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Abstract. This paper develops a theory-based, explainable deep learning convolutional 
neural network (CNN) classifier to predict the time-varying emotional response to music. 
We design novel CNN filters that leverage the frequency harmonics structure from acous-
tic physics known to impact the perception of musical features. Our theory-based model is 
more parsimonious, but it provides comparable predictive performance with atheoretical 
deep learning models while performing better than models using handcrafted features. 
Our model can be complemented with handcrafted features, but the performance improve-
ment is marginal. Importantly, the harmonics-based structure placed on the CNN filters 
provides better explainability for how the model predicts emotional response (valence and 
arousal) because emotion is closely related to consonance—a perceptual feature defined by 
the alignment of harmonics. Finally, we illustrate the utility of our model with an applica-
tion involving digital advertising. Motivated by YouTube’s midroll ads, we conduct a labo-
ratory experiment in which we exogenously insert ads at different times within videos. We 
find that ads placed in emotionally similar contexts increase ad engagement (lower skip 
rates and higher brand recall rates). Ad insertion based on emotional similarity metrics pre-
dicted by our theory-based, explainable model produces comparable or better engagement 
relative to atheoretical models.

History: Tat Chan served as the senior editor. 
Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mksc. 

2022.0323. 
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1. Introduction
Music is widely regarded as among the most effective 
and efficient of channels to influence emotion; it is often 
called the language of emotion (Corrigall and Schellenberg 
2013). As emotions play a central role in many elements 
of marketing and consumer behavior, marketers rou-
tinely use music to evoke emotion along the customer 
journey, from need recognition to purchase, in advertis-
ing, content marketing, and stores (Gorn 1982, Krishna 
2012). In particular, music is almost universally used in 
advertising, and advertisers spend considerable effort 
crafting it to elicit desired emotions and consequent 
marketing outcomes.1 As such, a tool that maps music 
(or an ad with music) to its evoked emotion can be valu-
able to marketers. For example, marketers can use such 
a method to automate emotion-based contextual match-
ing of ads and content at scale to increase ad engage-
ment. On music and video platforms, it can be valuable 
in automating creation of mood-based playlists and 

“next song” recommendations for users from their large 
collections.2

In this paper, we develop a theory-based, explain-
able deep learning convolutional neural network 
(CNN) classifier that takes music audio as input and 
predicts the sequence of emotions it evokes in a lis-
tener. We characterize emotion using the well- 
established valence-arousal framework developed by 
Russell (1980). Valence measures how positive or nega-
tive a listener feels, and higher valence maps to more 
positive feeling. Arousal measures how energetic a lis-
tener feels, and higher arousal maps to greater excite-
ment and energy.3

Existing music emotion classifiers can be grouped 
into two types based on explainability and accuracy, 
and there is often a trade-off between these. Classifiers 
using handcrafted features and traditional machine 
learning methods are typically more explainable but 
often less accurate, whereas classifiers using data- 
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driven variables and “atheoretical” deep learning meth-
ods are typically less explainable but more accurate. By 
incorporating theory into the model design, our deep 
learning model seeks to be both accurate and 
explainable.

We highlight and explain the two key distinguishing 
features in the modeling contribution. First and most 
important, we incorporate music theory based on har-
monics in the model. When a musical note is generated, 
its pitch is characterized by its fundamental frequency 
(i.e., lowest frequency), and harmonics refer to the 
whole number multiples of the fundamental frequency. 
We design harmonics filters to capture theoretically 
known musical features that link to emotion.4 Such filter 
construction is challenging because current CNN imple-
mentations for music are based on adaptations of mod-
els developed for computer vision where spatial 
contiguity is meaningful. In music, however, many 
important features are dependent on elements that are 
noncontiguous, implying that filters inspired by vision 
are inadequate and/or inefficient for music. Harmonics, 
in particular, are by definition based on noncontiguous 
frequencies and underlie several musical features, like 
consonance, timbre, and pitch, which have well- 
established empirical links to emotional response.5 We, 
therefore, incorporate structure into the CNN filters 
based on the role of harmonics, which also helps to cre-
ate a more parsimonious model without reducing accu-
racy, relative to benchmark atheoretical models.

Second, our theory-based filters are more explainable 
relative to atheoretical deep learning models because 
the filters are designed to characterize features that are 
well known to impact emotion. To aid explainability, 
we visualize the link between emotion and the features 
learned by the theory-based filters. For this, we adapt 
recent advances in the visualization of deep learning 
models for computer vision (i.e., gradient-weighted 
class activation mapping (Grad-CAM)). The focus on 
explainability allows us to go beyond model prediction, 
giving researchers and practitioners confidence that the 
model is learning a feature of the music (i.e., conso-
nance) that can generalize outside of the training data 
rather than picking up spurious correlations. Explain-
ability helps build trust in the model, which facilitates 
adoption at scale.6

Finally, we illustrate the practical value of our model 
in an application motivated by YouTube’s midroll video 
ads. YouTube serves tens of millions of content videos 
each day; an ad can be placed in a number of different 
ad breaks within each content video. Given the scale, 
identifying the optimal ad breaks in the videos for ad 
insertion requires automation. First, we examine 
whether matching the ad’s emotion with the emotion of 
the content at the ad insertion point improves or hurts 
ad effectiveness. To test this, we conduct a laboratory 
experiment in which we insert ads at points in videos 

that differ in emotional similarity between the ads and 
content videos. We find that greater emotional similar-
ity helps by decreasing ad skip and increasing brand 
recall. We then input the audio of the ads and content 
videos into our model to predict emotion and use the 
predicted emotion to determine the most emotionally 
similar ad insertion point for each ad within each con-
tent video.7 The engagement outcomes based on ad 
insertion using our theory-driven model are compara-
ble with those from ad insertion using atheoretical mod-
els, but unlike the atheoretical models, our model is 
more explainable.

We provide an overview of the elements of our model 
to help build intuition for the critical challenges in con-
structing a CNN model for predicting music emotion 
that is both theory based and explainable. Our methodo-
logical approach uses the raw sound wave of a music 
clip rather than predefined handcrafted features as the 
starting input. We transform the sound wave into a mel 
spectrogram, which reflects human hearing and is the 
input into the CNN. The mel spectrogram visualizes 
which frequencies are present at any given time.8 This 
representation is useful because it allows us to “read” 
some of the clip’s music features, such as frequency 
range and note density. Recent research developing and 
applying CNN for music uses mel spectrograms as 
input (e.g., Pons et al. 2016, Chowdhury et al. 2019, 
Rajaram and Manchanda 2024), and we detail the ratio-
nale and implementation in Section 3.

CNNs are deep neural networks specially developed 
for image processing in which objects are contiguous 
across both x and y dimensions, which have spatial 
meaning based on physical reality. Convolution filters 
play a critical role in determining the performance of 
CNNs, and the filters designed for image processing 
take advantage of spatial contiguity to perform effec-
tively. However, spectrograms generated from music 
are not like regular images. In spectrograms, noncontig-
uous regions in the frequency space impact many char-
acteristics of music that humans perceive. For example, 
an octave (e.g., A4 (440 hertz (Hz)) and A5 (880 Hz)) pro-
duces a consonant sound, whereas a tritone (e.g., A4 
(440 Hz) and D5 (587 Hz)) produces a dissonant sound. 
Typical square CNN filters, which account for contigu-
ous areas of an image, cannot capture such concepts 
based on noncontiguous frequencies, thus highlighting 
the challenge of designing novel filters to incorporate 
music domain knowledge into deep learning models.9

We develop novel noncontiguous filters that specifi-
cally incorporate relevant harmonic frequencies into the 
CNN model. By incorporating the harmonic structure, 
the filters can more parsimoniously capture many rele-
vant characteristics of music that involve harmonics and 
their interactions. In particular, they help to identify 
consonance, which is well known to influence emo-
tional response to music.10 By leveraging ideas from 
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music theory to build the model, we set the stage for 
explainability postestimation.

To aid explainability, we adapt Grad-CAM, a tool 
that uses a heat map to visualize which areas of an 
image contribute most to the classification of the image 
into a specific class (Selvaraju et al. 2017). Consider the 
problem of classifying images of wolves and huskies. 
Suppose a CNN trained to distinguish wolves from 
huskies generates Grad-CAM heat maps that highlight 
the background of the image as the main predictor 
because wolves are commonly photographed in snow 
and huskies are commonly photographed in grass 
(Ribeiro et al. 2016). If the prediction is driven by the 
background of snow or grass, a spurious correlation, a 
new example of a husky playing in snow is more likely 
to be classified incorrectly as a wolf. With Grad-CAM 
highlighting the background, we learn that the model 
did not learn to distinguish between wolves and huskies 
based on features of the animals themselves but rather, 
the background of the image, implying that the general-
izability of the model is under question. Knowing why a 
model makes various predictions helps assess model 
generalizability.

In the context of music, relating the top-level outcome 
or label of interest (e.g., emotion) to a midlevel set of 
musical features (e.g., consonance, timbre, and rhythm) 
provides us a clearer understanding of the features 
responsible for the prediction, making the model more 
explainable.11 Although low-level features (e.g., fre-
quency and time) provide some degree of transparency, 
they do not have a clear explainable link to top-level 
labels (Fu et al. 2010). Our Grad-CAM visualizations for 
the theory-based deep learning model highlight areas of 
high and low consonance in the mel spectrograms con-
sistent with theory linking consonance and emotion. In 
contrast, heat maps for the model based on atheoretical 
square filters show a less clear pattern linking musical 
features to emotion. Broadly, this contrast shows the 
value of incorporating theory-based structure into CNN 
filter design for explainability.

Summarizing, our key contributions are as follows. 
First, we develop a theory-based, explainable deep 
learning framework that models and predicts time- 
varying emotional response. Second, our approach of 
integrating a harmonics-based structure enables model 
explainability. We show with Grad-CAM that incorpo-
rating such structure into the design of the CNN filter 
allows us to visualize the link between predicted emo-
tion and consonance. Third, the theory-based model 
produces comparable predictive performance with 
atheoretical models with much greater parsimony, 
which in turn, makes the model less complex to train, as 
well as more generalizable and robust (e.g., Gerg and 
Monga 2021, Kutz and Brunton 2022). Fourth, we show 
how additional handcrafted features can be incorpo-
rated into our deep learning framework without 

impacting explainability. Fifth, we demonstrate the 
model’s practical value with an application that exam-
ines the impact of matching the emotion of a video ad 
with the emotion of the content video.

2. Related Literature
Our paper builds upon several distinct streams of litera-
ture across fields, as detailed below.

2.1. Listener Response to Music
Music induces emotion, as shown by a wide literature 
using methods ranging from surveys to brain scans 
(Johnson-Laird and Oatley 2016). Because our focus is 
on the background music of content and ads, which typ-
ically falls under Western tonal music (Nelson et al. 
2013, Stoppe 2014), our focus in this paper is on the 
musical associations between Western tonal music and 
emotion.12 In particular, consonance and dissonance 
play a major role in creating emotion in background 
music. According to Nelson et al. (2013, p. 89), the 
manipulation of consonant and dissonant harmonies “is 
the most immediately effective way a composer can 
alter the mood of a scene.” In Western tonal music, con-
sonance is associated with positive valence and low- 
arousal emotion, whereas dissonance is associated with 
negative valence and high-arousal emotion (Gabriels-
son and Lindström 2010, Thompson and Balkwill 2010). 
Online Appendix C discusses how timbre and pitch also 
impact emotional response.

Emotional responses to music have marketing impli-
cations, and a substream of the literature focuses on the 
relationship between music features and marketing out-
comes. Bruner (1990) overviews how music elicits dif-
ferent moods, which in turn, impact ad outcomes. Yang 
et al. (2022) use low-level acoustic features to predict ad 
audio energy levels and find that energetic commercials 
are more likely to be watched for longer. Boughanmi 
and Ansari (2021) use a Bayesian nonparametric 
approach to predict album sales using multimodal data 
that include high-level audio features of music in the 
songs of the albums. Melzner and Raghubir (2023) study 
how timbre affects judgments of brand personality. 
More broadly, our research is related to the literature on 
sensory marketing as music impacts consumers through 
the auditory sense (Krishna 2012).

2.2. Machine Learning with Unstructured 
Audio Data

Although audio includes both speech and music, our 
focus in this paper is on music. Traditional machine 
learning methods, like support vector machine, previ-
ously produced good classification performance in 
many settings by using handcrafted features, such as 
mel frequency cepstral coefficients. However, the per-
formance of deep learning algorithms has overtaken 
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almost all other methods in audio applications, similar 
to vision applications (Hinton et al. 2012). The crucial 
advantage that deep learning has is that features are 
automatically learned from data rather than predefined 
(Choi et al. 2018).

