Our approach involves estimating a structural model of 
diffusion of WOM and product adoption over networks, 
leveraging variation arising from seeding strategies 
across networks and the temporal trajectory. The model-
ing follows a flexible parametric approach and allows us 
to incorporate different elements of the diffusion pro-
cess. The method combined with multiple networks also 
allows us to overcome practical challenges in randomi-
zation when conducting network-based field experi-
ments involving seeding. This aspect allows us to assess 
robustness of the results to differences in networks and 
features of the data generation and WOM communica-
tion process. Specifically, the model allows for a flexible 
relationship between degree and WOM—a critical ingre-
dient to evaluating the benefits of increasing degree 
through the friendship paradox. Further, unlike typical 

diffusion models, which assume that all WOM arises 
from adopters, the model allows WOM from both adop-
ters and nonadopters. We also provide a novel nonpara-
metric identification argument that leverages the feature 
that leaders were chosen as seeds, along with the shape 
of the adoption trajectory to identify differential effects 
for leaders versus nonleaders.

Estimating such a WOM diffusion model is challeng-
ing in practice because the necessary multinetwork data 
are typically unavailable. Most diffusion models are esti-
mated based on one product’s time series of adoption 
through one market (or social network). Further, the 
original seeding is typically unobserved, and even if 
observed it is often not possible to identify the effect of 
different seeding without multiple diffusion paths across 
similar networks. Finally, the impact of WOM might be 
misidentified in the presence of advertising (Van den 
Bulte and Lilien 2001), attributing to WOM what was 
actually achieved by advertising.

We address these challenges using data on one prod-
uct (microfinance) adoption across several independent 
and relatively isolated village social networks. The firm’s 
seeding across the different villages leads to exogenous 
variation in network position and characteristics of 
seeds, which aids in identifying the impact of seeding. 
Also, there was no advertising or promotion activity by 
the firm that would confound WOM effects, which is 
known to bias estimates of impact (Van den Bulte and 
Lilien 2001). Based on the estimates, we simulate coun-
terfactuals on WOM and product adoption across these 
villages as a function of alternative seeding strategies. 
Finally, we compare the effectiveness of the friendship 
paradox–based ego-based or Local Friend strategy 
(Kumar et al. 2024) and hybrid seeding strategies relative 
to Random and Opinion leader seeding strategies. We 
use the term “Local Friend” for simplicity to refer to the 
ego-based strategy.

1.4. Findings
We find that higher degree nodes are less likely to com-
municate WOM among adopters and nonadopters. 
However, despite this negative correlation between 
degree and WOM, we estimate that the friendship para-
dox (ego-based) local friend strategy provides a substan-
tial improvement over the random strategy. It also 
improves effectiveness over a leader seeding strategy 
used by the firm. When the local friend strategy is used 
in conjunction with the leader strategy, the hybrid pro-
vides a further marginal improvement. We find that 
informationally more demanding strategies like top 
degree and top diffusion perform better than other strat-
egies, obtaining a much higher improvement, but at the 
cost of requiring information on network structure. 
Finally, we find that when the proportion of seeds is 
lower, the relative effectiveness of the local friend strat-
egy is greater.
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1.5. Contributions
Our paper makes a number of contributions to the litera-
ture on seeding strategies and diffusion. The present 
paper is among the first to empirically demonstrate the 
potential value of seeding a random friend over random 
nodes for WOM communication in a robust manner. We 
do so with a micromodel of household decision to adopt 
and communicate that is flexible enough to permit 
higher degree nodes to communicate less per capita 
with friends and distinguish WOM from leaders and 
nonleaders. Second, we compare leader seeding chosen 
by the firm to the proposed Local friend seeding. To esti-
mate differential effects of leaders from nonleaders, we 
develop a novel nonparametric identification strategy 
that uses the temporal trajectory of adoption diffusion. 
Finally, we evaluate counterfactual hybrid strategies 
using both friendship paradox ideas and leadership 
characteristics and detail which types of hybrid strate-
gies obtain greater adoption. Overall, we demonstrate 
that our results around the superiority of information-
ally light random friend seeding is robust to various spe-
cification checks.

2. Data
We use panel data collected by Banerjee et al. (2013) on 
the diffusion and adoption of microfinance across house-
holds belonging to 43 rural villages in southern India in 
combination with rich network data on the social con-
nections among the households within each village.

The microfinance firm identified opinion leaders 
based on leader and social criteria in each village prior to 
entry and seeded information about the microfinance 
product among these individuals first. Table 1 provides 
the summary statistics of the village household net-
works. Households have an average of more than four 
individuals. Averaged across villages, 61% of house-
holds have private electricity, but only 28% of households 

have private latrines. There is relatively lower variation 
in the number of people relative to rooms or beds across 
the households.

We use the union of all undirected network relation-
ships detailed in the data.4 There is considerable varia-
tion in the extent of relationships among households. 
Each village contains on average 212 households. Across 
villages, the mean degree (connections) of households is 
around 9, and the mean of the standard deviation of 
degree for households at the village level is large at 
around 7.1, with the minimum and maximum reflecting 
wide variation. The mean degree of opinion leaders is 
higher than the average and close to the maximum of 
average degree across villages (34% more). We illustrate 
the network for Village 1 in Figure 1 as an example.

The primary performance comparison in our study is 
the adoption of microfinance by households across the 
villages. Table 2 summarizes adoption across household 
types. We find that 19:4% of households adopt microfi-
nance, with significant variation across the villages. 
Opinion leaders are more likely to adopt than followers, 
perhaps a feature of the information propagation chosen 
by the firm, which targeted these leaders in each village. 
Adoption is correlated with household characteristics; 
electrified households are less likely to adopt compared 
with nonelectrified, and households with a latrine are 
less likely to adopt than those without. Broadly, these 
statistics reflect the reality that microfinance is used by 
poorer households in emerging markets.

3. Model and Estimation
We use a model of WOM and product adoption across a 
social network. Using network terminology, households 
are nodes and connections between them are edges and 
friends are network neighbors. Households need to be 
informed about the product in order to adopt. Households 
who are informed communicate with their neighbors 

Table 1. Village Network Statistics

Statistic Mean Standard deviation Minimum Maximum

Household characteristics
Number of Households in Village 212.23 53.54 107.00 341.00
People in Household 4.77 0.37 4.20 5.69
Rooms in Household 2.31 0.41 0.75 2.94
Beds in Household 0.88 0.45 0.29 2.27
Proportion of Households with Electricity 0.61 0.16 0.11 0.89
Proportion of Households with Latrines 0.28 0.15 0.02 0.90
Proportion of Households with Leaders 0.13 0.03 0.07 0.21

Degree
Mean 9.66 1.64 6.82 13.59
Standard deviation 7.09 1.32 5.18 11.02
Minimum 1.00 0.00 1.00 1.00
Maximum 39.72 13.01 23.00 90.00
Mean of leaders 12.93 2.59 8.88 18.82

Note. Unit of analysis is a village network (N � 43).
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probabilistically, even if they have not adopted. We 
build on the model of Banerjee et al. (2013), with key 
adaptations required to study our research question 
related to the friendship paradox. First, we allow the 
WOM probability from a node to differ by degree, 
reflecting the idea that WOM propensity may depend 
on this factor. Second, we allow the WOM probability 
from a node to differ for those identified as leaders by 
the firm. Banerjee et al. (2013) allow the probability of 
WOM to depend on adoption status but not on the 
number of connections (degree) or leader status. Our 
extensions are specifically motivated by the strategies 
examined here. Recall that our approach based on the 
friendship paradox obtains higher degree nodes than 
average. Thus, we chose a conservative approach, 
allowing for the idea that whereas high degree nodes 
may be better due to their degree, they might also be 
less likely to communicate with their friends or net-
work neighbors. If we did not account for that, then we 
could be biasing the results in favor of the friendship para-
dox strategy. Similarly, accounting for differences in 
WOM among firm-designated “leaders” is critical to 
assessing the effectiveness of leader strategies.

3.1. Baseline Model
3.1.1. WOM Communication. We provide an overview 
of the WOM model that occurs separately over time in 
each network. Further details are provided in Section 
EC.3 of the Online Appendix.

We model households as belonging to uninformed 
(U), informed (I), adopter (A), and nonadopter (NA). Ini-
tially, all households are uninformed. The initial seeds 
become informed (I) due to the firm’s communication. In 
each period, all informed nodes communicate probabilis-
tically with each of their neighbors, and the probability of 
such communication is ps(D), defined below. Such com-
munication occurs at all time periods, motivated by 
in-person interactions that households have with their 
friends (network connections). We model these events as 
being independent draws across the set of network 
neighbors of a household. Households become fully 
informed following a WOM communication received 
from any neighbor. Once a household becomes newly 
informed (transition from U to I state), they make a deci-
sion on adoption, and they do not revisit the adoption 
choice in subsequent periods.

WOM in the model occurs in the network when a 
household receives information (only) from its informed 
neighbors. We allow WOM probability ps(D) to depend 
on adoption status s and degree D.

ps(D) � qs
min + (q

s
max� qs

min)
D�Dmin

Dmax�Dmin

� �

(1) 

The WOM probability ps(D) refers to the probability that 
a node with degree D and adoptions status s (either 
adopter or nonadopter) communicates with each of its 
network neighbors. Thus, qs

min represents the WOM 
probability for a node with minimum degree (D �Dmin), 
whereas qs

max represents the WOM probability for the 
highest degree node (D �Dmax) and adoption status is 
denoted s. These quantities are based on the minimum 
and maximum degrees across all networks. Both para-
meters depend on the adoption status s ∈ {NA, A} of the 
node, with NA indicating “not adopted” and A indicat-
ing “adopted.” The specification in Banerjee et al. (2013) 
is a special case of this model when qmin � qmax � q, such 
that WOM is independent of degree. Nodes continue 
communicating with neighbors in periods after they 
become informed.