With deep learning, music is typically converted to a 
spectrogram, which is used as the input to the learning 
algorithm. A few researchers have attempted to build 
music-specific deep learning models rather than use 
CNN models designed for image recognition. For exam-
ple, to predict ballroom music genre, Pons et al. (2016) 
suggest using musically motivated CNN filters to cap-
ture low-level timbral and temporal elements of music. 
This translates to using various rectangular convolu-
tional filters—tall and skinny filters for timbral elements 
and short and wide filters for temporal elements. Using 
data with labeled emotion and midlevel features (e.g., 
melodiousness and articulation), Chowdhury et al. 
(2019) build a deep learning model that includes an 
interpretable midlevel feature layer to predict emotion. 
We contribute to the audio machine learning literature 
by designing and developing novel CNN filters based 
on harmonics, and we demonstrate how the filters are 
useful for prediction as well as explanation.

2.3. Ad Insertion in Videos
An evolving literature has examined video ads within 
streaming videos to understand what ad, content video, 
and user characteristics impact ad performance. For a 
survey of this literature, see Frade et al. (2021).13 The 
typical outcomes examined in studies of video ads 
include ad skipping, brand recognition, intrusiveness, 
aided and unaided brand recall, ad acceptance, click- 
through rate, and related metrics for ads accompanied 
by a call to action.

Research focused on ads has explored the impact of 
ad characteristics, such as length and content, and inter-
actions between ads, such as the number of ads within a 
break, on outcomes like brand recall (Goodrich et al. 
2015). Prior work exploring both ad and content video char-
acteristics has studied the impact of ad relevance (e.g., 
showing a Ford ad in a video about Formula 1 racing) 
and ad congruence on performance. For ad relevance, Li 
and Lo (2015) found that for midroll ads, congruence 
between the ad product and the video content improves 
consumer receptivity, whereas the opposite is true for 
postroll ads. For emotional congruence, results have 
been mixed. Belanche et al. (2017) found in an experi-
ment that high-arousal ads are watched for longer in 
high-arousal content than in low-arousal content but 
found no such effect of congruence for low-arousal ads. 
On the other hand, although not in a video ad insertion 
context, Puccinelli et al. (2015) found that consumers in 
a low-arousal state watch high-arousal ads for less time 
than moderate-arousal ads, supporting congruence. 
Kapoor et al. (2022) focused on the emotions of 

happiness and sadness, and they found in a field experi-
ment that emotional contrast led to greater ad engage-
ment. Overall, the results in the literature are mixed on 
whether emotional congruence improves ad perfor-
mance. An important point of contrast for this paper is 
that relative to past research focusing on the overall 
emotion in the content video for ad matching, our focus 
is on the time-varying emotion of the content video to 
identify the optimal emotion-based ad insertion posi-
tion within the video.

3. Deep Learning Model for 
Music Emotion

We develop a CNN for emotion classification that incor-
porates theory relating to the physics of sound waves 
and the perception of Western tonal music by listeners.

3.1. Model Elements
Figure 1 overviews the steps of our deep learning model 
that maps music to emotion. Step S1 takes six seconds of 
raw audio sound-wave data as input.14 In Step S2, the 
music clip is converted to a short-time Fourier transform 
(STFT) spectrogram. In Step S3, we transform the STFT 
spectrogram to a mel spectrogram, which characterizes 
how the sound is perceived by the human ear. In Step 
S4, the mel spectrogram is used as a visual input to the 
CNN with one of the convolution filter types. We pro-
pose a theoretically motivated filter based on frequency 
harmonics to reflect aspects of music that we expect to 
impact listener emotion. For performance comparison, 
we also consider atheoretical square (and rectangular) 
filters that are commonly used in image processing as 
well as low-level music filters proposed in the literature. 
In Step S5, the features learned by the convolution filters 
from S4 are put through the remaining layers of the 
CNN. In Step S6, the CNN generates a classification 
prediction for the six-second sound clip, indicating the 
quadrant of the dimensional model into which the sound 
falls. Finally, combining the predictions of the clips shows 
the emotional variation over time.

3.1.1. S1. Physical Properties of Sound Waves. Music 
(or any sound) is a pressure wave that travels through 
the air until it reaches the listener’s ear. The waveform 
illustrated in Step S1 of Figure 1 graphs the change in air 
pressure at a certain location over six seconds (Müller 
2015). Audio data can be represented in a number of 
ways. Although a waveform is one way to visually rep-
resent sound, it does not model how humans hear 
sound, which is based on the underlying frequencies.15

To get to musically relevant features, we need a repre-
sentation of the different frequencies that the sound 
wave is composed of in terms of fundamental sine 
waves. Sine waves determine what humans hear and 
are at the foundation of musical concepts, like pitch 
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and harmony. The mathematical representation of this 
process is the Fourier transform, which decomposes a 
sound wave into its constituent sine waves. Any sound 
wave can be represented as a combination of sine waves 
of different frequencies, amplitudes, and phases, known 
as the partials of the sound wave. The complete set of 
partials makes up the spectrum. Figure 2(b) shows the 
spectrum of the first second of music shown in the 
Figure 2(a) waveform. From the spectrum, we can iden-
tify the main frequencies that make up the sound and 
the magnitude of each frequency.

3.1.2. S2. Short-Time Fourier Transform Spectrogram. A 
spectrogram visualizes frequency and time features of 
audio data (Müller 2015). The STFT spectrogram, which 
is produced by taking the Fourier transform of short 
overlapping time windows of the waveform to 

decompose it into its individual frequencies and their 
respective magnitudes, maps the squared magnitude of 
each frequency over time. The parameters that go into 
generating an STFT spectrogram are the sampling rate, 
window type and size, and hop length.16 Let x represent 
the discrete-time signal of the audio signal; let w repre-
sent the window function, which takes in N samples, 
and let H represent the hop size. The window function 
specifies how we weight the audio signal within each 
window of time, and the hop size specifies how many 
samples we jump between each window. The discrete 
STFT X of signal x is

X(m, k) :�
XN�1

n�0
x(n +mH)w(n)exp(�2πikn=N), (1) 

where m is the time index, k ∈ [0 : K] is the frequency 
index, and i :�

ffiffiffiffiffiffiffi
�1
√

. A sampling rate of 44,100Hz 

Figure 1. (Color online) Music Emotion Classification Schematic 

Note. dB, decibel.

Figure 2. Examples of Waveform and Spectrum 

Notes. (a) Waveform of six seconds of New Soul by Yael Naim. (b) Spectrum of the first second of the waveform.
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generates a spectrogram that extends up to 22,050Hz. 
The STFT spectrogram can then be written as

S(m, k) :� |X(m, k) |2: (2) 

The magnitude of the complex number X(m, k) captures 
the presence of each frequency at each time sample. 
Squaring the magnitude yields the power of each fre-
quency at each time sample. We generate an STFT spec-
trogram for each six-second clip of music. The resulting 
frequency × time dimensions of the STFT spectrograms 
are 2,049× 517.17

The STFT spectrogram of Figure 2(a) is represented in 
Figure 3(a), with the x dimension representing time, the y 
dimension representing frequency, and color representing 
the power of each frequency bin at each time sample (red 
(blue) is high (low) power in Figure 3(a)) online. The fre-
quency and time dimensions are discretized because we 
are working with a digital signal. In the STFT spectro-
gram, frequency and time are shown on linear scales, 
whereas power is shown on a log scale and measured in 
decibels because humans perceive volume on a log scale.18

In Figure 3(a) online, the large patch of blue before second 
3 indicates a lack of high frequencies early in the music.

3.1.3. S3. Mel Spectrogram Based on Auditory Percep-
tion. Humans are better at perceiving frequency differ-
ences at low pitches than at high pitches (Müller 2015).19

With equal sensitivity across the frequency spectrum, 
the STFT spectrogram does not represent human hear-
ing. The mel spectrogram transforms the STFT spectro-
gram by mapping the frequencies onto the mel scale, a 
log-frequency scale created to reflect human hearing. 
Equal distances on the mel scale have the same percep-
tual distance in pitch.

The additional parameter that goes into generating 
a mel spectrogram from an STFT spectrogram is the 
number of mel bands, which specifies the mel filter 
banks—the weights that map the STFT frequencies to 
the mel frequency scale. We use 256 mel bands. The 
mel spectrogram in Figure 3(b) more clearly displays 

the differences among the lower frequencies relative 
to Figure 3(a).

3.1.4. S4. Incorporating Harmonics-Based Structure 
into CNN Filter Design. Convolution filters in CNNs 
are matrix operations learned from the data with the 
goal of correctly making predictions. In designing con-
volution filters to learn features to classify music emo-
tion, we must account for how humans perceive sound 
and in particular, the noncontiguous structure of many 
musical features. We know from acoustic physics that 
harmonic frequencies underlie important midlevel 
musical features, like consonance, timbre, and pitch, 
which in turn, relate to emotional response. We incorpo-
rate the harmonics-based structure into the CNN filters 
with two goals in mind. (1) Relevant midlevel features 
are parsimoniously captured, and (2) the model is more 
explainable relative to atheoretical deep learning mod-
els. We detail the concepts of harmonics and pitch class 
and detail how they connect to the development of 
theory-based filters next.

3.1.4.1. Harmonics. The STFT from Step S2 decom-
poses the sound wave into its constituent sine waves, 
known as partials. The harmonics of the sound wave 
are the partials that are integer multiples of its funda-
mental frequency (or lowest partial). Mathematically, 
the set of harmonics H :� {ωn} of a tone with fundamen-
tal frequency f0 contains frequencies

ωn � nf0 ∀n ∈ Z+: (3) 

Harmonics are the underlying reason for many musical 
features, and they have been referred to as the “fabric of 
music.”20 Online Appendix C provides details on how 
harmonics relate to consonance, timbre, and pitch. We use 
the harmonics structure to motivate the design of filters to 
capture musical features known to impact emotion.

3.1.4.2. Pitch Class. We organize the harmonics- 
based filters around the 12 pitch classes of Western 

Figure 3. (Color online) Spectrograms 

Notes. (a) STFT spectrogram of six seconds of New Soul shown in Figure 2(a). The STFT spectrogram visualizes the time and frequency features 
of audio. The x axis represents discretized time, the y axis represents discretized frequency, and color represents the squared magnitude of each 
frequency bin over time. It enables one to “read” musical features, such as the range of frequencies played. (b) Mel spectrogram of six seconds of 
New Soul. The mel spectrogram transforms the linear frequency scale of the STFT to a log-frequency scale that reflects human auditory percep-
tion. dB, decibel.
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music—A, A], B, C, C], D, D], E, F, F], G, and G]— 
because instruments are tuned to these pitch classes.21

Table 1 lists the fundamental frequency of the lowest 
pitch in each pitch class for nearly all instruments within 
human hearing, and we use these frequencies to con-
struct the filters.

3.1.4.3. Harmonics Filter Design. We now detail the 
steps to develop the harmonics-based convolution filter 
for a given pitch class. The unique characteristic of the 
filter is that it focuses on specific noncontiguous regions 
of the spectrogram to flexibly learn a wide variety of fea-
tures. The filter uses “blinders” to select frequencies 
input into the CNN and a convolution size that consid-
ers a large range of frequencies at each time frame. The 
term “blinders” refers to the matrix operation that 
selects and weights the mel bands in the mel spectro-
gram prior to convolution, whereas “harmonics filter” 
refers to the combination of the blinders with convolu-
tion. Steps (i)–(v) below are done separately for each 
pitch class. 

i. Calculate pitch class filter frequencies. We use the set 
of frequencies defined in Equation (3) to design blin-
ders that retain only the frequencies of interest. Begin-
ning with the lowest fundamental frequency of pitch 
class p in Table 1, we calculate the set of harmonic fre-
quencies associated with p. For example, the lowest A 
has a fundamental frequency of f0 � 27:50 Hz, so the A 
harmonics ωn � nf0 are 1 × 27:50 � 27.50 Hz, 2 × 27:50 
� 55.00 Hz, : : : , 801 × 27:50 � 22,027.50 Hz. The fre-
quencies span the human hearing range and cover the 
range of the STFT spectrogram (i.e., up to 22,050 Hz).

ii. Calculate frequency bands. We calculate frequency 
bands around each ωn. The underlying rationale is that 
the human ear cannot distinguish frequencies within a 
small band. The exact size of the band depends on a 
number of factors, including duration, intensity, and 
frequency, so the width of the bands does not follow a 
rule. We calculate 1-Hz bands centered around each 
frequency ωn.

iii. Calculate the STFT indicator column. We identify 
the match between STFT bins and the frequency bands 
corresponding to the pitch class. To match the STFT 
bins with the set of frequency bands, we create an STFT 
indicator column such that each element is equal to one 
when the center frequency of the STFT bin falls within 
one of the frequency bands. STFT bins that are not close 
to the frequency bands may not be chosen.

iv. Construct mel blinders. We multiply the STFT indi-
cator column by the mel filter bank to generate a mel 

weight column that has Nmel � 256 dimensions. Repeat-
ing the mel weight column over the time dimension 
generates the mel blinders. Finally, we multiply the 
mel spectrogram by the mel blinders to generate the 
input to the CNN’s convolution layer. Online Appen-
dix E details the steps.

v. Implement convolution filter. There are a few others 
choices to be made before we can directly apply the 
convolution filter. For a spectrogram, the convolution 
filter height determines the number of frequency bins 
included, and the width determines the number of 
time frames. It is common practice to design the convo-
lution filter to also have a depth (i.e., multiple channels) 
so that multiple features can be learned simulta-
neously.22 The stride specifies how much the filter 
slides over the image before performing another opera-
tion.23 Because the perception of harmonics is based on 
the interaction of all frequencies at any given time,24

we set the filter height to the height of the spectrogram, 
and we set both the filter width and the stride to one 
time sample.25 We learn filters over 8, 16, 32, and 64 
channels, and we find that 32 channels performs the 
best for prediction; so, we set the number of channels 
to 32. We next apply the 256 × 1 × 32 (number of fre-
quency bins × number of time samples × number of 
channels) convolution filter to the transformed mel 
spectrogram. The output of convolution on one chan-
nel is called a feature map, which is created for each 
channel.26 We construct harmonics-based convolution 
filters for each of the 12 pitch classes.

3.1.5. S5. Convolutional Neural Network Architec-
ture. Our CNN to predict music emotion consists of 
multiple types of layers, including a convolutional layer, 
pooling layers, and a fully connected layer. Designing a 
neural network involves several architectural and 
hyperparameter choices. We use standard architecture 
choices as appropriate, and we describe the reasoning in 
Online Appendix F. Figure 4 summarizes the overall 
architecture. The operationalization of the model with 
harmonics filters is as follows.

1. For each pitch class,
a. apply the noncontiguous harmonics filters 

from Step S4;
b. batch normalize and take rectified linear unit 

(ReLU) of the feature maps; and
c. average pool over time frames and apply 

dropout.
2. Concatenate the hidden layers generated by each 

of the pitch classes.

Table 1. Fundamental Frequency of the Lowest Pitch in Each Pitch Class

Pitch A A] B C C] D D] E F F] G G]

Frequency (Hz) 27.50 29.14 30.87 32.70 34.65 36.71 38.89 41.20 43.65 46.25 49.00 51.91
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3. Max pool over the pitch classes, and apply 
dropout.

4. Use one fully connected layer and apply softmax 
to output a probability distribution over the four emo-
tion quadrants.

5. Output the quadrant Q1, Q2, Q3, or Q4 with max 
probability as the predicted label.

The emotion prediction problem aims to classify an 
input music clip into one of four valence-arousal quad-
rants (i.e., a multiclass classification problem). The 
objective function of the model is to minimize the cross-
entropy loss between the predicted and actual outputs. 
The crossentropy loss LCE over the set of music clips is

LCE � �
XN

i�1

X4

k�1
yiklog(p(ŷik)), (4) 

where k represents the quadrant, yik represents a binary 
indicator for whether k is the correct class label for music 
clip i, p(ŷik) represents the predicted probability that i is 
of class k, and N represents the total number of music 
clips. The model learns the weights that minimize the 
loss.

3.1.6. S6. Predicted Emotion. The model maps each 
six-second clip into a valence-arousal quadrant. Q1 cap-
tures positive valence-high arousal, Q2 captures nega-
tive valence-high arousal, Q3 captures negative valence- 
low arousal, and Q4 captures positive valence-low 
arousal. To provide a reference emotion for each quad-
rant, we borrow the notation from Panda et al. (2018): 
Q1: exuberance, Q2: anxiety, Q3: sadness, and Q4: con-
tentment. The predictions over time characterize the 
dynamics of music emotion.27

3.2. Explainability
To gain visibility into what the model learns and uses 
for emotion classification, we use gradient-weighted 
class activation mapping. Grad-CAM uses the gradients 
of a target class (e.g., Q1) with respect to feature maps, 
which flow into a given convolutional layer, to produce 
a heat map that highlights the regions of the input image 
that positively predict the class (Selvaraju et al. 2017).28

Because there is a filter and therefore, feature map for 
each pitch class, we obtain a Grad-CAM heat map for 
each pitch class, which is 1× 517 images (517 represent-
ing the number of time samples). The heat map 

Figure 4. (Color online) Model Architecture 

(a)

(b)

(c)

(e)

(d)

Notes. Overview of our proposed CNN architecture with harmonics filters. The input to the CNN is the mel spectrogram. For each pitch class, 
mel blinders are applied to place structure on what the CNN sees, and then, convolution, batch normalization (BN), ReLU, and average pooling 
are applied. The outputs are concatenated together and then, max pooled before going through the fully connected layer. The final output is 
the valence-arousal quadrant prediction. (a) Mel spectrogram input: 256 × 517. (b) Input with blinders. (c) Postconvolution layer: 1 × 32 × 1. 
(d) Concatenated pitch class layers: 12 × 32 × 1. (e) Multiclass outcome. dB, decibel.
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brightness value for clip k and pitch class p at each time 
sample t is

bj
kpt � ReLU

X

f
αj

f A
f
t

0

@

1

A, where αj
f �

1
Z
X

t

∂yj

∂Af
t

: (5) 

In this expression, j represents the class (quadrant), Af
t 

represents the feature map for channel f at time t, yj 

represents the score for class j, and Z represents the fea-
ture map size (517).29 The brightness value is a linear 
combination of the feature maps Af

t and their impor-
tance αj

f in predicting class j.
We stack the heat maps associated with each of the 12 

pitch classes to obtain an overall heat map, in which the y 
axis represents the 12 pitch classes and the x axis repre-
sents time. Color denotes bj

kpt, which captures the impor-
tance of the noncontiguous frequencies within each pitch 
class toward the classification into quadrant j, and 
brighter colors capture larger values. Let Bj

k �
P

p
P

tb
j
kpt 

represent the sum of the heat map brightness values over 
all pitch classes and time samples with respect to quad-
rant j for clip k. Let Bj � (

P
kBj

k)=nj represent the average 
brightness of all clips with true quadrant label j.30

Combining the structure of the harmonics filters with 
the Grad-CAM heat maps enables us to make sense of 
what the model learns and uses for classification. The 
harmonics filters retain frequencies relevant for a num-
ber of midlevel musical features, including consonance, 
which is associated with the presence of harmonic com-
binations of frequencies. Consonance is of particular 
importance for music emotion, and so, we expect not 
only the filters to learn consonance but also, consonance 
to play an important role and contribute significantly to 
emotion classification. Recall that consonance is associ-
ated with positive valence and low arousal, whereas dis-
sonance is associated with negative valence and high 
arousal (Gabrielsson 2016). Because brightness in the 
heat maps (i.e., bj

kpt) summarizes the positive contribu-
tion of all the harmonic frequencies (by pitch class) at a 
given time to the classification of the target class, we 
expect high brightness for Q4 and low brightness for 
Q2. In other words, we expect brightness in the heat 
maps to capture consonance. To assess whether the 
model learns consonance and uses it for classification, 
we form two sets of hypotheses regarding the bright-
ness of the Grad-CAM heat maps based on music 
theory.

First, for a single clip, we expect consonant parts of 
the clip to have high brightness with respect to Q4 (i.e., 
b4

kpt) because consonance is associated with Q4. On the 
flip side, consonant parts of the clip should have low 
brightness with respect to Q2 (i.e., b2

kpt) because disso-
nance is associated with Q2 (Gabrielsson and Lindström 
2010). We expect the brightness with respect to Q1 and 
Q3 to be between those of Q2 and Q4. Second, across 

clips in each quadrant, we expect that for a given level 
of arousal, positive valence clips (based on the true 
labels) should on average have brighter heat maps than 
negative valence clips because consonance is associated 
with positive valence. Similarly, for a given level of 
valence, low-arousal clips should on average have 
brighter heat maps than high-arousal clips because con-
sonance is associated with low arousal (Gomez and 
Danuser 2007). We, therefore, expect to observe the fol-
lowing pattern: B1 > B2, B4 > B3, B4 > B1, and B3 > B2. 
We assess these hypotheses in Section 4.3.

Finally, given that consonance would separate out Q4 
(high) and Q2 (low), the remaining issue is how the 
model separates Q1 and Q3. For this, we look at the fea-
tures learned by the model that are the most important 
for classification into the quadrants. The learned fea-
tures correspond to the outputs from the convolutional 
layer (postmax pooling) that are input to the fully con-
nected layer (the input to panel (e) in Figure 4). More 
specifically, we examine whether the learned features 
most important in predicting Q1 and Q3 correlate to 
musical features associated with harmonics known to 
be able to differentiate arousal levels (Online Appendix 
C). In Section 4.3, we find the learned features to be con-
nected to roll-off, spectral centroid, and spectral skew-
ness. High arousal is associated with the presence of 
higher harmonics and higher pitch, which correspond 
to higher roll-off, higher spectral centroid, and lower 
spectral skewness. Having identified these features pre-
dictive of arousal, we expect learned features positively 
correlated with roll-off and spectral centroid and 
learned features negatively correlated with spectral 
skewness to be positively correlated with the likelihood 
of a Q1 classification and negatively correlated with the 
likelihood of a Q3 classification.

3.2.1. Benchmark Deep Learning Models for Compari-
son. We train several benchmark deep learning models 
for comparison. The models can be characterized as 
either atheoretical or musically motivated and focused 
on low-level features. In contrast to our model, these 
models only focus on contiguous regions of the 
spectrogram.

The atheoretical models include CNN with (n × n) 
square filters or with rectangular filters, both tall and 
skinny (2n × n) and short and wide (n × 2n). These are 
borrowed from image recognition models as in Kriz-
hevsky et al. (2012). CNNs with square filters have been 
fine-tuned to reflect how we see and recognize images, 
but these models do not represent how we hear and pro-
cess audio. Therefore, square filters are atheoretical 
from the perspective of acoustic physics. Square filters 
capture some audio features, but it is unclear what these 
are and how they relate to music emotion. Compared 
with square filters, rectangular filters of different shapes 
might allow us to capture features that span a larger 
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portion of the frequency space or a larger portion of the 
time space.

The musically motivated models that focus on low- 
level features include CNN models with filters designed 
to extract either frequency or time features, first pro-
posed by Pons et al. (2016). Tall and skinny (a × 1) filters 
are designed to capture timbral features across the fre-
quency spectrum (e.g., a specific combination of notes), 
whereas short and wide (1 × b) filters are designed to 
capture temporal features (e.g., tempo). Pons et al. 
(2016) apply these ideas to ballroom genre classification, 
and they find that, individually, these filters do not per-
form as well as a CNN with square filters but that com-
bining the two types of filters with an additional fully 
connected layer results in comparable performance. We 
provide additional implementation details for the 
benchmark models in Online Appendix D.

We note that our CNN model with harmonics filters 
is more parsimonious than the benchmark deep learn-
ing models. Although our model has 100,000 trainable 
parameters, the CNNs with square and rectangular fil-
ters have nearly 5 million and 10 million parameters, 
respectively. The CNN with frequency filters has 1.5 
million parameters, the CNN with time filters has 2.2 
million parameters, and the CNN with frequency-time 
filters has 3.8 million parameters. With the additional 
structure, the harmonics filters learn features relevant to 
emotion recognition as effectively as others models but 
with fewer parameters (as we show in Section 4.2). As 
described earlier, this has advantages in generalizability 
and robustness.

4. Empirical Analysis
We begin by describing the data sets used to train the 
models. We then report the performance of our pro-
posed architecture with harmonics filters and compare 
it against the benchmark models proposed in the litera-
ture. Finally, we show how our model is explainable 
using gradient-based model visualizations and compare 
it with visualizations generated by other CNN models, 
which use atheoretical and low-level filters.

4.1. Data Sets
We combine two public data sets compiled by music 
emotion researchers, and they serve complementary 
purposes in our analysis: Soundtracks (Eerola and 
Vuoskoski 2011) and the MediaEval Database for Emo-
tional Analysis in Music (DEAM) (Aljanaki et al. 2017).