3.1.2. Adoption. When a household becomes aware of 
the product at time t, the household’s decision of 
whether to adopt, y ∈ {0, 1}, is modeled as a standard 
logit choice with observed heterogeneity. The utility of 
household i from adoption and nonadoption is

ui(y � 1) � b0 +bXi + ɛi, 1

ui(y � 0) � ɛi, 0, (2) 

where Xi represents the vector of leader characteristics 

Figure 1. (Color online) Social Network of Households in 
Village 1 

Non−leaders
Leaders

Table 2. Adoption Across Household Types (%)

Statistic Mean
Standard 
deviation Minimum Maximum

All Households 19.38 8.16 7.66 45.08
Leader Households 24.71 12.64 3.57 53.85
Follower Households 18.68 8.19 7.30 43.71
Nonelectrified Households 23.68 10.48 6.94 55.46
Electrified Households 15.87 7.52 4.76 34.43
Nonlatrine Households 21.74 9.87 7.03 51.25
Latrine Households 14.68 9.30 0.00 36.36

Note. Unit of analysis is a village network (N � 43).
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of household i, β�the vector of coefficients, and ɛi, s are 
distributed as type I Extreme Value random variables.

After a node becomes informed either as an initial seed or 
through a neighbor, further WOM from others does not 
impact the likelihood of adoption. Thus, WOM is purely 
informational rather than persuasive in this baseline. 
Although the baseline model provides a useful bench-
mark, it leads to the question of whether there are more 
complex or sophisticated decision processes for communi-
cation and adoption, which we examine and model below.

3.2. Endorsement or Persuasion
In the endorsement or persuasion model, (termed 
“complex contagion” by Centola and Macy (2007)), like-
lihood of adoption varies based on whether WOM is 
received from more friends. We model endorsement as a 
factor that impacts adoption, as in Banerjee et al. (2013). 
The utility of adoption is:

ui(y � 1) � β0 + βXi + λFit + ɛi, 1, (3) 

where Fit is the fraction of neighbors who have informed 
i about microfinance, and λ�is the endorsement parame-
ter. The utility of nonadoption remains unchanged.

3.3. Leader Effects
Leaders selected as seeds by the firm may have unob-
served individual characteristics (leadership) that lead to 
higher probability of WOM relative to nonleaders, over 
and above their higher degree. Further, firms may have 
provided specific information to their selected leader 
seeds, which may make their WOM more effective.5 To 
capture such differences, we extend the baseline model 
to allow for differential probability of WOM for leaders:

ps
i (D) � qs

min + (q
s
max � qs

min)
D�Dmin

Dmax �Dmin

� �

+ qℓ1[i ∈ Leaders]: (4) 

Thus, if leaders are especially effective in spreading 
WOM, we would find the parameter qℓ�to be positive, 
whereas a negative value would indicate leaders are less 
effective than nonleaders.6

We propose a novel nonparametric identification strat-
egy for identifying these leader fixed effects, detailed in 
Section EC.2.

3.4. Nonlinear Effect of Degree
Finally, we allow WOM likelihood to be nonlinear in 
degree by allowing a quadratic effect, which can also cap-
ture potential nonmonotonicity with respect to degree:

ps(D) � qs
min + (q

s
max � qs

min)
D�Dmin

Dmax �Dmin

� �

+ qQ
D�Dmin

Dmax �Dmin

� �2
, (5) 

where qQ represents the parameter corresponding to the 
quadratic term.

We examine a number of models, combining these 
modeling elements, as summarized in Table 3. Overall, 
we have eight specifications. The first four models have 
no endorsement or persuasion effect (denoted by super-
script E � 0). In ME�0

1 , the WOM probability does not 
depend on degree. This model is identical to the model 
in Banerjee et al. (2013). In ME�0

2 , the WOM probability 
depends on degree; ME�0

3 incorporates a differential 
effect for leaders to the prior model specification, and 
ME�0

4 allows for a nonlinear relationship between WOM 
probability and degree with a quadratic function. The 
next four models are identical to the first four, but with 
an endorsement effect (denoted by superscript E � 1).

3.5. Estimation
The model estimation proceeds in three steps similar to 
Banerjee et al. (2013), with specific differences. The esti-
mation procedure is detailed in Section EC.3 of the 
Online Appendix. Note that we use optimization algo-
rithms for estimation rather than grid search. Here we 
provide a high level description of the three steps.

3.5.1. Step 1: Adoption Process. We estimate the adop-
tion process parameters β�with a logistic regression using 
the adoption decisions of only the initially seeded indivi-
duals based on Equation (2).

3.5.2. Step 2: WOM Process. We estimate the WOM 
process parameters (qNA

min, qNA
max, qA

min, qA
max), as well as 

endorsement (λ), leader effect (qℓ), and quadratic effect 
(qQ) using the simulated method of moments (SMM). 
We use the same set of cross-sectional moments used 
in Banerjee et al. (2013), supplemented by time series 
moments, all listed in Table 4. Overall, the moments 

Table 3. Summary of WOM Model Components

Model

Model element ME�0
1 ME�0

2 ME�0
3 ME�0

4 ME�1
1 ME�1

2 ME�1
3 ME�1

4

Endorsement × × × × ✓ ✓ ✓ ✓

Degree-dependent WOM × ✓ ✓ ✓ × ✓ ✓ ✓

Leader differential WOM × × ✓ ✓ × × ✓ ✓

Nonlinear effect: WOM and degree × × × ✓ × × × ✓
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capture key aspects of diffusion within a network, both 
globally over the entire network and locally across con-
nections. The first moment is global, matching overall 
adoption levels in the network. Moments 2–4 are local 
moments that fit household level adoption as a function 
of adoption characteristics of their neighbors and help 
identify communication probabilities for nonadopters 
and adopters respectively. Moments 5 and 6 are also 
local moments in that they capture covariance in adop-
tion between a household and its first- and second- 
degree neighbors respectively.7 Next, we include time 
series moments that have not been used in Banerjee et al. 
(2013). Moments 7–9 characterize the temporal trajectory 
of adoption within villages, which helps us in the identi-
fication of the leader fixed effect, as detailed in Section 
EC.2 in the Online Appendix. We detail how each 
moment informs the estimation of each parameter, that 
is, the sensitivity of parameter estimates to each of the 
cross-sectional and time series moments based on the 
approach of Andrews et al. (2017) in Section EC.5.6 of 
the Online Appendix.

The objective function for the parameter vector θ�is 
defined as in Banerjee et al. (2013):

S(u) � 1
S
XS

s�1
[mS(u)�mD]′

 !

W
1
S
XS

s�1
[mS(u)�mD]

 !

,

(6) 

where mS(θ) represents the vector of model simulated 
moments, and mD denotes the vector of data moments. 
W is the weighing matrix, which can either be estimated 
with a two-stage approach or be set to be the identity 
matrix to obtain consistent estimates. The estimator is 
then defined as

û � arg min
u

S(u): (7) 

3.5.3. Step 3: Standard Errors. We estimate the stan-
dard errors using a block-bootstrap resampling procedure 
of sampling with replacement, treating each network as 
a block.

4. Results
We use data from the villages where microfinance was 
introduced to estimate the proposed models. We first 
detail the results from the adoption model in Table 5. 

The number of beds in the household and the rooms per 
person are negatively associated with adoption probability 
and access to a private latrine in the home and rooms per 
person has a negative impact. The estimates are consistent 
with the idea that microfinance is used by relatively poor 
households without access to traditional banking services.8

Table 6 reports the estimates for the eight WOM 
models.

We use the model specifications ME�0
2 (without 

endorsement) and ME�1
2 (with endorsement) as our pri-

mary specifications for discussion, although the results 
are provided for all models. We note that our primary 
results of interest continue to hold qualitatively across all 
the model specifications. For some models, it might be 
more relevant to use the temporal variation.9

We note that this communication is a one-on-one pro-
cess. We first interpret the parameter estimates of the 
baseline model specifications M2. We begin with the 
case of no endorsement, ME�0

2 . First, the WOM probabil-
ity for adopters is greater than that of non-adopters 
(qA

min > qNA
min and qA

max > qNA
max). Next, we examine degree 

dependence. For low-degree households, the WOM 
probability is significant, whereas for high-degree house-
holds, it lacks is statistical significance (qNA

min > qNA
max). Thus, 

although low-degree non-adopter households are open 
to communicating with their neighbors without adopting 
the product, their more connected neighbors are not.

For adopters, the WOM magnitude for both low- 
degree and high-degree households is more comparable, 
with the same ordering. Despite this, high-degree house-
holds communicate more overall because they have 
more connections.

Table 4. List of Moments

No. Description

1. Proportion of seeds adopting
2. Proportion of households with no adopting neighbors who have adopted
3. Proportion of neighbors of adopting seeds who have adopted
4. Proportion of neighbors of nonadopting seeds who have adopted
5. Covariance between a household’s adoption and average adoption of its first-degree neighbors
6. Covariance between a household’s adoption and average adoption of its second-degree neighbors
7,8,9 Cumulative adoption up to time t � 1, 2, 3 (time series moments)

Table 5. Adoption: DV: Microfinance Adoption (1 � Yes, 
0 � No)

Variable Estimate Standard error

Constant �1.210*** (0.322)
Rooms 0.007 (0.085)
Beds �0.283** (0.143)
(No) Electricity 0.156 (0.123)
(No) Latrine 0.179** (0.080)
Rooms per person �1.023*** (0.392)
Beds per person 1.147* (0.656)
Log likelihood �603.093

*p < 0.1; **p < 0.05; ***p < 0.01.
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From ME�0
3 and ME�0

4 , we find no differential effect of 
leaders; the parameter qℓ�is small in magnitude and not 
statistically significant, implying that leaders do not 
communicate more than others. Similarly, for the qua-
dratic effect, we do not find qQ to be substantial.

Next is the set of models (E � 1) with an endorsement 
effect. We find the effect to be positive and significant 
across all models. The other parameters are qualitatively 
the same as for the models without endorsement. Speci-
fically, in all cases, for both nonadopters and adopters, 
lower-degree households communicate more than 
higher-degree households. Again, we find the leader 
effect to be not significant across all these models, but the 
quadratic effect is marginally significant in this case.

In Section EC.5 of the Online Appendix, we consider a 
number of other additional models of the data generat-
ing process.10 In all cases, our baseline model indeed 
does fit best relative to other models, so we use that as 
the primary specification for the counterfactuals.