The Soundtracks data set consists of 360 excerpts 
from movie soundtracks that range in duration from 10 
to 30 seconds. One benefit of movie soundtracks is that 
they are composed to elicit emotion. The music clips are 
instrumental and do not contain any lyrics, dialogue, or 
sound effects. The clips were chosen to (1) either elicit a 
discrete emotion or be high or low on valence, arousal, 

or tension, (2) evoke only a single emotion over the 
length of the clip, and (3) be unfamiliar to prevent song 
familiarity from impacting emotion tagging. University 
students and staff with musical expertise annotated the 
song emotions, and six annotators tagged each music 
excerpt.31 Perceived discrete emotions, valence, and 
arousal were separately annotated on a scale from one 
to seven. Interrater consistency (Cronbach’s alpha) was 
0.92 for valence, 0.90 for arousal, and ranged from 0.66 
to 0.93 for the discrete emotions. We split the excerpts 
into nonoverlapping six-second segments. Excerpts 
selected for the discrete emotions happy, sad, tender, 
fear, and anger are mapped onto the valence-arousal 
quadrants such that happy maps to Q1, fear and anger 
map to Q2, sad maps to Q3, and tender maps to Q4. The 
excerpts selected for the dimensional emotions and sur-
prise are converted to the four quadrants by discretizing 
the valence-arousal space around the midpoint (4, 4). All 
six-second clips from the same excerpt have the same 
quadrant label because these excerpts were chosen to 
only evoke a single emotion over the length of the clip.

The DEAM data set consists of 1,802 mostly 45-second 
excerpts of royalty-free music. The music annotations 
were crowdsourced through MTurk, and each excerpt 
was annotated by at least 10 workers. Perceived valence 
and arousal were annotated on a scale from �10 to 10 
every half second using a graphical interface. The clips 
were largely unfamiliar to workers. Interitem consis-
tency (Cronbach’s alpha) was 0.28–0.66 for arousal and 
0.20–0.51 for valence. In contrast to Soundtracks, the 
DEAM music was not chosen to elicit a particular emo-
tion, which helps to explain the relatively low annotation 
consistency.32 In addition, the DEAM music can vary in 
emotion over time. DEAM complements Soundtracks 
by covering more of the valence-arousal space. We 
include the classical and pop music genres from DEAM 
because these genres conform to Western music theory. 
We divide each clip into nonoverlapping six-second seg-
ments and average the 12 annotations taken every half 
second to obtain valence-arousal labels. To convert the 
continuous valence-arousal labels to the four quadrants, 
we discretize the valence-arousal space around the mid-
point (0, 0). We thus obtain the same Q1–Q4 quadrants 
across both data sets.

Finally, we combine Soundtracks and DEAM. Addi-
tional details are provided in Online Appendix G. To 
improve data balance across the quadrants, we subsam-
ple the data so that no quadrant has more than 50% 
more clips than any other. In total, we have 2,019 six- 
second music clips distributed as 28%, 19%, 28%, and 
24% over Q1, Q2, Q3, and Q4, respectively.

4.2. Model Performance
We use precision, recall, and F1 score, standard mea-
sures in the machine learning literature, to evaluate our 
model. We calculate these metrics for each class 
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(quadrant), and a weighted average by the number of 
samples in each class determines each overall measure. 
Table 2 summarizes the performance of the models. The 
performance metrics are averaged over each fold of the 
held-out test data from stratified 10-fold crossvalida-
tion.33 The standard deviations of the performance mea-
sures over the 10 folds are in parentheses.

In evaluating the performance of the model, it is 
important to recognize that performance benchmarks 
for classification using deep learning models can vary 
significantly by prediction task because of differences in 
difficulty levels. For example, in a data set of images of 
cats and dogs, it might be relatively easy to identify the 
animal type (cat/dog), but it might be more difficult to 
identify other labels, like age, using the same images. 
Prediction tasks involving subjective human response 
(e.g., emotion recognition and humor detection) typi-
cally have lower prediction accuracy than more objective 
recognition tasks (e.g., object identification and instru-
ment identification). An important reason is that for 
subjective tasks, without objective ground truth, 
humans have heterogeneous responses, implying less 
agreement on the “ground truth” (Davani et al. 2022). In 
such cases, even our best approximation is bounded 
above by this subjectivity. Music emotion is a challeng-
ing classification problem because it is highly subjective. 

Thus, our model performance should be compared with 
benchmarks within the class of prediction problems 
seeking to predict subjective human response. Exam-
ples include humor detection (Chen and Lee 2017 obtain 
an F1 of 0.61, with chance guessing at 0.51) and moral 
foundation classification (Pavan et al. 2023 obtain an 
F1 of 0.45, with chance guessing at 0.19). We note that 
even though instrument identification and music emo-
tion classification both use music as input data, instru-
ment identification typically has much higher levels of 
performance.34

First, we detail the classification performance of the 
benchmark deep learning models, which use atheoreti-
cal and low-level filters. The CNNs with atheoretical 
square and rectangular filters obtain F1 values of around 
0.48. Although a low-level CNN filter based on time 
alone does not perform as well as the atheoretical filters, 
frequency filters perform almost as well as the atheoreti-
cal filters. The combination of time and frequency filters 
performs comparably with the model using only fre-
quency filters, suggesting that frequency-related fea-
tures play a larger role in eliciting emotion in short 
music clips relative to temporal features.

Next, we examine the performance of our proposed 
theory-based midlevel CNN filters that account for 
harmonics. We find that this model obtains an F1 of 
0.51,35 which is no worse than the best benchmark 
models,36 as well as comparable precision and recall 
measures.37

Overall, the CNN that uses the harmonics filters per-
forms as well as those using atheoretical filters, despite 
having far fewer parameters. The key distinction is that 
in contrast to the atheoretical filters, our proposed har-
monics filters directly connect to theoretical concepts 
that help explain what the model learns and uses for 
emotion classification.

4.3. Model Explainability
We now compare the explainability based on Grad- 
CAM for our CNN model with harmonics filters and 
other benchmark CNN models.

4.3.1. Explainability of Harmonics Filters. In Section 3, 
we discussed the patterns to expect in terms of the 
brightness of Grad-CAM heat maps based on theory 
related to harmonics, perception of consonance, and 
emotional response to consonance. We illustrate 
explainability around the role of consonance in two 
ways. First, we compare the heat maps with respect to 
all four quadrants for a single clip labeled to be in the 
high-consonance Q4 quadrant. We expect consonant 
parts of the clip to have high brightness with respect to 
Q4 and low brightness with respect to Q2. Second, we 
consider eight distinct out-of-sample clips—two for 
each of the four quadrants. We expect to see the average 
ordering of brightness to follow the relative ordering 

Table 2. Classification Performance—Deep Learning 
Models

Filter type Precision Accuracy/recall F1

Atheoretical filters
Mel—square 0.5160 0.5003 0.4841

(0.0568) (0.0538) (0.0663)

Mel—tall rectangle 0.5067 0.5014 0.4809
(0.0808) (0.0590) (0.0784)

Mel—wide rectangle 0.5232 0.4911 0.4774
(0.0617) (0.0442) (0.0585)

Theory-based low-level filters
Mel—time 0.3597 0.3717 0.3186

(0.1055) (0.0768) (0.0890)

Mel—frequency 0.5501 0.4806 0.4703
(0.0730) (0.0532) (0.0592)

Mel—time-frequency 0.5058 0.4827 0.4622
(0.0801) (0.0656) (0.0771)

Proposed theory-based midlevel filters
Mel—harmonics 0.5224 0.5049 0.5057

(0.0505) (0.0478) (0.0506)

Notes. Precision � True Positive
Predicted Positive. Recall � True Positive

Actual Positive. F1 �
2×Precision×Recall

Precision+Recall . 
Precision is particularly useful when false positives are costly (e.g., 
spam detection). Recall is particularly useful when false negatives are 
costly (e.g., disease detection). Accuracy is equivalent to weighted 
average recall and captures the proportion of correct predictions out 
of the entire set of data. F1 is useful when we want a balance between 
precision and recall. The measures are weighted by the proportion in 
each quadrant.
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discussed earlier. In addition, we calculate the average 
brightness of all out-of-sample clips for each quadrant j 
(i.e., Bj).

First, we look at the heat maps of a Q4 music clip 
that we know begins with only frequencies that follow 
a harmonic pattern and is, therefore, consonant. The 
center panel in Figure 5 shows the mel spectrogram of 
a Q4 clip that begins with a violin playing one note, 
changing notes, and then, being joined by additional 
instruments shortly after three seconds. We know that 
playing a single violin string produces a harmonic 
sound, which can be seen in the parallel horizontal 
bars at frequencies that are integer multiples of 
approximately 740 Hz between 0.25 and 2.5 seconds 
(e.g., 740, 1,480, and 2,220 Hz) and multiples of 880 Hz 
between 1.75 and 3.25 seconds (e.g., 880, 1,760, and 
2,640 Hz). In the Grad-CAM heat maps, the portions of 
the clip with harmonic frequencies light up brightly 
for Q4, indicating that these frequencies most greatly 
contribute to the Q4 classification but not for Q2. The 
Q1 and Q3 heat maps have some points of brightness 
but not as many as Q4 or as few as Q2. Overall, the Q4 

heat map is much brighter than the other heat maps. 
These patterns are consistent with what we would 
expect to see based on theory if the model learns and 
uses consonance for emotion classification.

Second, we analyze the heat maps for different music 
clips for which the model made the same prediction as 
the true label. Figure 6 shows a few prototypical Grad- 
CAM heat maps and their associated mel spectrograms. 
These heat maps come from clips in the hold-out sets 
from 10-fold crossvalidation. In general, we observe pat-
terns in line with theory in that positive valence heat 
maps are brighter than negative valence heat maps and 
that low-arousal heat maps are brighter than high- 
arousal heat maps.

When we quantify the heat map brightness across all 
of the clips for the hold-out sets, we find that the scaled 
average brightness values based on the true emotion 
labels are B1 � 53, B2 � 45, B3 � 62, and B4 � 72. The 
average brightness observed per quadrant is consistent 
with our hypothesized ordering (i.e., B1 > B2, B4 > B3, 
B4 > B1, B3 > B2), further supporting the consonance- 
based interpretation of the Grad-CAM heat maps.38

Figure 5. (Color online) Harmonics Grad-CAM Heat Maps of a Q4—Contentment Clip over Quadrants 

Notes. The center panel is the mel spectrogram of Soundtracks track 183, seconds 0–6. The images in the four quadrants correspond to the Grad- 
CAM heat maps for the classification of the clip into the four emotion quadrants using the CNN model with harmonics filters. The music clip 
starts off with a violin, producing a harmonic sound that can be seen in the mel spectrogram through the parallel horizontal bars at frequencies 
that are integer multiples of approximately 740 and 880 Hz. The Q4 heat map shows that 0.25–3.25 seconds most greatly contribute to the Q4 clas-
sification, which corresponds to periods of overlapping harmonics and consonance. The Q2 heat map shows that this same period does not posi-
tively contribute to the Q2 classification. This pattern suggests that brightness in the heat maps captures consonance.
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Explainability builds trust in the model by providing 
transparency that the model learns patterns consistent 
with theory rather than picking up spurious correla-
tions, like discussed in the wolf versus husky example 
from Ribeiro et al. (2016) in Section 1. The heat maps 
highlight areas of consonance, a midlevel feature related 
to noncontiguous frequencies that is generally not 
observable by eye, and the patterns of brightness align 
with the expected relationship between consonance and 
emotion.39

On the separation between Q1 and Q3, the results are 
overall consistent with our predictions in Section 3.2. 
We obtain the features that are the most influential in 
the classification of a music clip into Q1 and Q3 based 
on SHAP values.40 The correlations between the two 
most important learned features for classifying both Q1 
and Q3 and musical features known to differentiate 
arousal are 0.35 and �0.41, respectively, for roll-off; 0.32 
and �0.36, respectively, for spectral centroid; and �0.32 
and 0.44, respectively, for spectral skewness. As dis-
cussed earlier, the first feature should then be positively 
correlated with Q1 and negatively correlated with Q3, 
and the second feature should be negatively correlated 

with Q1 and positively correlated with Q3 because Q1 is 
associated with high arousal and Q3 is associated with 
low arousal. We assess this; as expected, we find that 
the first learned feature is positively correlated with Q1 
(0.45) and negatively correlated with Q3 (�0.47) and 
that the second learned feature is negatively correlated 
with Q1 (�0.47) and positively correlated with Q3 
(0.51). Thus, being able to separate out high and low 
arousal helps differentiate between Q1 and Q3.

4.3.2. Limited Explainability of Atheoretical and Low- 
Level Filters. Grad-CAM visualizations can also be pro-
duced for the other filter types. We find that given their 
low-level focus without specific theory to guide our 
expectations, it is more difficult to interpret what musi-
cal features are captured and connect how they contrib-
ute to the classification of a particular class. The Grad- 
CAM heat maps for the square filter CNN in Figure 7
are equivalent to heat maps produced for an image rec-
ognition model. They show which contiguous regions 
of the input image contribute to the classification of a 
particular class, providing an idea of the range of fre-
quencies and times contributing to the classification. 

Figure 6. (Color online) Harmonics Grad-CAM Heat Maps by Quadrant 

Notes. Within each emotion quadrant, the right panels are mel spectrograms of music clips, and the left panels are their Grad-CAM heat maps. 
The following six-second clips are shown: Q1: DEAM song 1,811, seconds 27–33 and DEAM song 1,892, seconds 21–27; Q2: Soundtracks song 
216, seconds 6–12 and Soundtracks song 142, seconds 0–6; Q3: DEAM song 2,012, seconds 39–45 and DEAM song 159, seconds 27–33; and Q4: 
Soundtracks song 33, seconds 12–18 and Soundtracks song 48, seconds 6–12. dB, decibel.
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However, it is unclear what human-understandable 
musical features are being learned. Note that in contrast 
to our harmonics filters, pitch classes are not used here.

The heat maps based on separate time and frequency 
filters highlight which time periods or frequencies con-
tribute most to a particular classification (see Online 
Appendix Figure K1). Similar to square filters, it is less 
clear how to interpret the heat maps, making it challeng-
ing to understand what musical features the models 
learn. In the models using atheoretical and low-level fil-
ters, it is more challenging to determine what musical 
feature is learned and used for emotion classification. 
Thus, our contribution in incorporating the noncontigu-
ous theory-based harmonics filters is to provide greater 
explainability, specifically with consonance, while 
obtaining similar performance as atheoretical filters.

4.4. Model Capability to Learn Features
Although our discussion of explainability has primarily 
focused on a specific and important feature (i.e., conso-
nance), harmonics filters can also learn other features as 
foreshadowed in Section 4.3. For instance, the combina-
tion of harmonic frequencies provides information 
about pitch perception, timbre (or tone color), and 

spectral spread and complexity (McAdams and Gior-
dano 2015).

The comparable classification accuracy between the 
theory-based CNN with harmonics filters and the models 
with atheoretical filters suggests that the harmonics filters 
are learning multiple musical features relevant for emo-
tion classification because consonance alone would not 
yield such high accuracy. To assess this systematically, 
we check whether classification performance improves if 
we add handcrafted features found to predict music emo-
tion. Some handcrafted features, like mel frequency ceps-
tral coefficients, are more atheoretical in that they were 
not designed for music but instead, were designed for 
speech. Other features, like tempo, are more theory based 
in that they were designed with music in mind. Limited 
improvement in performance would suggest that the 
model with harmonics filters captures information simi-
lar to the handcrafted features. In addition, we assess the 
correlations between the features learned by the harmo-
nics filters and the handcrafted features. High correla-
tions would suggest that the learned features capture 
information similar to the handcrafted features.

First, we train two random forest (RF) models using 
only handcrafted features to show the baseline 

Figure 7. (Color online) Square Grad-CAM Heat Maps by Quadrant 

Notes. Within each emotion quadrant, the right panels are mel spectrograms of music clips, and the left panels are their Grad-CAM heat maps. 
The clips are the same as those shown in Figure 6. The bright portions of a heat map capture the parts of the mel spectrogram that most greatly 
contribute to the classification of the specified emotion. The heat map covers the dimensions of the final feature map after convolution. The x axis 
captures time, and the y axis captures frequency. dB, decibel.
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performance of the features. Random forest is an ensem-
ble learning method known to be both robust and accu-
rate. For music emotion prediction, Unni et al. (2022) 
found that random forest provided the best accuracy 
over a number of machine learning models. The first 
model uses MFCCs, which have proven successful in 
music classification, including genre and emotion classi-
fication (Kim et al. 2010). We use 13 MFCC coefficients 
as well as their first and second derivatives, resulting in 
39 features. The second model uses 11 handcrafted fea-
tures highlighted by Panda et al. (2018) for their ability 
to predict the four emotion quadrants; we name the set 
of features the Top Handcrafted Features, and Online 
Appendix Table I1 summarizes them.41

Next, we combine the handcrafted features with the 
features learned by our deep learning model that uses 
harmonics filters. We extract the learned features before 
the final classification step. We then concatenate these 
learned features with the handcrafted features and 
input this combination to a random forest model to 
make the final classification. This allows us to test 
whether the handcrafted features are redundant to the 
learned features. Another advantage of this approach is 
that we retain explainability while being able to add 
handcrafted features.

Table 3 shows that the inclusion of MFCCs or the Top 
Handcrafted Features marginally improves predictive 
performance relative to using only the deep learning 
model (F1 of 0.53 versus 0.51). This suggests that the har-
monics filters do not capture all of the information in the 
handcrafted features but do capture information similar 
to many of the handcrafted features. When we assess 
the correlations between the learned features and the 
handcrafted features, we observe reasonably high 
values ranging from �0.41 to 0.45 for tone color-related 
features. This is in line with our expectations because 
tone color relates to frequency rather than time, and our 
harmonics filters are specifically designed around fre-
quency. We further find that combining the features 

learned by the harmonics filters with two time-related 
handcrafted tempo features improves predictive perfor-
mance more.

Overall, the results suggest that our theory-based 
deep learning model learns not only features that cap-
ture similar information to the Top Handcrafted Fea-
tures but also, additional features useful for predicting 
emotion. One advantage of the deep learning model is 
that each feature does not have to be specifically engi-
neered. However, there is still some value in incorporat-
ing handcrafted features related to time.

5. Application: Emotion-Based Ad Inser-
tion in Content Videos

Our proposed theory-based deep learning model can be 
used in a number of real-time emotion-based applications 
by predicting the valence and arousal of music clips. We 
demonstrate the value with an illustrative application 
involving emotion-based contextual targeting, where 
the algorithm determines the optimal emotion-based ad 
insertion point for a video ad within a content video 
(e.g., YouTube video) with time-varying emotional 
content.

Such emotion-based contextual targeting with auto-
mated content matching is gaining importance. Increas-
ing privacy restrictions limit person-specific targeting 
of advertising, making contextual and content-based 
targeting for ad placement more relevant and useful.42

Further, given the vast amount of user-generated con-
tent available, nonalgorithmic approaches to matching 
ads with content are challenging, if not impossible, to 
implement at scale. The size of the matching problem is 
very large, and a platform like YouTube needs to match 
billions of ads and content videos daily.

Throughout a content video, emotion often varies 
over time, and so, the various ad insertion slots differ in 
emotion. Because ads also often elicit emotion, we seek 
to understand how to match the ad to the insertion slot 

Table 3. Classification Performance—Incorporating Handcrafted Features

Features Model Precision Accuracy/recall F1

Benchmark models with handcrafted features
MFCCs RF 0.4764 0.4716 0.4615

(0.0419) (0.0446) (0.0459)

Top Handcrafted Features RF 0.4559 0.4563 0.4513
(0.0637) (0.0576) (0.0615)

Combined theory-based midlevel filters + handcrafted features
Mel—harmonics + MFCCs CNN + RF 0.5376 0.5278 0.5236

(0.0525) (0.0483) (0.0491)

Mel—harmonics + Top Handcrafted Features CNN + RF 0.5361 0.5294 0.5259
(0.0633) (0.0606) (0.0605)

Mel—harmonics + Tempo features CNN + RF 0.5407 0.5329 0.5295
(0.0537) (0.0493) (0.0493)
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based on emotion. Although marketing researchers 
have considered the overall emotion of content videos 
for ad matching (Kamins et al. 1991, Coulter 1998, Pucci-
nelli et al. 2015, Kapoor et al. 2022), our focus is on auto-
matically identifying the optimal ad insertion slot 
within videos that vary in emotion over time.

5.1. Does Emotional Congruence or Contrast 
Work Better for Ad Insertion?

It is an empirical question as to whether ads that are 
similar to the emotional context of the content video 
increase or decrease ad attention and memorability. 
Some behavioral studies have found that emotional con-
gruence is more effective (Lee et al. 2013), including 
studies of matching in persuasion and fluency (Teeny 
et al. 2021). However, other studies have found that 
consumers have a preference for positive stimuli when 
feeling negative emotions (Andrade 2005) and that per-
ceptual contrast draws attention, suggesting that emo-
tional contrast may be more effective. To answer this 
empirical question, we conduct a laboratory experiment 
in which we exogenously insert ads into content videos 
at different insertion points. We characterize each ad 
and each insertion point by their respective emotions, 
which are based on human tagging. This allows us to 
create a measure of emotional distance between each ad 
and each insertion point. We measure ad skip and brand 
recall, and we see whether and how emotional distance 
influences these ad engagement measures.

Next, after identifying the more effective ad matching 
strategy, we evaluate whether our proposed theory- 
based deep learning model can select emotionally 
appropriate ads based on predicted emotion relative to 
benchmark models. Given that our focus is on music 
and its effects, we treat the emotion evoked by the back-
ground music of the video as a proxy for the emotion 
evoked by the overall video.43 We also examine the 
impact of nonmusic-based emotion in videos. In this set-
ting of automated contextual targeting, the explainabil-
ity of our model would increase managerial trust in the 
tool to make reasonable decisions that generalize across 
a range of different content videos and ads outside of 
the initial training setting and thus, increase confidence 
in adopting it.

5.2. Experiment: Is Emotional Congruence or 
Contrast More Effective?

We discuss the experimental design and results below.

5.2.1. Experimental Setup. There are multiple ad inser-
tion points, which vary in evoked emotion, within each 
content video. The outcome variables of interest are ad 
skip (as a proxy for attention and interest) and brand 
recall (as a proxy for memorability). We use a full facto-
rial design across four ads, four content videos, and six 

ad insertion points per content video, yielding a total of 
96 experimental cells.

We develop a Qualtrics survey that shows an ad 
inserted partway through a content video, mimicking 
the concept of YouTube’s midroll ads. Similar to You-
Tube, a “Skip Ad” button appears six seconds into the 
ad, allowing participants to skip the remainder of the 
ad. Upon watching the ad to completion or skipping it, 
the content video picks up where it left off. Each partici-
pant sees only one content video and only one ad. After 
watching the content video, participants are asked ques-
tions about the content video and the ad.

5.2.2. Content Videos and Ads. We select a diverse set 
of content videos and ads. The content videos are 
selected to (a) contain background music most of the 
time and (b) be long enough to vary in emotion over 
time and allow for multiple ad insertion points. The 
videos range from 5.7 to 7.9 minutes in length, include 
both animated and live-action videos, and include 
videos with and without speech. Online Appendix 
Table L1 provides details on the four content videos. For 
each content video, we fix six ad insertion points (time 
1, … , 6) that are roughly one minute apart and occur at 
natural changes in the audio and images, similar to You-
Tube.44 Online Appendix Table L2 specifies the inser-
tion times.

We select four ads such that each of the four valence- 
arousal quadrants is represented by the primary emotion 
in the first six seconds of one of the ads. The emotion of 
the first six seconds is important because viewers on You-
Tube have the option to skip at six seconds. We seek to 
understand the interaction effect of the content video 
emotion with the initial ad emotion. The ads include 
background music, are 30 seconds long, and cover a 
range of industries.45 Online Appendix Table L3 provides 
details on the four ads.

5.2.2.1. Emotion Tagging. Because we seek to mea-
sure emotional distance, we must first characterize the 
emotion of the content videos and ads. Within 
the experiment, we use human-tagged emotion as the 
ground truth. To obtain the emotion tags, we recruit sur-
vey participants on Prolific, an online survey platform. 
We show respondents either the content videos in seg-
ments (as defined in Online Appendix Table L2) or the 
first six seconds of the ads and ask them about their 
valence and arousal levels after watching each clip.46

With multiple tags per clip, each clip can then be charac-
terized by the distribution of emotion over the quadrants.

Figure 8(a) shows the emotion distribution over video 
segments for the content video titled Hope. Viewers 
largely felt positive (Q1 and Q4) during the first three 
segments, high arousal (Q1 and Q2) during segment 4, 
anxious during segment 5 (Q2), and negative (Q2 and 
Q3) during segment 6, demonstrating a large variation 
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in emotion over time. Online Appendix Figure L1 
shows the emotion distributions of all four content 
videos.

Figure 8(b) displays the emotion distributions of the 
first six seconds of each ad. As can be seen, the four ads 
were selected so that each emotion quadrant would be 
represented.

5.2.3. Emotional Distance Measure. To measure emo-
tional distance between an ad and an insertion point in 
the content video, we calculate the Jensen–Shannon (JS) 
distance. The JS distance is computed between their 
probability distributions over the emotion quadrants. 
Let Pt represent the emotion probability distribution of 
the content video at time t, and let Q represent the emo-
tion probability distribution of the ad. JS distance is 
defined as

JSD(Pt‖Q) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 D(Pt‖M) +

1
2 D(Q‖M)

r

, (6) 

where M � 1=2(Pt +Q) and D is the Kullback–Leibler 
(KL) divergence. The benefits of JS distance over KL 
divergence are that it is symmetric between Pt and Q 

and that it is always finite. The larger the JS distance, the 
more dissimilar the ad emotion is from the content 
video emotion at time t.