5. Counterfactuals
We use counterfactuals to evaluate various seeding strat-
egies based on Friendship, Leader, Hybrid, and Net-
work Information categories described in Table 7. 
Within the Friend category, we examine the impact of 
the Local Friend strategy, which samples on neighbors 
of randomly chosen network nodes (households) to 
obtain seeds. In Leader, we examine both the “(Firm’s) 
Leader” strategy, using the original leaders that were 
designated for seeding by the microfinance firm, and 
“Like Leader,” which chooses as seeds leader-like nodes 
who have similar network positions as leaders. We use 
three dimensions to measure network position: degree, 
eigenvector, and power centrality (Bonacich 1987). This 
helps evaluate whether the impact of seeding is due to 
the network position or due to the differential impact by 
individual characteristics of leaders. Hybrid strategies 
combine the features of sampling on friends along 
with information on opinion leaders. We examine two 

Table 6. Model Estimates

Parameter Symbol

Model specification: Estimates (standard errors)

No endorsement With endorsement

ME�0
1 ME�0

2 ME�0
3 ME�0

4 ME�1
1 ME�1

2 ME�1
3 ME�1

4

Nonadopter lowest degree qNA
min 0.186 0.177 0.123 0.157 0.016 0.211 0.137 0.136

(0.075) (0.0845) (0.0866) (0.0865) (0.111) (0.124) (0.0592) (0.078)
Nonadopter highest degree qNA

max 0.186 0.030 0.116 0.078 0.016 0.054 0.078 0.084
(0.075) (0.113) (0.122) (0.0958) (0.111) (0.109) (0.0423) (0.0639)

Adopter lowest degree qA
min 0.297 0.382 0.345 0.389 0.351 0.387 0.375 0.352

(0.0921) (0.113) (0.0876) (0.0992) (0.0703) (0.0846) (0.0728) (0.0693)
Adopter highest degree qA

max 0.297 0.305 0.383 0.271 0.351 0.275 0.315 0.249
(0.0921) (0.104) (0.0787) (0.0859) (0.0703) (0.0944) (0.0831) (0.0844)

Leader effect qℓ – – �0.091 0.046 – – 0.054 0.067
(0.0907) (0.0814) (0.0554) (0.0612)

Quadratic effect qQ – – – �0.010 – – – �0.108
(0.0407) (0.0396)

Endorsement λ – – – – 0.417 0.312 0.134 0.157
(0.0281) (0.0419) (0.0206) (0.048)

Note. In Models ME�0
1 and ME�1

1 , bold out parameters are not estimated.

Table 7. Seeding Strategies and Implementation

Category Strategy Implementation procedure (for each of m seeds)

Friendship Local friend (neighbor) Select node at random from list. Obtain one randomly chosen 
friend of node as a seed.

Leader (Firm’s) leader Select node from list of leaders
Like leader Select leader node ℓ�at random. Select the nonleader node 

most similar to ℓ�in terms of network properties.
Hybrid Friend of leader (weak hybrid) Select a random leader from list of leaders. Obtain one 

randomly chosen friend of this leader as a seed.
Leader friend of leader (strong hybrid) Select a random leader from list of leaders. Obtain one 

randomly chosen friend who is also a leader to be seed.
Network information Top degree Select a seed node at random from the list of top (Top 15%) 

degree (most connected) nodes.
Top diffusion Select a seed node at random from the list of top (Top 15%) 

diffusion nodes (proposed by Banerjee et al. (2013), and 
defined in Table EC.4).
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different hybrid strategies: choosing a random Friend of 
Leader household (weak hybrid) or choosing a random 
Leader Friend of Leader household (strong hybrid). The 
difference between them is whether the resulting seed 
obtained must be a leader (strong) or not (weak).

We also evaluate two network information bench-
marks, Top Degree and Top Diffusion. Unlike the above 
strategies, these network strategies require complete 
knowledge on who is connected to whom (network 
structure) or the degree distribution, that is, the number 
of connections of each node. If highly connected nodes 
are likely to be better in accelerating adoption, the idea is 
to choose from the set of highly connected nodes in the 
Top Degree strategy. Top Diffusion is an approach pro-
posed by Banerjee et al. (2013) to identify nodes with 
high centrality for the purpose of information diffusion. 
It requires the social network structure (adjacency 
matrix) but does not require knowledge of the para-
meters of the diffusion process. Seeds are randomly cho-
sen from the set of top 15% of nodes for both top degree 
and top diffusion strategies. Further details about the 
strategies, including informational requirements, are 
provided in Section EC.4.2 of the Online Appendix.

We use the estimated parameters from ME�1
2 for the 

counterfactual simulations below. In the Online Appen-
dix, we provide a comparison of the counterfactual 
results of all the different model specifications summa-
rized in Table 3. We set seeding level as a percentage of 
households in the village, so the number of households 
seeded varies across villages as a function of village 
populations. We examine the sensitivity of the results to 
different seeding levels (0.5%, 1%, 5%) in Section 5.1.

We evaluate seeding effectiveness in terms of pro-
portion of informed households and adoption generated 
by the seeding strategies. We start with a higher level 
of seeding (5%) to be conservative, since the advantage 
of the proposed strategies is greater with fewer seeds. 
Table 8 reports the aggregate statistics on the proportion 
of households informed about the microfinance service 

and the proportion adopting microfinance. The improve-
ment for Local Friend over Random is about 13.1%, 
whereas the improvement over Random for Leader is 
about 9.1%. We also find that the Hybrid strategy Friend 
of Leader performs the best with a 15.7% improvement 
over Random, suggesting that the two broad approaches 
of leveraging network structure (using friendship para-
dox) and leadership or other demographic characteristics 
(using Leader indicator) can be combined to achieve 
higher performance. However, we note that using the 
Local Friend strategy alone without any information 
about the network structure or leader information can 
generate much of this performance benefit. However, 
there is a risk in applying a strict criterion requiring the 
friend to also be a leader, with performance worse than 
local friend. Overall, the Local Friend and Hybrid strat-
egies do better than the Leader strategy without data 
on the full network structure, suggesting that they are 
viable approaches to seeding WOM with unknown 
networks.

As we might expect, the network information strategies, 
which require global knowledge of the network structure 
lead to much greater adoption than the above strategies. 
Interestingly, the top degree approach performs better 
than the diffusion centrality-based approach, although the 
difference is minimal. It’s likely that for these relatively 
small village networks, the overlap in seed sets among the 
top degree and top diffusion strategies is quite high, hence 
the similarity. In larger networks, for example, Twitter, we 
might see larger differences between them. Overall, we 
observe that the Local Friend strategy is able to obtain 
about 89% (and the weak hybrid achieves about 91%) of 
the performance of the best informationally demanding 
network information strategy. This finding characterizes 
the tradeoff between the amount of information required 
and the effectiveness of the strategy in driving adoption. 
In cases where it is impractical to obtain the relevant net-
work information, the Local Friend or hybrid strategies 
could be profitably used as an alternative.

Table 8. Comparison of Strategies (5% Seeding)

Strategy

Informed (%) Adopted (%)
∆ Informed (%) 

over random
∆ Adopted (%) 
over randomMean Standard deviation Mean Standard deviation

Random 38.77 42.19 7.56 25.58 — —
Local Friend 42.98 43.28 8.54 27.12 10.86 13.08
(Firm’s) Leader 41.70 43.03 8.25 26.70 7.54 9.13
Like Leader 41.57 42.96 8.20 26.60 7.21 8.48
Hybrid strategies

Friend of Leader 43.75 43.52 8.74 27.42 12.85 15.67
Leader Friend of Leader 40.85 42.73 8.08 26.39 5.37 6.91

Network Information Strategies
Top Degree 47.37 44.65 9.62 28.78 22.18 27.28
Top Diffusion 46.78 44.35 9.51 28.56 20.65 25.91

Note. Parameter estimates from model ME�1
2 used for counterfactuals.
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We report the pairwise comparison between strategies 
(Table 9). The Local Friend strategy is better than Random 
and leads to improved adoption in most of the villages. 
The Local Friend strategy also outperforms the Leader 
strategy across a majority of villages. The (Firm’s) Leader 
strategy does worse than Random in about 14% of the vil-
lages. The weak hybrid Friend of Leader strategy is also 
better than random in about 93% of villages, but the 
strong hybrid Leader Friend of Leader actually performs 
worse than random in about 35% of the villages. This 
implies that it matters how the hybrid strategy is implemented 
and whether the condition of leadership is required for 
not just the initial node but also for the nominated friend. 
The results suggest reduced effectiveness of seeding 
when we require that the nominated friend also be a 
leader. Finally, and as expected, the Like Leader strategy 
is the most similar in performance to the Leader strategy.

5.1. How Does Extent of Seeding Impact 
Performance of Strategies?

The idea of WOM marketing is to choose a small number 
of seeds to help spread information about a product or 
service. We summarize in Table 10 how the performance 
of the seeding strategies varies with the proportion of 
nodes seeded, at 0.5%, 1%, and 5% of nodes seeded. For 
full results across all model specifications, see Section 
EC.4.3 in the Online Appendix.

We define the performance metric as leverage in terms 
of how well a proposed seeding strategy s performs rela-
tive to the Random strategy (whose leverage is one by 

definition):

Leverage(s)

�
# Households Adopting under Strategy s

# Households Adopting under Random Strategy :

The following observations are noteworthy. First, the 
(Firm’s) Leader strategy always outperforms the Ran-
dom strategy, and the Local Friend strategy always out-
performs the Leader. Thus, our main results hold across 
the range of seeding proportions examined for models 
with and without the endorsement effect. Second, the 
weak hybrid strategy dominates across most model spe-
cifications, whereas the strong hybrid broadly underper-
forms the Local Friend strategy. Third, Like Leader 
performs very similar to leader, indicating that perfor-
mance of the leader strategy is not driven by the differen-
tial leader effects but rather the network position of 
leaders. Fourth, although the full information network- 
based strategies perform the best, we also find that the 
friendship paradox based strategies get about half of the 
differential benefit without requiring network structure. 
Finally, leverage for all strategies decreases as the number 
of seeds increases, implying that their performance bene-
fit is greater under more constrained circumstances, for 
example, when product samples are limited or expensive, 
or the seeding process requires intensive education or 
interaction.

6. Discussion and Conclusion
We estimate a model of network-mediated WOM and 
product adoption and evaluated the effectiveness of 
alternative seeding strategies that leverage the friend-
ship paradox. The proposed friendship paradox–based 
strategies, which are informationally light and require 
little knowledge of network structure, significantly 
improve WOM seeding and product adoption relative 
to not just random seeding but also relative to the firm’s 
opinion leader seeding. Specifically, we find about a 13% 
average improvement with Local Friend seeding in both 
information spread and adoption compared with Ran-
dom and about 5%–10% improvement over the Firm’s 
Leader seeding, which is based on preselected occupa-
tions. Further, Local Friend seeding is typically better 

Table 9. Pairwise Comparison of Strategies (5% Seeding)

Strategy Local Leader Like leader Friend of leader Leader friend of leader Top degree Top diffusion

Random 97.67 86.05 81.40 93.02 65.12 100.00 100.00
Local Friend 32.56 30.23 55.81 27.91 90.70 90.70
(Firm’s) Leader 53.49 67.44 41.86 100.00 100.00
Like Leader 74.42 39.53 95.35 97.67
Friend of Leader 20.93 90.70 88.37
Leader Friend of Leader 97.67 97.67
Top Degree 37.21

Note. Number in cell indicates % of villages where column strategy achieves higher adoption than row strategy.

Table 10. Leverage for Counterfactual Strategies

Strategy

No endorsement With endorsement

0.5% 1% 5% 0.5% 1% 5%

Local Friend 1.14 1.064 1.008 1.315 1.307 1.131
(Firm’s) Leader 1.094 1.045 1.005 1.186 1.178 1.091
Like Leader 1.08 1.038 1.002 1.188 1.126 1.085
Hybrid strategies

Friend of Leader 1.145 1.071 1.012 1.355 1.303 1.157
Leader Friend of Leader 1.089 1.049 1.006 1.208 1.216 1.069

Network-based strategies
Top Degree 1.241 1.108 1.012 1.713 1.621 1.273
Top Diffusion 1.242 1.1 1.01 1.675 1.618 1.259
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than Random across multiple villages with varying net-
work structures, whereas we find that the Leader strat-
egy can be worse than Random in a significant number 
of village networks. We note that this result is based on 
expected performance and can vary based on network 
structure. Further, it should be expected that seeding 
strategies that use detailed network information can 
improve adoption relative to the Local Friend strategy, 
with the tradeoff that much more information is 
required.

We find that the relative advantage of both Local 
Friend and hybrid strategies relative to the Random 
strategy is inversely related to the proportion of nodes 
seeded. Thus, when we have fewer seeds, these strate-
gies become even more advantageous in expectation. 
This result is practically useful in cases where the target 
population is large, and seeding is either financially 
costly or practically challenging due to time constraints 
or other operational limitations. The combination of the 
battery of robustness checks and the monotonic improve-
ment in performance with greater network information 
provides consistent evidence of effectiveness. This adds 
to the literature by providing a mechanism and suggests 
follow up studies to detect robust gains from using friend 
seeding strategies with field experiments (Kim et al. 
2015).

The data used here from multiple village networks 
and explicit knowledge of who were chosen as initial 
seeds have many advantages for studying the current 
seeding problem. Yet, common with much research on 
diffusion, a limitation is that communication is unob-
served. Although we model communication as a latent 
process and show that our key counterfactual claims 
about friend based seeding are robust to many alterna-
tive models of communication, it would be useful to 
study this problem in setting where communication is 
directly observable. Further, even though the seeding 
process is observed, the firm always seeded on “leaders” 
based on a certain set of occupations.

Methodologically, we also provide a novel nonpara-
metric identification argument for leader fixed effects 
that does not depend on specific functional forms to esti-
mate the leader fixed effect with our current data where 
only leaders are used as seeds. The approach relies on 
the shape of the temporal trajectory, and its impact on 
the area under the trajectory.

We suggest some broader issues to explore in future 
research. Future work could evaluate the effect of leaders 
on adoption by randomizing seeds with leaders in some 
villages and nonleaders in others. It would also be useful 
to explore whether the benefits of seeding using the 
friendship paradox generalize to other contexts and dif-
ferent network structures. Microfinance has certain 
adoption and WOM communication features that may 
differ from other products. For example, the poor need 
microfinance and may be more persuaded about its 

benefits than the rich; the poor may also have systemati-
cally different social network structures. Hence it would 
be valuable to assess whether the benefits of friend- 
based seeding remain robust for other products. Future 
research should also evaluate how network structural 
characteristics may systematically impact friend based 
seeding effectiveness. It would also be useful to consider 
the potential tradeoffs in cost and time in using our infor-
mationally light seeding strategies relative to investing 
in identifying (even limited) network information prior 
to seeding. In some cases, rather than use opinion lea-
ders, it may be useful to seed individuals nominated by 
others as “gossipers” to assess their impact on diffusion 
and higher overall adoption (Banerjee et al. 2014, Ste-
phen and Lehmann 2016). Finally, it would be useful to 
consider whether seeding approaches proposed here 
need to be adapted for highly asymmetric networks, 
where directional ties are significant (Ben Sliman and 
Kohli 2018).
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Endnotes
1 There is a complementary literature in computer science inspired 
by Domingos and Richardson (2001) on approximate seeding algo-
rithms for influence maximization with performance guarantees. 
These algorithms differ in the level of network information used. 
For example, Kempe et al. (2003) use full network information, 
Eckles et al. (2019) use partial network information, and Wilder et al. 
(2018) consider algorithms when network information is unknown.
2 The number of possible networks structures grows exponentially 
in the number of nodes; for example, if N � 100 nodes, there are 
2

N(N�1)
2 ≈ 101490 possible undirected network structures and even 

more for directed networks.
3 The data used in Chin et al. (2022) are from the studies by Cai et al. 
(2015) and Paluck et al. (2016). Cai et al. (2015) include 185 village 
networks and state the following (with the exception of two vil-
lages): “The social network survey asked household heads to list 
five close friends, either within or outside the village, with whom 
they most frequently discuss rice production or financial issues.” 
Similarly, Paluck et al. (2016) asks participants to list a maximum of 
10 friends.
4 We use the union since communication can happen during any 
type of interaction. Similarly, we convert directed ties (e.g., survey 
questions about borrowing items like rice or fuel oil) to undirected 
ties since communication about the product can be bidirectional 
during any such asymmetric interaction.
5 Our model does not distinguish between incidence of WOM and 
its effectiveness, but as long as both those effects do not change in 
the counterfactual, the strategy comparisons remain valid.
6 We note that, because all initial seeds are “leaders,” it aids the 
leader fixed effect identification as any impact of leader fixed effect 
will be stronger in the initial periods and can be therefore identified 
off the adoption trajectory. More details about the identification of 
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the Leader Fixed Effect is detailed in Section EC.2 of the Online 
Appendix.
7 We provide precise specification of the moments and the rationale 
for using them in Section EC.3 of the Online Appendix.
8 We report a variety of adoption models in Section EC.5.5 of the 
Online Appendix; the results presented here is for the best fitting 
(lowest AIC) model.
9 We estimate various other models to test different specifications 
of the data generating process. We mention a few here. First, we 
allowed a “broadcast process” to consider the effect of an initial vil-
lage meeting by seeds to communicate to all households. Second, 
we allowed for a “leader certification” effect to test for an incremen-
tal effect of leader endorsement on adoption. Third, we allowed 
opinion leader seeds to be chosen by occupation, where leader 
effects are conferred on all members with that occupation. These 
specifications do not fit the data better than ME�0

2 . The counterfac-
tual performance under all the models are provided in Section 
EC.4.3 of the Online Appendix).
10 We consider a benchmark where there are only broadcasts (Sec-
tion EC.5.1 of the Online Appendix), but no communication 
through networks. In Section EC.5.2, we consider a model where 
there is an initial broadcast by seeds, to model an initial village 
meeting described in Banerjee et al. (2013). We also consider the 
case where leaders may be present outside the initial seed set (Sec-
tion EC.5.3), and where leaders may have specific certification abil-
ity (Section EC.5.4). Specifically, we show in Figure EC.3 that there 
is reasonable probability that seeds chosen by any of our counter-
factual strategies overlap with the seeds chosen by the firm.
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Electronic Companion Supplement

EC.1. Mathematical Notation

In Table EC.1 below, we define the terms used in networks. These terms are helpful when we define

network properties and in the moment conditions. We illustrate a village network in ??, with the

black nodes indicating leaders.

Table EC.1 Table of Notation

Characteristic Description Definition
Nodes Degree Number of connections (edges) of i Di

Edge Connection between nodes i and j eij ∈ {0,1}
Adjacency (Edge)
Matrix

Connection between nodes i and j E,Ei,j ∈ {0,1}

Node Set Set of all N nodes in Network V = {1,2, . . . ,N}
Edge Set Set of all edges in Network E = {(i, j) : eij = 1}
Network Edge Count Number of undirected connections e=

∑
i∈V,j>i eij

Seeds Set of all nodes chosen as seeds S
Adopters Set of all nodes which have adopted A
Reachable Set Nodes with adoption status s∈ {A,NA} reach-

able from i in k steps
Es

i (k)

Proportion of adopt-
ing neighbors

Fraction of adopting nodes among those reach-
able from node i in k steps

zi(k) =
|EA

i (k)|
|EA

i (k)|+ |ENA
i (k)|

Vector of above Vector of adopting proportion of neighbors for
each node

z(k) = [z1(k), . . . , zN(k)]

Minimum Distance Distance of Shortest Path between i and j δij =mink s.t.E
k
(i,j) > 0

EC.2. Identification of Leader Fixed Effect

We demonstrate below that the WOM communication probability for leaders qL is separately

identified from the word of mouth communication probability q for non-leaders. Although the

argument itself is non-parametric and does not rely on a specific functional form, our demonstration

model uses a simple parametric representation consistent with the paper. For this argument, we

choose to add a leader fixed effect to the simplest model (Model 1) from the paper.

Suppose we had only static adoption data, we would not be able to identify the fixed effect.