Figure 9 plots the JS distances between the content 
video Hope and the two ads Calm and Fragile Child-
hood across Hope’s six insertion points (or segments). 
For Calm, the minimum distance (i.e., the greatest emo-
tional similarity) occurs after segment 1, and the maxi-
mum distance (i.e., the greatest emotional contrast) 
occurs after segment 6. However, for Fragile Childhood, 
the opposite occurs. Online Appendix Figure L2 plots 
the JS distances of the 16 potential combinations of con-
tent videos and ads. These plots show that there is large 
variation in emotional distances between the ads and 
the content videos. The JS distances in the data range 
from 0.017 to 0.783.

5.2.4. Outcomes of Interest. Our dependent variables 
are “revealed preference”-type metrics and of signifi-
cant interest to advertisers. Ad skip captures whether 
someone skips or voluntarily continues to watch the ad. 
Unaided brand recall captures whether someone paid 
attention to the ad and its memorability.

Figure 8. (Color online) Human-Tagged Emotion 

Notes. (a) Content over time. (b) Ads. HV, high valence; LV, low valence; HA, high arousal; LA, low arousal.

Figure 9. JS Distance Between Content Video and Ads 
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An ad skip occurs if the participant presses the “Skip 
Ad” button within five seconds of its appearance.47 This 
definition captures the emotion interaction of the con-
tent video at the time of ad insertion and the first six sec-
onds of the ad. We capture recall in the set of questions 
asked to participants after watching the content video. 
In the survey, the brand shows as video information 
when the ad begins and disappears after three seconds. 
Therefore, even if participants skip the ad, they are still 
exposed to the brand.

5.2.5. Experimental Results. Each participant is ran-
domly assigned to 1 of the 96 cells.48 Across all content 
videos, ads, and insertion points, 1,413 participants on 
average skipped 42.0% of ads (viewed 58.0%) and cor-
rectly recalled 45.2% of brands. As expected, the correla-
tion between skip and recall is negative, with a value of 
�0.23 (p < 0.01).

To determine the impact of emotional distance on 
skip and recall, we regress a binary indicator for skip-
ping (or a binary indicator for correctly recalling) on JS 
distance, controlling for covariates. We estimate the fol-
lowing regression equation:

f (yijt) � α + βJSDijt + γXijt + ɛijt, (7) 

where the outcome yijt represents a skip indicator or a 
correct recall indicator for ad i at insertion point t within 
content video j, JSDijt represents the JS distance between 
the emotion of the content video at point t and the ad, 
Xijt represents covariates (i.e., ad, content, and time of 
insertion point), and ɛijt represents the error term.

For ease of interpretation, we assume a linear proba-
bility model for skip and recall, and we report the least 
squares coefficients in Table 4. The results retain the 
same signs and levels of statistical significance when we 
assume a logit model. Columns (1) and (4) in Table 4 do 
not include any covariates. We find that greater emo-
tional distance increases the probability of skipping and 
decreases the probability of recalling the brand. 

Columns (2) and (5) in Table 4 include content video 
fixed effects, ad fixed effects, and a linear time trend for 
ad insertion time because the times differ across content 
videos. The results remain robust to including these 
covariates. Finally, columns (3) and (6) in Table 4
include a second-order polynomial in time, and the 
results do not qualitatively change.49 Taken altogether, 
the JS distance coefficients suggest that emotional con-
gruence between the ad and the insertion point is more 
effective than emotional contrast for ad engagement.

5.3. Ad Insertion Automation
Our theory-based and benchmark models can predict 
the emotion distributions of the ads and content to cal-
culate emotional distances at scale. We use these to com-
pare ad skip and recall outcomes from showing each ad 
at the most emotionally similar ad insertion point based 
on the predictions of the models.

5.3.1. Calculating Model-Predicted Emotional Dis-
tances. We transform the first 6 seconds of audio of 
each ad and the 30 seconds of audio before each ad 
insertion point in the content videos into mel spectro-
grams. For the content videos, we break the 30-second 
clips into five 6-second clips. We use the models to pre-
dict the emotion distribution of each six-second clip.50

For the 30-second content video clips, we average over 
the five predicted emotion distributions associated with 
each 6-second clip. Using the 24 content emotion distri-
butions (four content videos × six insertion points) and 
the 4 ad emotion distributions, we calculate the JS dis-
tances between the ads and the content at the six inser-
tion points. For each combination of the model, content 
video, and ad, we determine which ad insertion point is 
the most emotionally similar.51

5.3.2. Skip and Recall Rates. From the experiment, we 
have the skip and recall rates for the 96 experimental 
cells. For each model, we average the skip and recall 

Table 4. Effect of Emotional Distance on Ad Engagement

Outcome

I(Skip) I(Recall)

(1) (2) (3) (4) (5) (6)

JS Distance 0.188** 0.196** 0.206*** –0.179** –0.166** –0.168**
(0.075) (0.078) (0.079) (0.077) (0.077) (0.077)

Time 0.001*** 0.001*** �0.001 �0.001
(0.001) (0.001) (0.001) (0.001)

Time2 �0.001 0.001
(0.001) (0.001)

Content FE No Yes Yes No Yes Yes
Ad FE No Yes Yes No Yes Yes
R2 0.004 0.035 0.036 0.003 0.092 0.092

Notes. There were 1,413 observations for all regressions; robust standard errors are used. FE, fixed effect.
**p < 0.05; ***p < 0.01.
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rates as well as the ground-truth JS distances (based on 
human tagging) of the most emotionally similar inser-
tion point for each of the four ads in each of the four con-
tent videos as predicted by each model, and we show 
the results in Table 5. Note that these average skip and 
recall rates are based on a simulation of ad insertion 
automation using the experimental data.

Our proposed theory-based model using harmonics 
filters selects insertion points that are relatively high in 
emotional similarity (i.e., low JS distance) compared 
with the other deep learning models. These ad insertion 
points generate relatively favorable skip and recall rates, 
suggesting that our model can be useful in automated 
emotion-based ad insertion. The models that includes 
tempo features, the best-performing model from Section 
4.4, further improve upon these results.

5.3.3. Incorporating Other Video Modalities. Our pri-
mary analysis has focused on using emotion evoked 
from music. However, with videos, emotional content 
may be present across multiple modalities (e.g., facial 
expressions and text of speech). Multimodal emotional 
content can also be used to predict emotional distance. 
When the videos have human faces, we can use publicly 
available tools to estimate emotion from facial expres-
sions. Similarly, emotional content can also be obtained 
from voice tonality and speech text.

In our application, we observe that speech or human 
faces might not be present in each content video or in 
the first six seconds of ads, implying that using speech 
or facial emotion is not always feasible. For the videos 
with human faces, we assess the skip and recall rates 
when including face emotion alongside music emotion. 
We could not include speech emotion because there was 
not enough speech in the first six seconds of the ads. We 
find mixed evidence of the value of including face emo-
tion. Including face emotion slightly improves the recall 
rate but hurts the skip rate. Online Appendix L.1 details 
the analysis.

Overall, we find that there is potential in incorporat-
ing emotion information from images and text, but the 

existing tools are limited in their ability to extract emo-
tion information from short clips (i.e., the first six sec-
onds of ads) and animated videos. However, this is a 
moving target, and as these methods steadily improve, 
these findings could well change.

5.4. Managerial Implications
Past studies have provided evidence that emotional ads 
impact attention and memory (Holbrook and Batra 1987, 
Cohen et al. 2018). The results of this study support the 
theory that emotional similarity decreases ad skipping 
and increases brand recall. Our method can be used to 
determine time-varying emotion based on the back-
ground music of videos, and we show that it performs as 
well as atheoretical CNN models while being explainable.

We demonstrate the value of our model in a video 
advertising setting by mapping music to emotion to 
determine the optimal emotion-based insertion point 
within a content video. In practice, we expect emotion to 
be used as a complement to other ad targeting variables.

Our proposed model could also be useful in a number 
of other applications. For example, existing Spotify 
playlists built around a unifying emotion are based on 
the overall emotion of a song. However, one quarter of 
songs are skipped in the first five seconds, so the interac-
tion of the ending of one song and the beginning of the 
next is a critical point for a listener’s decision to continue 
with a playlist.52 Our model can quantify the emotional 
match between the end of one song and the beginning 
of the next to allow for continuity (or contrast) in the lis-
tener’s emotional experience. The classifier can also be 
used in contexts that match music with other forms of 
unstructured data. For example, a text classifier can be 
used for a news article, whereas our model can be used 
for the video ad. More broadly, any setting that involves 
emotion and requires music choice (e.g., call-waiting 
music) could benefit from a music emotion classifier.

6. Conclusion
Our research contributes to the literature that studies 
consumer response to music, which represents one type 

Table 5. Ad Insertion Automation Results

Feature Model JS distance Skip rate, % Recall rate, %

Atheoretic filters
Mel—square CNN 0.510 42.0 45.7
Mel—tall rectangle CNN 0.450 43.5 47.3
Mel—wide rectangle CNN 0.419 44.5 45.1

Theory-based low-level filters
Mel—time CNN 0.437 40.9 46.6
Mel—frequency CNN 0.466 46.9 45.9
Mel—time-frequency CNN 0.446 44.3 48.6

Proposed theory-based midlevel filters
Mel—harmonics CNN 0.429 42.0 48.9
Mel—harmonics + Tempo features CNN + RF 0.395 40.7 48.8
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of unstructured data. Music is pervasive in customer 
interactions with firms. From music in ads to hold music 
for call centers and from workout playlists to back-
ground music in retail stores, customers engage with 
music in a variety of ways. The exponential growth of 
user-generated content has created a huge quantity of 
high-dimensional data, and automated prediction of 
music-evoked emotion at scale can be helpful for a vari-
ety of marketing decisions. However, unlike other 
unstructured data, such as text (e.g., Toubia et al. 2021, 
Wang et al. 2022), images (e.g., Liu et al. 2020, Dew et al. 
2022, Huang et al. 2022, Troncoso and Luo 2023, Zhang 
and Luo 2023, Sisodia et al. 2024), and video (e.g., Yang 
et al. 2021, Chakraborty et al. 2024), music has received 
relatively little attention in the marketing literature.

We develop a CNN to classify the emotion evoked by 
music. Our framework integrates a number of theoreti-
cally motivated elements to develop harmonics-based 
filters, combining the physics of music and human hear-
ing of sound as well as human perception of music. Our 
approach achieves similar classification performance to 
that of atheoretical models. In terms of explainability, 
we exploit specific elements of music theory to construct 
filters capable of capturing consonance. We visualize 
the model’s prediction process using Grad-CAM, which 
provides a visual representation of the areas in an image 
(spectrogram for sound) that contribute the most to the 
classification into a particular target class. Although this 
provides a degree of transparency, we note that making 
deep learning models more explainable is an active area 
of research in machine learning. Finally, we use our 
music emotion classifier in an application where we 
match the time-varying emotion in a content video with 
the emotion of the first six seconds of an ad, and we 
show that it performs as well as benchmark models 
while being more explainable.