However, (i) the availability of time series aggregate adoption data and (ii) the presence of multiple

networks allows us to identify the fixed “leader” effect.

First, we note that using only the final adoption levels will not allow leader fixed effect qL to

be identified separately from just overall propensity to communicate q. Increases in each of these

parameters will result in higher final adoption levels in a network. It is straightforward to see that

a relatively low level of q in conjunction with a high level of qL might result in the same adoption

level as a high level of q and a low level of qL.
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However, the curvature of the adoption trajectory over time provides variation that permits

identification of the leader effect qL separately from q. Intuitively, if qL is higher, the adoption

trajectory shows a steeper increase in the earlier periods, because only leaders are communicating

initially, and only in subsequent periods do non-leaders communicate. Thus, the proportion of

communication attributable to leaders is highest at the beginning and decreasing over time. Thus,

the impact of a higher qL will be greatest in earlier periods as opposed to later periods. In contrast,

the impact of a higher q will be lower in the initial periods, since few non-leaders are informed,

and it has proportionally greater impact on adoption in later periods.

Simplified Model

We provide a highly simplified version of the model similar to Model 1 in the paper, for the

specific purpose of examining identification and making the required variation transparent. The

main features of this model are:

1. A few leader nodes are informed initially (similar to the main model).

2. In each period, each informed node communicates with probability (that depends on the

node’s leadership status). Thus, non-leaders communicate with probability q and leaders com-

municate with probability qL with each of its neighbors. Note that in this simplified model,

adoption status does not impact communication probability.11

3. When nodes are newly informed, they have the ability to adopt a product with probability

γ = 0.2. (We don’t have any covariates impacting adoption here, unlike in the main model,

and do not require the variation obtainable from these covariates).

The WOM communication probability for node i is specified as:

pi =

{
q, if i is not a leader

qL = q+ qℓ, if i is a leader

where qℓ is the leader fixed effect. Recall that the leader fixed effect is the difference between the

WOM communication probabilities of leaders and non-leaders.

We demonstrate in Figure EC.1 precisely the variation that is required for this identification.

There are several sources of possible variation in the network data. First, we observe that both

adoption trajectories for (a) q= 0.01, qℓ = 0.08, qL = q+ qℓ = 0.09 (red curve) and (b) q= 0.13, qℓ =

−0.12, qL = q + qℓ = 0.01 (green curve) end up after T = 5 periods at the same overall adoption

level, i.e. 0.165 or 16.5%. Thus, just having the final adoption levels, it would not be possible to

separately identify q and qL.

11 Even though this additional variation based on adoption status might prove useful as a separate source of identifi-
cation, our identification argument does not require it.
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Figure EC.1 Identification and Adoption Time Trajectory

However, their adoptions differ in their time trajectories. For (a) (red curve), with a higher leader

fixed effect qL = 0.09, we see the early period trajectory is steeper than the case (b) (green

curve). On the other hand, with (b), the later period trajectory is steeper than in (a).

In general, for different combinations of (q, qL) that obtain the same level of final overall adoption,

the area under the adoption trajectory curve will be greater for combinations of (q, qL) with higher

levels of qL and lower levels of q.

Does exclusive seeding by leaders help or hinder identification of leader fixed effect?

There are two reasons why leader seeding (in contrast to random seeding) is helpful to answering

our research question.

First, it may appear that our context in which the firm exclusively used leaders by the for

initial seeding makes it more challenging to separately identify the leader fixed effect. But in

fact, our explanation above should clarify that this exclusive use of leaders for initial seeding aids

identification of the leader fixed effect and allows us to disentangle qL and q. This is because the

exclusive use of leaders for initial seeding guarantees that a higher leader fixed effect will increase

the earlier adoption trajectory relative to later. Therefore if the seeding had been random, it would

not be feasible to separately identify the effects as one cannot use this identification argument.
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Second, leader seeding avoids a specific kind of bias in leader effects. Suppose we only have

random seeding, but there are leaders present in the data. If leaders have different (higher or lower)

degree on average than others, and if they have differential communication, it would not be possible

to identify any leader specific communication effect. For instance, if Leaders have higher degree,

the Local friend strategy could result in more leaders on average. The counterfactual results would

then be biased to find lower effects for the Local strategy than would be obtained in reality. Due

to leader seeding in our data, we can identify and characterize the leader fixed effect (separately

from non-leaders), and thus avoid this potential bias.

EC.3. Model Details and Estimation

First, we detail the estimation of the adoption process, followed by the WOM communication

process, and finally detail the block bootstrap to obtain standard errors. We simulated Nsim = 150

diffusion paths with seeds chosen stochastically corresponding to each seeding level and using each

of the seeding strategies. The reported WOM communication parameters are based on the average

of the simulated diffusion paths.

Adoption Process

The adoption parameter vector is β = (β0, . . . , β6). The logistic regression specification for the

adoption decision follows from the utility specification. The log likelihood for household i is li(β|Xi)

and for all households in the network is l(β|X)

l(β|X) =
N∑
i=1

li(β|Xi) =
N∑
i=1

logP (yi = 1|Xi) =
N∑
i=1

log

[
exp(βXi)

1+ exp(βXi)

]
(EC.1)

(EC.2)

The adoption process is estimated by maximum likelihood estimation.

WOM Process

Given adoption parameters β, the WOM process is simulated separately for each village network.

We track two states for each household: its information state and its adoption state. The infor-

mation states are uninformed (U) and informed (I), whereas the adoption states are Not-adopted

(NA) and Adopted (A). Both the Informed and Adopted states are absorbing states, during which

nodes can communicate with their neighbors.

An informed household with adoption status s ∈ {NA,A} (i.e. non-adopting or adopting) will

communicate with any of its neighbors in a single time period with probability ps(D). This is a

dynamically evolving process over time, and depends on the informed status of all households in

the network. We have formalized these details further below using additional notation. Let ps(D)

be the probability that an informed household with adoption status at the beginning of time t
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sj(t)∈ {U,NA,A} (i.e. uninformed, non-adopting or adopting) of degree D will communicate with

any of its neighbors in a single time period. Uninformed households do not communicate. During

time period t, an uninformed household i becomes informed if it receives a communication from

any of its network neighbors Ni. This event happens with probability pit = 1−Πj∈Ni
(1−psj(t)(Dj)).

The WOM process for each of the Nsim simulations begins with Step (0) and then proceeds

through Steps (1)-(3) for each time period.

(0) Each household (node) in the network is initially in an uninformed (U) information state. In

initial period t= 0, the seed nodes are chosen in each network based on the seeding strategy.

In the actual data, the seed nodes in each village were chosen based on the opinion leadership

criterion. In the counterfactual scenarios, seed nodes are chosen based on an alternative strategy

(random, local friend etc.). In all cases, the information state of the seed nodes changes from

Uninformed (U) −→ Informed (I).

The following process (1) – (3) process then takes place in each period t∈ {1,2, . . . , Tv} for village

v.12

(1) Each household that has become informed decides whether to adopt.

(2) Then, an informed household can probabilistically communicate about the microfinance prod-

uct with each of its network neighbors. The probability of such communication ps(D) may

depend on both its degreeD, i.e. the number of neighbors the informed household has, as well as

the adoption status s∈ {A,NA} of the informed household. We separate out the probabilities

pNA(D) and pA(D) as detailed in §3 of the paper.

(3) When this communication takes place, each neighbor receiving information changes its infor-

mation state from Uninformed (U) −→ Informed (I). If the neighbor node has already been

informed earlier, there is no change in its state.

For each simulation and for each village v, we compute 6 cross-sectional moments according to

Table EC.2 at the end of Tv periods of simulation, and 3 time series moments. Thus, for the 43

villages with microfinance adoption, we have Nmoments = 9×43 = 301 moments across the villages.

We then minimize the MSM objective function S(θ) detailed in equation (7) from §3 in the [0,1]K

region to obtain the probability parameter estimates presented in Table 6 in §4 of the paper. For

the MSM objective, we start with the initial weight matrix set to the identity matrix to obtain

consistent estimates. Since we obtain standard errors through bootstrap, a consistent estimator is

all that is needed.

12 The number of time periods varies across villages in the data, with a mean of 6.5 and SD of 1.83.
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Standard Errors with Bootstrap Estimation

We obtain standard errors for the communication probability parameters using a bootstrap proce-

dure detailed below. First, we obtain NR = 2,000 draws using a random grid for the communication

probability vector θ = (qNA
0 , qNA

1 , qA0 , q
A
1 ) ∈ [0,1]

4
. The parameter is characterized appropriately

based on the model specification.

We proceed through Steps (a) – (c) below for each of the Nsim draws to obtain moments for

each village v.

(a): We choose seeds corresponding to the Leader strategy used in the data.

(b): We compute the simulated WOM Process detailed above for Tv periods for each draw of the

parameter vector θ.

(c): We use the cross-section and time series adoption status data to compute the moments detailed

in Table EC.2 separately for each village.

Compute B = 10,000 bootstrap estimates using the moments obtained from the samples above.

For b= 1,2, . . . ,B do Steps (d) – (f) below.

(d): Resample with replacement from moments from the set of villages showing microfinance activ-

ity.

(e): Compute the objective function with the resampled moments at each of the NR points evalu-

ated above.

(f): Choose the parameter vector with the minimum objective as the estimate β(b) to be used in

the bootstrap.

The distribution of β(b), with b= 1,2, . . . ,B provides the bootstrap estimate distribution for com-

puting standard errors.

Moment Conditions for Estimation

In this section, we describe the rationales for the moments listed in Table EC.2 that we use in our

estimation. The required mathematical notation is defined in §EC.1.

In general, all moments are informative in the estimation of all parameters. However, the con-

nections between some moments and parameters are more intuitive. The time series moments,

and more generally the temporal trajectory are especially important for identification when there

are differential effects for leaders. We describe the moments and the obvious associated links with

parameters below.

First, we detail the cross-sectional moments MC1 to MC6. (MC1) is the proportion of seeds

that have adopted. Since the seeds are guaranteed to be informed outside the WOM process,

this allows us to estimate the parameters impacting adoption probability without relying on the

communication process. In contrast, (MC2) is the proportion of households with no adopting
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Table EC.2 List of Moments.