We conclude with a discussion of some limitations 
and suggestions for future research. First, we focus on 
relatively short music clips in our data and model. This 
choice is motivated by the application of ad insertion, 
where typically, a video ad is played and the user is 
allowed the choice to skip six seconds into the ad. 
Although the method in principle applies to clips of any 
duration, in practice we might consider altering the 
architecture of the deep learning model to include tem-
poral dependencies. Second, incorporating listener het-
erogeneity based on demographics could further 
improve the model’s predictive accuracy, but given pri-
vacy concerns, we have opted to leave out listener data. 
Third, investigating the complementarity of unstruc-
tured high-dimensional data across modalities would 
be valuable. In sum, we believe that the growing variety 
of data in conjunction with explainable models offers 
rich research opportunities to quantify emotion and its 
impact.
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Endnotes
1 A content analysis of over 3,000 ads showed that 94% of ads use 
music (Allan 2008). Further, over 75% of advertising hours in broad-
cast media use music in some form (Huron 1989). As Huron (1989, 
p. 572) states, “on a second-for-second basis, advertising music is 
the most meticulously crafted and most fretted about music … .”
2 As of 2024, YouTube has 2.49 billion users, spending on average 
49 minutes per day on YouTube. Spotify has 615 million users 
whose playlists span over 100 million tracks.
3 Many researchers have adopted the valence-arousal framework 
for music emotion classification (e.g., Yang and Chen 2011, Panda 
et al. 2018). Our model can also easily be adapted for other emotion 
frameworks, such as the discrete emotion framework.
4 The theory-based filters are distinct from handcrafted features 
(e.g., mel frequency cepstral coefficients (MFCCs)) that are used 
with traditional machine learning models (e.g., support vector 
machine) because the filter operations are learned from the data 
rather than predefined.
5 See Online Appendix Table A1 for music definitions.
6 In 2020, McKinsey conducted a survey that found that explainabil-
ity is among the top risks that firms are concerned about regarding 
artificial intelligence models. The source for this information is at 
https://www.mckinsey.com/business-functions/quantumblack/our- 
insights/global-survey-the-state-of-ai-in-2020.
7 We use the emotion elicited by only the music as a proxy (or the 
dominant modality) for the emotion elicited by the video. This is 
reasonable given that music is typically designed to elicit the 
intended emotion in videos (Bullerjahn and Güldenring 1994, Her-
get 2021). We also examine how other modalities in video (e.g., text 
of dialogues and images) can be used alongside music emotion in 
Section 5.3.3.
8 More specifically, it is a two-dimensional image in which the y 
axis denotes frequency, the x axis denotes time, and color captures 
the magnitude of each frequency at each time point.
9 Goodfellow et al. (2016, p. 309) write in their textbook the follow-
ing about square convolution filters: “When a task involves incor-
porating information from very distant locations in the input, then 
the prior imposed by convolution may be inappropriate.”
10 Consonance refers to a combination of notes that sound pleasant 
when played simultaneously. Dissonance, or the lack of conso-
nance, refers to a combination of notes that sound jarring when 
played simultaneously (Müller 2015). Consonance is one of the few 
features that has a strong relationship with valence. Models that 
predict music emotion have historically been better at classifying 
arousal and worse at classifying valence (Aljanaki et al. 2017).
11 Online Appendix Table B1 organizes features used in music clas-
sification by level of interpretability.
12 Nelson et al. (2013, p. 90) write: “Most films, however, are tar-
geted at a broad, global audience with the implicit understanding 
that they share a common familiarity with Western tonal music, so 
the overtone series is the foundation of the cinematic musical 
language.” According to Christensen (2006), “tonality most often 
refers to the orientation of melodies and harmonies toward a refer-
ential (or tonic) pitch class.”
13 For a survey focused on television advertising, see Wilbur (2008).
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14 We use six seconds of audio, but the model can easily be adapted 
to incorporate other audio lengths.
15 Two different waveforms can map to the same sound.
16 To operationalize this procedure, we first digitize the analog 
audio signal by sampling from the signal because we are working 
with digital technology. The sampling rate represents the number 
of samples taken per second and is measured in hertz. The optimal 
sampling rate depends on the context. We will use a sampling rate 
of 44,100 Hz, which is also used for CD recordings because it gener-
ates an STFT spectrogram that covers the range of human hearing, 
spanning from roughly 20 to 20,000 Hz. Because time has been dis-
cretized, we now measure time in terms of the number of samples 
rather than in seconds. We set the window type to Hann, the win-
dow size to 4,096 samples, and the hop length to 512 samples. These 
are standard choices in the literature (Müller 2015). A Hann win-
dow is a bell-shaped window that places more weight on the center 
of the window and less weight on the edges of the window.
17 We follow the literature in choosing the dimensions of the spec-
trogram (Müller 2015). The time dimension is equal to the length of 
music clip (6 seconds) × sampling rate (44,100 Hz)/hop length (512) 
� (6 × 44,100=512) � 517. The frequency dimension is equal to half 
the window sample size + 1 � (4,096=2+ 1) � 2049. The rationale for 
using half the window sample size is that in transforming the audio 
information from the time domain to the frequency domain, the dis-
crete Fourier transform transforms the 4,096 samples to 4,096 fre-
quency bins, but half of them are redundant. It is helpful to have 
high granularity on the frequency dimension because our theory- 
based convolution filters are focused on frequency. We observed 
empirically that using 4,096 frequency bins outperforms 2,048 fre-
quency bins.
18 By using a log scale, small intensity values of relevance are visible 
to a human reader.
19 Pitch is a subjective measure of frequency, and it is defined as the 
attribute of sound that allows it to be ordered on a scale from low to 
high. For a pure tone sine wave, the pitch and frequency are the 
same, and they are determined by its fundamental or lowest fre-
quency. However, they can differ for more complex and realistic 
sounds. In all cases, the higher the frequency, the higher the per-
ceived pitch is.
20 The source is https://splice.com/blog/what-are-harmonics/.
21 In Western music, instruments are typically tuned in reference to 
A4 being 440 Hz to establish typical intervals between instruments.
22 If height and width represent the y and x axes, channel can be 
thought about as the z axis. The loss function incentivizes the model 
to learn different features over different channels. So, for example, 
for images, one channel might learn to detect vertical edges, a sec-
ond channel might learn to detect horizontal edges, and a third 
channel might learn to detect texture. The optimal number of chan-
nels is determined empirically. The flexibility to learn different fea-
tures is a large part of why CNNs have been so successful in image 
classification.
23 A small stride captures more fine-grained information but also 
requires more computational and resource costs.
24 In earlier versions of the model, we tried other window lengths 
and did not find improved predictive performance. We also tried 
combining filter types, but similarly, we did not see an increase in 
performance; so, we chose the most parsimonious model and did 
not include other filter types.
25 Recall that the mel spectrogram has 517 time samples, which are 
a function of the music clip length, the sampling rate, and the hop 
length used to construct the spectrogram.
26 This convolution transforms the 256 × 517 mel spectrogram to a 1 
× 517 feature map for each channel.

27 Because music is temporal, it is natural to think about using a model 
that captures dependencies over time. Note, however, that our interest 
is in classifying emotion for short audio clips, so it is not clear that 
long-range dependencies will help with predictive performance. An 
alternative architecture is to incorporate positional information by 
including an recurrent neural network (RNN) layer in place of average 
pooling to summarize the feature maps over time. We find that this 
model results in lower classification performance (F1 � 0.42) than our 
proposed model without positional encoding. This is consistent with 
the fact that in Choi et al. (2017, figure 3), they also find that RNN mar-
ginally reduces the classification accuracy for the two emotions they 
classify (happy and sad). Because of the short duration of six seconds, 
there is limited potential to improve performance, and the overall per-
formance from adding the RNN deteriorates because of overfitting 
because the RNN introduces many more parameters. However, 
including RNN may improve performance with longer duration clips. 
Note also that in our setting, the emotion of a song may vary over 
time, so it might not be the case that longer duration clips would 
always perform better, especially if we are making an assumption that 
a single clip has only one dominant emotion.
28 For example, when classifying an image as a great white shark as 
opposed to a whale shark, a good image classifier might produce a 
heat map that highlights the area with sharp teeth.
29 This equation is adapted from Selvaraju et al. (2017, equations 1 
and 2) to our setting, where the feature maps for each channel have 
only one dimension. ReLU takes the max of zero and the input to 
the function.
30 The number of clips with true quadrant label j is nj.
31 Music emotion researchers group emotion into expressed, per-
ceived, and evoked emotion. Expressed emotion refers to the emo-
tion that the performer tries to communicate, perceived emotion 
refers to the emotion that a listener perceives from a song, and 
evoked emotion refers to the emotion that a listener actually feels in 
response to a song (Jaquet et al. 2014). Most often, the emotion of 
interest is evoked emotion, but because of its subjectivity, research-
ers typically build data sets that use perceived emotion labels, as is 
the case for Soundtracks and DEAM. Perceived emotion and 
evoked emotion are typically positively related (Kallinen and 
Ravaja 2006), so we do not distinguish between the two.
32 The relatively low Cronbach’s alpha also highlights the inherent 
subjectivity of music emotion labeling.
33 We create the folds at the song level rather than at the six-second 
clip level to prevent data leakage. If clips from the same song are 
part of both the training data and the testing data, the training pro-
cess may pick up some other elements of the song that can be used 
to predict emotion in the test data, leading to high accuracy but 
lower generalizability.
34 For instrument identification, trained ears will have high agree-
ment on which instruments are present, and predicting instruments 
obtains high F1 values, from 0.82 for guitar to 0.99 for drums (Blas-
zke and Kostek 2022). For emotion classification, Liu et al. (2017) 
obtain F1 values ranging from 0.41 to 0.60 on the CAL500 and 
CAL500exp data sets.
35 Online Appendix J shows the confusion matrices for the square 
and harmonics filters.
36 An alternative input to the mel spectrogram is the STFT spectro-
gram. Although the literature has most frequently used mel spectro-
grams because they are more reflective of how humans hear, we 
also assess the performance of using STFT spectrograms because 
they are more granular. We find that the average mel model perfor-
mance measures are slightly higher than those from the STFT 
spectrograms.
37 In Online Appendix H, we show the effect of data set size on 
model performance. We subsample the data and show the change 
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in precision, recall, and F1 for the model with harmonics filters. As 
expected, we find that more data improve performance, but consis-
tent with Brigato and Iocchi (2021), even very small data sets pro-
vide signal to differentiate among classes.
38 When we average the brightness values by predicted label, we 
observe the same ordering. In this case, the scaled average bright-
ness levels are B1 � 55, B2 � 42, B3 � 45, and B4 � 90.
39 Although we can get a sense of concepts, like tempo, loudness, 
and timbre, by reading a mel spectrogram, we cannot visually 
extract consonance (except in rare cases, such as a single violin 
string being played). Music theorists have proposed several formu-
las to quantify sensory dissonance based on human hearing and the 
physics of sound. Our filters enable the deep learning algorithm to 
learn this relationship as it relates to listener emotion.
40 SHAP values measure feature importance, capturing the contri-
bution of each feature to the model’s output.
41 Panda et al. (2018) comprehensively consider a wide set of hand-
crafted features, and they identify the ones that most impact classifi-
cation into the emotion quadrants. Most of the identified features 
are low-level features that capture tone color/timbre.
42 Many web browsers have eliminated third-party cookies. In 
March 2021, Google announced that it would stop tracking the 
web-browsing behavior of individuals (source: https://www. 
businessinsider.com/google-to-stop-tracking-individuals-web-browsing- 
precision-ad-targeting-2021-3).
43 Film professionals and researchers recognize the importance of 
music in driving emotion. Nelson et al. (2013, p. 79) write: “Music 
plays many roles in film, but it is possible to categorize all of them 
into two primary functions: creating consonance or dissonance to 
highlight the film’s emotion or narrative.”
44 From YouTube’s documentation, “YouTube’s advanced machine 
learning technology looks over a large volume of videos and learns 
to detect the best places for midrolls. This is done by evaluating fac-
tors like natural visual or audio breaks” (source: https://support. 
google.com/youtube/answer/6175006?hl=en\#zippy=\%2Cfrequently- 
asked-questions).
45 For ads originally longer than 30 seconds, we use a 30-second 
clip to keep the ad length consistent across cells. In these cases, we 
start and end the ads at natural points.
46 Each content video received 12–17 tags, and each ad received 
15–19 tags. Valence and arousal are measured on a scale of 0 to 100, 
so we convert the valence and arousal levels to valence-arousal 
quadrants.
47 This is different from YouTube’s definition of skip rate (i.e., 1 �
view rate). YouTube counts a view as having watched at least 30 
seconds of an ad or its duration if it is less than 30 seconds.
48 Participants were asked to watch a five- to eight-minute video 
and then answer some questions about the video. The survey was 
limited to Prolific workers who have U.S. citizenship, are fluent in 
English, have an approval rating greater than 97%, and have com-
pleted at least 50 previous Prolific tasks. Workers who tagged the 
content video and ad emotions were excluded from participating in 
the experiment. The survey took on average 11.6 minutes to com-
plete, and each participant was paid $1.80 for the time. Participants 
who failed the attention checks were excluded.
49 We also assess the impact of emotional distance on log view 
time, and we find that the regression coefficients are negative and 
statistically significant at the 0.05 level. We focus on skip because 
we are interested in understanding the interaction of the content 
video and the beginning of the ad, for which ad skip is a better 
proxy.
50 For the deep learning models, the final softmax layer generates a 
probability distribution over the four valence-arousal quadrants. 

Instead of selecting the highest probability quadrant, we retain the 
probability distribution.
51 For example, we find that for the content video Hope and ad 
Fragile, the mel—harmonics model suggests that the sixth ad inser-
tion point is the most emotionally similar to the ad.
52 See https://www.theguardian.com/music/2014/may/07/one- 
quarter-of-spotify-tracks-are-skipped-in-first-five-seconds-study-reveals.
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Teeny JD, Siev JJ, Briñol P, Petty RE (2021) A review and conceptual 
framework for understanding personalized matching effects in 
persuasion. J. Consumer Psych. 31(2):382–414.

Thompson WF, Balkwill LL (2010) Cross-cultural similarities and 
differences. Juslin PN, Sloboda JA, eds. Handbook of Music and 
Emotion: Theory, Research, Applications (Oxford University Press, 
Oxford, UK), 755–788.