Symbol Description Definition

MC1 Proportion of seeds adopting
|S ∩A|
|S|

MC2 Proportion of households with no adopting neighbors who
have adopted

∑
i∈A I [Ni ∩A= ϕ]∑
i∈V I [Ni ∩A= ϕ]

MC3 Proportion of neighbors of adopting seeds who have adopted

⋃
j∈S∩A |Nj ∩A|⋃

j∈S∩A |Nj|

MC4 Proportion of neighbors of non-adopting seeds who have
adopted

⋃
j∈S∩V\A |Nj ∩A|⋃

j∈S∩V\A |Nj|
MC5 Covariance between a household’s adoption and average

adoption of their first degree neighbors
cov (y, z(1))

MC6 Covariance between a household’s adoption and average
adoption of their second degree neighbors

cov (y, z(2))

MTτ Cumulative adoption upto time τ (Time series moment) yτ =
1
N

∑N

j=1 yjτ

neighbors who adopt, which allows us to match a non-adopter’s communication likelihood, because

such an adopting household could only have received information from neighbors, all of whom are

non-adopters.

(MC3) is the proportion of neighbors of adopting seeds who have adopted. This moment most

closely connects to the WOM probability of adopters, since the neighbors of seeds have a high

probability of receiving information from the seeds. With (MC4), the proportion of nodes that are

neighbors of non-adopting seeds who adopt. The focus here is primarily on parameters qNA
0 and

qNA
1 . With low probability, it becomes less likely that neighbors of non-adopting seeds would adopt

(all else being equal).

(MC5) and (MC6) captures the relationship between adoption by a focal household and its first

and second degree neighbors. This is particularly important in networks where there is a significant

region (or sub-network) that is uninformed. In such regions of the network, both a focal node and

its neighbors will have zero adoption, which results in a perfect correlation. Observe that in such

a case, (MC2) and (MC4) are not informative since the moment will have values exactly zero for

such sub-networks. Thus (MC5) and (MC6) can also be viewed as characterizing the limits of the

WOM process.

Overall, we need to have moments that match global network-level measures, e.g. (MC1) that

focuses on overall adoption. It is also critically important to incorporate moments that match local

network structure, allowing these connections to have a strong impact on the adoption process,

which is what distinguishes the network approach from the Bass model.

The time series moments (MTτ) matches the cumulative overall adoption in each time period

τ period within each village. This is the typical data used in estimation of aggregate Bass-like
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diffusion models. These moments helps us to estimate the time-path of the diffusion process. In

each period of the model, based on the network structure and the diffusion of the information

process, we have different number of households which potentially become informed and therefore

have the opportunity to make adoption choices.

We detail the sensitivity of parameter estimates to moments using the methodology of Andrews

et al. (2017) in §EC.5.6.

EC.3.1. Model Fit

Additional Model Fit Metrics We next evaluate the fit of these models below using 3 addi-

tional measures. The metrics used for fit are detailed below:

1. First, we regress the actual adoption rate during each time period in the data (as dependent

variable) against the simulated adoption rate obtained from the model, similar to what Baner-

jee et al. (2013) present in Table 2 of their paper. The intercept terms are found to be not

significant, and the coefficient of interest across all models indicate that the model is able to

capture and characterize the essential dynamics of the process. If the coefficient of simulated

adoption is close to 1, that would indicate a good fit.

2. Next, we examine typical fit measure like RMSE (root mean squared error) and MAPE

(Mean Absolute Percent / Proportion Error). Lower values of these measures indicate better

fit.

We find that the model fit is consistent with the original paper for in-sample fit (see Table 2

of Banerjee et al. (2013)). We then examine out of sample fit by estimating our preferred models

using 85% of the villages, and holding the remaining 15% of the sample as holdout. We find that

the out of sample fit is not significantly worse than in sample fit, indicating the models do not

suffer from an obvious overfitting problem. Banerjee et al. (2013) do not provide out of sample fit

in their paper.

Table EC.3 provides the in-sample and out-of-sample fit for our preferred models. We note that

the coefficients on simulated adoption for both in-sample and out-of-sample are between 0.87 and

0.89. The RMSE and MAPE measures are similar for both of our chosen models, and it is useful to

verify that the out-of-sample fit is not much worse than in-sample fit. If out-of-sample were indeed

much worse, then we should be concerned about the model overfitting the data.

EC.4. Counterfactuals

We detail first the implementation of each of the strategies, and then performance of the strategies

under different models and at different seeding levels.

EC.4.1. Seeding Strategy Implementation

Table EC.4 provides specific implementation details for each of the seeding strategies we consider.
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Table EC.3 Main Models: In Sample and Out of Sample Model Fit Measures

In Sample Fit Out of Sample Fit
ME=1

2 ME=0
2 ME=1

2 ME=0
2

Intercept 0.002 0.000 -0.002 -0.001
(0.02) (0.02) (0.02) (0.02)

Simulated Adoption 0.874 0.89 0.875 0.87
(0.097) (0.098) (0.096) (0.1)

RMSE 0.067 0.067 0.069 0.069
MAPE (×100%) 0.379 0.372 0.395 0.406

Table EC.4 Seeding Strategies and Implementation

Category Strategy Implementation Procedure (for
each of m seeds)

Information Required

Random Random Select node at random from list as
seed.

Randomly sampled subset of
list of individuals (or Com-
plete List)

Friend Local Friend Select node at random from list.
Obtain one randomly chosen friend
of node as a seed.

Randomly sampled subset of
list of individuals + Obtain
random friend

Leader (Firm’s) Leader Select node from list of leaders indi-
cated by firm

List of Leaders (where leader-
ship is specific to domain)

Like Leader Select leader node ℓ at random.
Select the non-leader node most
similar to ℓ in terms of network
properties‡.

List of leaders + Entire Social
Network (Adjacency Matrix
E)

Hybrid Friend of Leader
(Weak Hybrid)

Select a random leader from list of
leaders. Obtain one randomly cho-
sen friend of this leader as a seed.

List of leaders + Obtain ran-
dom friend

Leader Friend of
Leader
(Strong Hybrid)

Select a random leader from list of
leaders. Obtain one randomly cho-
sen friend who is also a leader to be
seed.

List of leaders + List of
leader friends of each leader

Network
Information
Strategies

Top Degree Select a node randomly from list of
top degree nodes (We specify this as
the top 15% most highly connected
nodes.

Degree of each node in the
network.

Top Diffusion Select a node randomly from list of
top diffusion centrality nodes. Diffu-
sion Centrality is defined as DC =
[
∑τ

t=1 q
tEt] · 1 where E is the adja-

cency matrix and 1 is the column
vector of 1s. As suggested in Baner-

jee et al. (2013), we set q=
1

λ1

where

λ1 is the greatest eigenvalue of the
adjacency matrix.

Full Adjacency matrix E
(who is connected to whom)
and the number of periods for
diffusion τ .

‡ : Similarity between nodes in network position could be implemented using the following centrality
metrics (among others): degree, eigenvector, Bonancich power centrality
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EC.4.2. Comparison of Strategies

Figure EC.2, shows the performance of the strategies pairwise, where performance is measured by

the proportion of informed households in each counterfactual strategy evaluation.
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Figure EC.2 Comparison of Strategies across Villages (1% of Households Seeded).
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(b) Local versus Other Strategies
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(c) Friend of Leader versus Other Strategies
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(d) Leader Friend of Leader versus Other Strategies
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Note: Each data point (square) is a village network in all panels. The size of the shape is proportional

to the size of the village (number of households). Darker colors indicate overlap between villages.

Next, we examine the consistency of relative performance of the various seeding strategies across

villages. Figure EC.2 provides an overall comparison of the 4 strategies with the informed levels of

Leader, local friend and hybridstrategies plotted against one another. We find that both local friend
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and friend of leader consistently perform better on informing relative to random as all villages

fall above the diagonal. In contrast, although Leader is better than random for most villages, it is

worse for some villages, as shown by the points that fall above the diagonal in the top-left panel.

Moreover, the villages where the Leader strategy performs especially well are smaller (fewer

households). In terms of the hybrid strategies, we find that the weak hybrid friend of leader strategy

mostly outperforms Leader, but it does not do better than local friend overall. The strong hybrid

leader friend of leader actually performs worse than the local friend and weak hybrid strategy. In

many villages, it performs worse than the Leader strategy as well.

EC.4.3. Leverage Under Different Models

We examine how the number of seeds impacts the performance of different seeding strategies in

the counterfactual across the full set of model specifications. We examine seeding at the level of

0.5%, 1%, and 5% to understand how the level of seeding affects relative benefits of our friendship

paradox strategies. The results for different seeding levels are detailed in Table EC.5.

A few observations are relevant here:

(a) The (firm’s) leader strategy typically (but not always) outperforms the random node strategy

for any combination of model / (#seeds)

(b) The friendship paradox based Local strategy achieves higher performance (leverage) than the

firm’s leader strategy under all of the model specifications.

(c) The weak hybrid friend of leader seeding strategy achieves better performance than Local strat-

egy in most model specifications. However, the strong hybrid leader friend of leader strategy

seems to consistently underperform the (firm’s) leader strategy.

(d) The “Like Leader” strategy performs very similar to Firm’s leader (within 2-3% of the leverage

metric).

(e) Leverage for all counterfactual strategies decreases as the number of seeds increases.
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Table EC.5 Leverage for Counterfacual Strategies

(a) Seeding at 5% of number of nodes

ME=0
1 ME=0

2 ME=0
3 ME=0

4 ME=1
1 ME=1

2 ME=1
3 ME=1

4 ME=0
B ME=1

B

Local Friend 1.01 1.01 1.16 1.15 1.13 1.13 1.02 1.15 1.06 1.05

(Firm’s) Leader 1.01 1.01 1.10 1.10 1.09 1.09 1.01 1.10 1.04 1.03

Like Leader 1.00 1.00 1.10 1.10 1.08 1.08 1.01 1.10 1.03 1.03

Friend of Leader 1.01 1.01 1.20 1.19 1.16 1.16 1.02 1.19 1.07 1.05

Leader Friend of Leader 1.01 1.01 1.10 1.09 1.07 1.07 1.01 1.09 1.04 1.03

Top Degree 1.01 1.01 1.34 1.33 1.27 1.27 1.02 1.32 1.10 1.08

Top Diffusion 1.01 1.01 1.32 1.30 1.26 1.26 1.02 1.31 1.09 1.07

(b) Seeding at 1% of number of nodes

ME=0
1 ME=0

2 ME=0
3 ME=0

4 ME=1
1 ME=1

2 ME=1
3 ME=1

4 ME=0
B ME=1

B

Local Friend 1.05 1.06 1.33 1.33 1.31 1.31 1.10 1.31 1.24 1.22

(Firm’s) Leader 1.04 1.05 1.20 1.19 1.19 1.18 1.07 1.18 1.18 1.16

Like Leader 1.03 1.04 1.12 1.11 1.13 1.13 1.06 1.10 1.13 1.13

Friend of Leader 1.05 1.07 1.31 1.31 1.31 1.30 1.11 1.31 1.26 1.24

Leader Friend of Leader 1.04 1.05 1.25 1.24 1.22 1.22 1.07 1.23 1.19 1.17

Top Degree 1.08 1.11 1.71 1.68 1.63 1.62 1.17 1.66 1.49 1.44

Top Diffusion 1.08 1.10 1.70 1.67 1.64 1.62 1.17 1.66 1.48 1.43

(c) Seeding at 0.5% of number of nodes

ME=0
1 ME=0

2 ME=0
3 ME=0

4 ME=1
1 ME=1

2 ME=1
3 ME=1

4 ME=0
B ME=1

B

Local Friend 1.12 1.14 1.35 1.32 1.34 1.32 1.18 1.33 1.31 1.30

(Firm’s) Leader 1.08 1.09 1.20 1.18 1.20 1.19 1.11 1.20 1.19 1.18

Like Leader 1.07 1.08 1.23 1.20 1.23 1.19 1.10 1.24 1.17 1.17

Friend of Leader 1.13 1.15 1.39 1.36 1.38 1.35 1.18 1.40 1.30 1.29

Leader Friend of Leader 1.08 1.09 1.25 1.22 1.24 1.21 1.11 1.24 1.22 1.22

Top Degree 1.20 1.24 1.80 1.75 1.73 1.71 1.32 1.77 1.65 1.61

Top Diffusion 1.20 1.24 1.77 1.71 1.73 1.68 1.32 1.76 1.66 1.62

EC.5. Alternative Models and Robustness Checks

We consider different models of WOM communication and seeding to assess if our key claims

are sensitive to model specification. Here we consider three models of WOM communication. In

§EC.5.1, as a basic benchmark, we consider a single source—advertising type, non-network model

where information is not transmitted through the social network, but all households receive infor-

mation from a central single source (perhaps the firm). Assessing the relative fit of this model with

respect to our preferred network based communication model can clarify the importance of mod-

eling information transmission through social networks before even assessing the role of seeding
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strategies.13 In §EC.5.2, we consider a broadcast model where in the first period seeds conduct a

village-wide meeting in which information about the microfinance program can be broadcast to all

those who attend. This model is motivated by a meeting process that the firm encouraged the seeds

to conduct and is described in Banerjee et al. (2013). In §EC.5.4, we consider a process where lead-

ers have a certification impact—their adoption or support may increase persuasion even outside of

their networks. This model goes beyond the WOM effects of leaders in allowing differential impact

based on source of certification. Finally, in §EC.5.3 we also consider a seeding process where not

just the firm chosen seeds are leaders but a random sample from certain select occupations that

are considered as leaders. In this process, leaders are present both among seeds and non-seeds, but

all seeds are randomly chosen members of these occupations.

In the text of the paper, we had used the best fitting model of adoption (Table 5). In §EC.5.5,

we report the alternative models of adoption we considered and their relative fit with respect to

the chosen model. Finally, we report parameter sensitivity to the different moments used in the

estimation §EC.5.6.

EC.5.1. Single Source Model

We consider a single source—advertising type, non-network model here as a null benchmark model.

In this model, information is not transmitted through the social network, but all households receive

information from a central single source (perhaps the firm). In each period, the source transmits

information to each household with probability θ—could be thought of as a household seeing an

ad. Informed households then have a chance to adopt. The adoption model is identical to the main

model in the paper. Informed households do not communicate any information to other household

in this single source model.

Observe that this model is parametrized by only one parameter θ. The estimated value θ on an

average set of villages is θ̂ = 0.46. Using this model, we evaluate the in-sample and out of sample

fit (using 15-20% of the villages as a hold out sample). Similar to Banerjee et al. (2013), we regress

the real adoption data on the simulated adoption trajectory derived from the model.

There are a few observations:

1. The coefficient of simulated adoption share based on the estimated null model are not statis-

tically significant for either the in sample or out of sample adoption share regressions. Thus,

this model does not have any predictive powerin explaining true adoption.

The finding above is not surprising, since a null model must lead to a concave cumulative adoption

curve over time (since there are fewer households that have not been informed over time), whereas

13 We thank a reviewer for suggesting this benchmark
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Table EC.6 Null Single Source Model: Fit Measures

Dependent variable:

In Sample Villages Out of Sample Villages
Adoption Share Adoption Share

Constant 0.060 0.017
(0.064) (0.197)

Simulated Adoption share 0.847 1.143
(0.544) (1.669)

RMSE 0.112 0.076
MAPE (×100%) 0.38 0.30
R2 0.047 0.055

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

a network based model is more consistent with the S-shaped curve for cumulative adoption, similar

to the classic model of Bass (1969).

Overall, the empirical evidence of Table EC.6 does not support the single source non-network

model, since this model does not capture the primary data patterns of adoption across the village

networks.

EC.5.2. Broadcast during Initial Period

Our model proposed that information about microfinance propagates through word of mouth over

the social network. We consider a benchmark (null) model where the information is broadcast to

households initially in period 0 at a meeting, where the attendance at the meeting is probabilistic.

In such a model, information flows directly from a common source to any of the households in the

network (subject to their attendance at the meeting), and the structure of the social network is

not relevant for this initial communication. After this initial broadcast, regular WOM communi-

cation occurs through the social network in subsequent periods. As in our main models, informed

households have the opportunity to make an adoption decision, whereas non-informed households

cannot do so.

We explain why modeling the initial broadcast mechanism would only strengthen our qualitative

conclusions about the relative superiority of local friend seeding. In a model with the broadcast

mechanism, we should attribute some part of the adoption in early periods to that meeting rather

than organic household-to-household word of mouth. This implies that the word-of-mouth driven

trajectory would be even lower in earlier periods, which further implies that the leader fixed effect

would be more negative. Taking this logic to the counterfactuals where non-leaders are chosen as

seeds, we would therefore see a further increase in relative performance of the local friend seeding

strategy and other non-leader strategies when compared to the leader strategy that generates the

data.
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We now demonstrate this argument by estimating the model that allows for such an initial

broadcast and performing the counterfactual. To reiterate, we restate the modeling assumptions.

• In period 0, the leaders invite members of the village to an initial meeting where they explain

the microfinance product. For each household, the probability of attending the initial meeting is

γ. We refer to this as the initial broadcast effect.

• In addition to the above, regular word of mouth communication happens through the social

network, as we have specified in the main model.

• We consider the case when there are separate leader fixed effects, and the case where this

effect is absent.

There are a few points to consider here. First, there is the question of separate identification

of an initial broadcast effect from the leader fixed effect. Here, the separation is possible because

the broadcast is a one-time initial event, whereas the impact of the leader fixed effect continues

beyond the initial period. Thus, if we have 3 or more periods, we can identify both effects. Next, a

higher level of leader fixed effect (qℓ) will lead to more friends of leaders being informed (relative

to non-friends), and leads to higher adoption among friends of leaders. In contrast a higher value

of initial broadcast effect γ informs households who are not friends of leaders, leading to higher

adoption among that group.

Second, if the probability of attending the initial meeting is very high, γ ≈ 1, then there is little

role for the network in communication. The model is then similar to the single source null model

of §EC.5.1. More generally, the higher the broadcast effect, the less important are the structure of

network connections. Third, in the counterfactual where we choose non-leaders as seeds, we might

expect this initial broadcast to be less likely or absent. When leaders have a unique ability to do

bring about such a broadcast that non-leaders do not possess, then in the counterfactual, we would

set the broadcast parameter γ = 0. Of course, this assumption stacks the deck against any of our

proposed strategies, but we include it to show that our strategies still perform better than the

leader strategy.

Table EC.7 details the parameter estimates from the initial broadcast model. We find that the

results are qualitatively very similar to that of our main model, and quantitatively the relative

magnitudes and ordering between the parameters are also the same. For instance, non-adopters

communicate less than adopters, and degree is negatively correlated to probability of communi-

cating with a network neighbor. In the model with Leader fixed effects, the leader fixed effect is

negative but not significant. We also find the initial broadcast effect, which represents the proba-

bility that each household attended the initial meeting to be γ = 0.013 or γ = 0.079 depending on

whether the model includes leader fixed effects or not.
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Table EC.7 Initial Broadcast Model Estimates

Model Specification: Estimates (Standard Errors)
Parameter Symbol ML=0

5 (No Leader FE) ML=1
5 (with Leader

FE)

Non-adopter lowest degree qNA
min 0.103 0.073

(0.062) (0.062)
Non-adopter highest degree qNA

max 0.063 0.071
(0.087) (0.089)

Adopter lowest degree qAmin 0.401 0.392
(0.034) (0.090)

Adopter highest degree qAmax 0.314 0.259
(0.100) (0.129)

Leader Effect qℓ – -0.001
– (0.080)

Initial Broadcast Effect γ 0.013 0.079
(0.030) (0.030)

Table EC.8 Leverage with Initial Broadcast Model

No Leader FE With Leader FE
Strategy Seeding at: 0.50% 1.00% 5.00% 0.50% 1.00% 5.00%

Local Friend 1.31 1.21 1.10 1.31 1.21 1.10
(Firm’s) Leader 1.20 1.15 1.06 1.20 1.15 1.06
Like Leader 1.18 1.13 1.06 1.18 1.13 1.06

Hybrid Strategies:
Friend of Leader 1.32 1.22 1.10 1.32 1.22 1.10
Leader Friend of Leader 1.21 1.14 1.07 1.21 1.14 1.07

Table EC.8 reports how the counterfactual strategies perform relative to random seeding using

the estimates from the Initial broadcast model. The ratio (leverage) of 1 indicates that the strategy

performs just as well as random.

Further, we observe that:

• Leverage reduces as the seeding proportion increases, similar to the main model.

• At all seeding proportions (0.5%,1%,5%), the results show that incorporating the initial broad-

cast effect does not change the relative performance of the random, Local and Leader seeding

strategies, and this holds with or without leader fixed effects.

EC.5.3. Leader Based on Occupation

In our main model, we made the assumption that the set of households with leader fixed effects

is the same as the seed set, as all of the seeds were considered leaders in their villages. But as

per Banerjee et al. (2013), the microfinance firm chose its seeds based on whether they were in

certain “leader” occupations (e.g., teachers, shopkeepers, business owners etc). However, not all

households with those occupational characteristics were chosen as seeds.
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It may then be reasonable to consider a specification where the seeds are assumed to be randomly

sampled from those working these selected occupations. In this case, the leader fixed effect should

be associated with all members belonging to these occupations, whether they were used as seeds or

not.

We estimate such a model and obtain parameter estimates θ = (qNA
min, q

NA
max, q

A
min, q

A
max, ql) =

(0.074,0.056,0.424,0.344,−0.016). We then run counterfactuals under different seeding strategies

as before.

The counterfactual results presented in Table EC.9 show that the results are quantitatively

similar and qualitatively identical. The results for all the strategies differ from the main results of

Table 10 because the parameter estimates used above are different.

Table EC.9 Leverage for Counterfactual Strategies

Seeding Level 0.5% 1% 5%
Strategy

Leader by Occupation 1.17 1.13 1.03
Local Friend 1.27 1.19 1.05

Friend of Leader 1.27 1.24 1.05
Leader Friend of Leader 1.16 1.15 1.04

Like Leader 1.16 1.11 1.04
Top Degree 1.53 1.40 1.08

Top Diffusion 1.53 1.37 1.07

EC.5.4. Leader Certification Effect

One concern is if the leader seeds chosen by the firm had an additional certification effect beyond

their differential WOM communication that we have already modeled as the leder fixed effect.

The original study seeded information with leaders who were pre-defined. Thus, there might be

a question of whether such an effect may be present in the counterfactual, where seeding is not

focused on leaders. Such a “leader certification effect” effect posits that households might be more

likely to adopt if they hear through word of mouth that a leader has certified or endorsed the product.

We detail two arguments below to demonstrate that this concern is unlikely to hold in the coun-

terfactual. First, for this concern to be valid, none of the seeds recommended by the counterfactual

strategy should overlap with the “leader characteristics” of seeds chosen in the original study. To

the extent, those choices were made based on certain occupations and other characteristics, this is

unlikely that our seeding strategies did not have overlap with the chosen occupations.

Second, we quantify the overlap in leaders (which are originally chosen by the firm) across the

strategies, and demonstrate that such leaders are chosen even in the counterfactuals, although

more under some strategies than others.
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Figure EC.3 Seeding Overlap (1% seeding)

We detail the degree of overlap with a density plot in Figure EC.3 that details the probability that

any given leader household will be chosen under each of the counterfactual strategies.14 We focus

on seeding at 1%, the results are qualitatively similar at other levels. There are a few noteworthy

observations here. First, we do expect that almost all leader households have a higher probability

of being chosen as seeds under the Leader strategy, since the seeding is limited to leader households

here. Second, as expected, the random strategy (in gray) has the lowest probabilities of these

leader households being selected. Third, observe that leader households have a non-zero probability

of being chosen under each of the counterfactual strategies, notably the local friend strategy.

Finally, each of the other (non-random) counterfactual strategies have a higher probability of leader

households being selected compared to the random strategy. More specifically, observe that the

comparison of interest is the difference between the Leader strategy (in green) and the local friend

strategy (in red).

Overall, we believe that above result indicates that our counterfactual outcomes are unlikely to

be biased due to the potential for some unobserved leader certification ability in the chosen seeds.

14 The main strategies (random, local friend and Leader) are in solid lines, whereas the hybrid strategies are in dashed
lines and the network information strategies are dotted line format.
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EC.5.5. Generalizing the Adoption Model

The adoption model in the main paper was chosen based on model fit across models that incor-

porated household data, as well as network characteristics of households derived from the social

network within each village. We detail the results in Table EC.10. The results suggest that the

household characteristics including number of rooms and beds and indicator for electricity are

informative for adoption, and produce a better model fit, as measured by the Akaike Information

Criterion (AIC). The AIC is a well regarded measure of fit that is commonly used since it balances

model complexity with a likelihood based model fit, unlike measures like likelihood and Pseudo R2.

Specifically, as we add more predictors (electricity and latrine) in moving from model (1) to

model (2), the fit as measured by AIC increases. Similarly in adding Rooms and Beds per capita

to obtain model (3), the fit improves. However, we find that the household’s home ownership and

roof type are not significant predictors of microfinance adoption and the models (4) and (5) that

include these variables are worse in terms of AIC than model (3).

A few observations are relevant here. First, we note that pseudo-R2 values are not comparable

to R2 values for linear models, and are typically much lower, as noted by Guadagni and Little

(1983). Second, the adoption model is estimated using data from seeded leader household. The

microfinance product is a financial one and is typically not targeted at leader households, but

other households close to the bottom of the income pyramid. Therefore, the explanatory power of

observables is typically lower for leader households. Finally, though the ability to predict whether

any particular household will adopt is low, the cumulative adoption by integrating the adoption

probabilities across all households should have less variance and therefore better fit. Many of these

diffusion paths are equivalent in terms of the overall adoption since households are more likely to

be connected to households that are similar to them in terms of network position.
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EC.5.6. Parameter Sensitivity to Moments

We have explored a wide variety of alternative model specifications and assumption for both the

adoption and word of mouth communication processes. However, an interested reader might be

interested in testing robustness to an alternative they have in mind that might be quite different.

This issue is explored in detail by Andrews et al. (2017), who provide a unified framework to help

make structural (and other) models more transparent so that readers can easily evaluate sensitivity

to assumptions. They recommend providing a sensitivity matrix (Λ) that allows us to evaluate how

violations of specific moment conditions can change the model parameter estimates.

One might view the approach of Andrews et al. (2017) as complementary to specifying different

models to demonstrate robustness, which we have also done. Their point is that since it is impossible

to test all potential alternative models, providing the sensitivity matrix allows any interested reader

to determine how each of the data moments contribute to parameter estimates. Following Andrews

et al. (2017), we report the sensitivity matrix Λ in Table EC.11.

Similar to the applications presented in Andrews et al. (2017), we scale the values so that the

sensitivity values correspond to a 1% change in each moment condition. These results can be

helpful in evaluating the sensitivity of each parameter on each of the moment conditions used in

estimation.

First, observe that we use simulated method of moments (SMM), which is a (simulated) version

of Generalized Method of Moments (GMM) to obtain the parameter estimates. This allows for the

form of the sensitivity matrix

Λ=−(G′WG)−1G′W

where G is the Jacobian corresponding to the moment conditions g(θ) andW is the weighing matrix

used in the GMM estimation. The main result of Andrews et al. (2017) is that the asymptotic bias

of local violations of the moment conditions is then given as

E(θ̃) = ΛE(g)

so that knowing Λ allows us to determine how violations of the moment conditions g translate into

differences in parameter estimates.

The sensitivity matrix corresponding to the baseline model with the leader fixed effect are

detailed in Table EC.11. For each parameter, the table shows the sensitivity of parameter estimates

to violations of the moment conditions. We have 9 moments that are each present across all the

villages in the data, and in the model the moments are generated from the parameter values.

Overall, there are 6 cross sectional moments, and 3 time series moments (period 1, period 2 and

period 3).
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Table EC.11 Plug-in Sensitivity Λ for Model with Leader FE Effect

Cross Sectional Time Series
Moment # → M1 M2 M3 M4 M5 M6 M7 M8 M9

qNA
min 0.009 0.016 0.004 0.004 0.005 0.003 0.001 0.022 0.011
qAmin 0.003 0.005 0.001 0.001 0.002 0.002 0.000 0.006 0.003
qNA
max 0.008 0.050 0.005 0.001 0.018 0.014 0.000 0.090 0.037
qAmax 0.013 0.012 0.011 0.013 0.004 0.011 0.002 0.003 0.005

qℓ 0.001 0.006 0.001 0.005 0.001 0.002 0.000 0.003 0.002

To understand the table, consider for example the parameter qNA
max, which represents the word

of mouth communication probability for (high degree) non-adopters. First, observe that the cross-

sectional moment this parameter is most sensitive to is moment 2, which is the proportion of

households with no adopting neighbors who have adopted. Similarly we find that the parameter is

not sensitive at all to moment 7, which is the initial adoption. This is consistent because households

adopting in the first period are unlikely to be hearing about it from non-adopters. In the earliest

period, only the seeds have a chance to adopt, and the seeds are directly informed by the firm, so

word of mouth among non-adopters is unlikely to play a role. In contrast, the adoption in periods 2

and later are relevant to the parameter, especially in contrast to the initial period. If initial period

adoption is low (consider the extreme case of zero adoption in the initial period), then adoption in

later periods must be driven by word of communication, which then informs both parameters qNA
min

and qNA
max.

Similarly, we find that for the leader fixed effect, moment 2 and moment 4 are most important.

The time series moment 7 (adoption in period T=1) does not contribute any information

about the leader fixed effect. This is consistent with our intuition since the leader fixed effect is

communication by the leaders to their friends, and thus, the level of period 1 adoption will not be

informative of how much communication has occurred through the network by leaders. In contrast,

period 2 adoption (moment 8) is important since we would find a greater jump in the early adoption

trajectory when the leader fixed effect is greater.

Overall, this method provides transparency in illustrating what variation in the moments is

driving the parameter estimates of the model.