Toubia O, Berger J, Eliashberg J (2021) How quantifying the shape 
of stories predicts their success. Proc. Natl. Acad. Sci. USA 
118(26):e2011695118.

Troncoso I, Luo L (2023) Look the part? The role of profile pictures 
in online labor markets. Marketing Sci. 42(6):1080–1100.

Unni D, D’Cunha AM, Deepa G (2022) A technique to detect music 
emotions based on machine learning classifiers. 2022 Second 
Internat. Conf. Interdisciplinary Cyber Physical Systems (ICPS) 
(IEEE), 136–140.

Wang X, He J, Curry DJ, Ryoo JH (2022) Attribute embedding: 
Learning hierarchical representations of product attributes from 
consumer reviews. J. Marketing 86(6):155–175.

Wilbur KC (2008) A two-sided, empirical model of television adver-
tising and viewing markets. Marketing Sci. 27(3): 356–378.

Yang Y, Chen H (2011) Predicting the distribution of perceived emo-
tions of a music signal for content retrieval. IEEE Trans. Audio 
Speech Language Processing 19(7):2184–2196.

Yang J, Zhang J, Zhang Y (2023) First law of motion: Influencer 
video advertising on TikTok. Preprint, submitted August 18, 
http://dx.doi.org/10.2139/ssrn.3815124.

Yang J, Xie Y, Krishnamurthi L, Papatla P (2022) High-energy ad content: A 
large-scale investigation of TV commercials. J. Marketing Res. 59(4):840–859.

Zhang M, Luo L (2023) Can consumer-posted photos serve as a 
leading indicator of restaurant survival? Evidence from Yelp. 
Management Sci. 69(1):25–50.

Fong, Kumar, and Sudhir: Theory-Based Explainable Deep Learning for Music Emotion 
24 Marketing Science, Articles in Advance, pp. 1–24, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
2.

31
.2

36
.2

] 
on

 1
2 

Se
pt

em
be

r 
20

24
, a

t 0
7:

08
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Appendix

A. Music Concepts

Table A1 Definitions of Music Concepts

Concept Type Definition

Frequency Physical The number of cycles a sine wave completes in a second, measured in Hertz (Hz)
Fundamental
Frequency

Physical Lowest natural frequency of a sine wave

Partial Physical Any of the sine waves that comprise sound
Harmonic Physical A frequency that is an integer multiple of the fundamental frequency
Spectrum Physical The range of frequencies contained in a signal
Musical
Interval

Physical Spacing between two sounds in frequency

Pitch Perceptual The attribute of sound that allows it to be ordered on a scale from low to high
Note/Tone Perceptual A pitched sound
Pitch Class Perceptual Set of all pitches that are an integer number of octaves apart
Harmony Perceptual Set of pitches played simultaneously
Tonalness Perceptual Music that has a specific note on which it is the most stable and at rest
Consonance Perceptual A combination of notes that sound pleasant when played simultaneously
Dissonance Perceptual A combination of notes that sound harsh or jarring when played simultaneously
Loudness Perceptual The intensive attribute of an auditory sensation, in terms of which sounds may be

ordered on a scale extending from soft to loud
Timbre Perceptual The attribute of auditory sensation in terms of which a listener can judge that two

sounds similarly presented and having the same loudness and pitch are dissimilar

B. Music Feature Interpretability

Fu et al. (2010) use top-level labels to describe music constructs humans understand, like emotion and genre.

To predict these labels, researchers use audio features, which can be divided by level of music understanding

(i.e., interpretability). Low-level music features, obtained directly from the audio using simple mathematical

transformations, are not closely connected to musical properties perceived by human listeners. More complex

mid-level music features are usually based on transformations of the low-level features and are more closely

connected to musical properties perceived by humans.

Table B1 Music Features by Interpretability Level (Fu et al. 2010)

Feature Type Musical Construct Examples

Top-level labels Emotion Valence, arousal
Genre Pop, rock, jazz
Instrument Piano, violin, flute

Mid-level features Harmony Chord sequences
Rhythm Beat histogram
Pitch Pitch histogram, chroma

Low-level features Frequency MFCC, zero crossing rate
Time Amplitude modulation, statistical moments

1
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C. Harmonics and Mid-level Musical Features

We explain how harmonics impact mid-level musical features that influence emotional response to music.

C.1. Harmonics and Consonance

Harmony captures the perception of simultaneous pitches and is characterized as being consonant or disso-

nant. In general, consonant sounds, such as the octave, are considered “pleasant or restful,” while dissonant

sounds are considered jarring (Sethares 2005).1 Studies have revealed that consonance and dissonance are

not binary categories, but rather opposite ends of a continuum.

Plomp and Levelt (1965) show that unison (two notes with identical frequencies) is the point of global

maximum of consonance and specific other two-note frequency intervals form local maxima. Consonance is

associated with small integer ratios of pitch frequencies. Music theorists have suggested that the physics

underlying consonance is the occurrence of overlapping harmonics (Sethares 2005), which occurs with small

integer ratios. When a given sound has many overlapping harmonics, it is perceived as being consonant.

Consonance and dissonance are known to influence emotional response to music. Consonance is associated

with positive valence emotion (e.g., tenderness) while dissonance is associated with negative valence emotion

(e.g., fear). Consonance is also associated with low arousal emotion (e.g., contentment) while dissonance is

associated with high arousal emotion (e.g., fear) (Gabrielsson 2016).

C.2. Harmonics and Timbre

Timbre is the quality of a sound that distinguishes it from another sound with the same loudness and pitch.

Different musical instruments and voices create different patterns of harmonics varying in arrangement and

strength when generating the same fundamental frequency, which create their timbre, or the “acoustic finger-

print” of an instrument or voice (Nelson et al. 2013). Tones with a strong emphasis on higher harmonics (i.e.,

high multiples of the fundamental frequency) are associated with high arousal while tones with suppressed

higher harmonics are associated with low arousal (Gabrielsson 2016). Given that the filters are designed

around harmonic frequencies, they are capable of learning different timbre patterns that help predict emotion.

C.3. Harmonics and Pitch

Pitch is the quality of a sound that allows it to be ordered on a scale from low to high. The fundamental

frequency determines the perceived pitch, but the presence and alignment of harmonics affect how clearly

the pitch is perceived. According to Gabrielsson (2016), “High pitch may be associated with expressions as

happy, graceful, serene, dreamy, exciting, surprise, potency, anger, fear, and activity. Low pitch may suggest

sadness, dignity/solemnity, vigor, excitement, boredom, and pleasantness.” The filters are capable of learning

different pitch patterns predictive of emotion.

1 A classic example of a dissonant sound is the tritone. The tritone has been used in contemporary movies and music
to provide a negative connotation or of something foreboding or fear-inducing (Lerner 2009).



Explainable Deep Learning for Music Emotion 3

D. Benchmark Models for Comparison

CNN with Square Filters. Image recognition CNN models typically use square filters that capture associ-

ations across two orthogonal spatial dimensions. Although mel spectrograms visualize music, the vertical

and horizontal dimensions represent frequency and time rather than spatial dimensions. Thus, in music, the

dimensions have very different meanings and resulting properties.

To operationalize the CNN with square filters, we borrow the architecture based on the VGG image

classification model used by Chowdhury et al. (2019) to classify emotion on the Soundtracks dataset. The

model includes nine convolutional layers that primarily use 3×3 square filters alongside batch normalization,

ReLU, and dropout. After the ninth convolutional layer, the model uses average pooling to summarize the

information over different channels and then a fully connected layer to predict valence and arousal.

CNN with Rectangular Filters. It is possible that square filters might not be ideal to capture the features of

audio data. Thus, we generalize this by using rectangular filters that are relatively more: (a) tall and narrow

(specifically, replace each k × k convolution filter by a 2k × k filter), and (b) short and wide (specifically,

replace each k× k convolution filter by a k× 2k filter). We make these replacements for both the 5× 5 and

3× 3 filters that are used in our baseline square filter model.

CNN with Time and Frequency Filters. We compare our proposed mid-level harmonics filters against low-

level time and frequency filters proposed by Pons et al. (2016). We design a model that uses frequency filters,

a model that uses time filters, and a model that combines the two types of filters. Frequency filters, which

are tall and skinny, are designed to capture timbral features across the frequency spectrum, e.g., a specific

combination of notes, while time filters, which are short and wide, are designed to capture temporal features,

e.g., tempo. We allow the models additional flexibility by including an additional fully connected layer after

pooling and before the final classification.

E. Consonance Blinders Transformation

We describe the process to transform the STFT blinders to mel blinders. To simplify the problem, let us

assume that the frequency dimension of the STFT is continuous for now. For fundamental frequency f0 we

retain the frequencies f0, f1 = 2f0, f2 = 3f0,..., fn = (n+ 1)f0. To account for human auditory perception,

we allow for a band of frequencies centered around each frequency. The bandwidths are based on a constant

bandwidth so our retained frequencies with bandwidth δ are of the form: [fn− δ, fn + δ].

We allocate the power associated with the frequencies to the mel bands. The mel filter bank maps fre-

quencies to (a maximum of 2) mel bands. Figure E1 shows the mapping of frequencies to 20 mel bands

(in the paper we use 256 but it is more challenging to visualize). The top of each triangle represents the

center of each band. Each triangle represents the weight each frequency contributes to a particular band.

For example, the right most triangle maps frequencies ranging from roughly 5,400 - 7,000 Hz to the 20th

mel band. Frequencies below 5,400 Hz receive zero weight. The triangles grow wider with higher frequencies

because human hearing resolution is worse at higher frequencies. Let βj represent the function that maps
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Figure E1 Mel Filter Bank

frequencies to mel band j (i.e., the triangles). Let b− and b+ represent the lowest and highest frequencies,

respectively, which map to mel band j and b the midpoint of the two numbers ( b
−+b+

2
). βj is defined as:

βj(x) =


0 if x< b−

x−b−
b−b− if b− ≤ x≤ b
b+−x
b+−b if b≤ x≤ b+

0 if x> b+

(1)

Then the contribution of frequency band [fn− δ, fn + δ] to mel band j, Mjn, is:

Mjn =

∫ fn+δ

fn−δ
βj(x)P (x)φ(x)dx (2)

where x represents frequency, P (x) the power of x, and φ(x) the distribution over frequencies. We assume

φ(x) ∼ U [fn− δ, fn + δ]. Since multiple frequency bands could contribute to a single mel band, we sum the

contributions so the final power of mel band j is Mj =
∑

n
Mjn. The set of power over all j comprises the

mel blinders. They highlight which mel bands are input to the CNN and the weight of each band.

F. Mel - Harmonics CNN Architecture Choices

We describe a few relatively standard CNN modeling choices and their operationalization in the model.

Table F1 Standard CNN Model Elements

Element Purpose

Pooling Pooling applies a function over all units within a specified filter shape. We evaluate average
pooling over time and both average and max pooling over pitch class. Max pooling over pitch
class results in a higher F1 than average pooling so we use average pooling over time and max
pooling over pitch class in our main model specification.

Batch Normal-
ization

Batch normalization standardizes the inputs (mean zero, standard deviation one) in a mini-
batch (data seen each time model parameters are updated). This procedure standardizes the
inputs and helps achieve faster training, reduces overfitting, and stabilizes learning.

ReLU Rectified Linear Activation Unit (ReLU) transforms the output of convolution to allow the
model to learn nonlinear relationships.

Dropout A form of regularization, dropout randomly removes neurons in specified layers of the neural
network each mini-batch based on the specified dropout rate to prevent overfitting and obtain
a more robust model.

Fully Connected
Layer

Layer that connects every neuron in the hidden layer previous to every neuron in the next layer.
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G. Dataset Merging Details

Our dataset is made up of the Soundtracks data combined with the DEAM classical and pop data. Sound-

tracks and DEAM were annotated on different numeric scales and in this section, we describe how we

combine the two. For the Soundtracks data, perceived valence and arousal were annotated on a set of dis-

crete emotions, as well as on bipolar scales (using adjectives), which the researchers transformed to a scale

ranging from 1 to 7. The valence extremes were captured by the adjectives pleasant-unpleasant, good-bad,

and positive-negative. The arousal extremes were captured by the adjectives awake-sleepy, wakeful-tired, and

alert-drowsy. The midpoint of the numeric scale for Soundtracks is (4,4) for valence and arousal.

We observe that for the excerpts chosen to capture discrete emotions, the labels have high inter-rater

consistency for all emotions except for surprise. We therefore use the discrete emotion labels to map these

excerpts to the emotion quadrants. For the excerpts chosen to capture dimensional emotions and surprise,

we use the valence and arousal labels to map these excerpts to the four quadrants.

For the DEAM data, perceived valence and arousal were annotated continuously on a scale of -10 to +10.

Like Soundtracks, the DEAM creators also provided adjectives to describe valence and arousal. The valence

extremes were extremely negative/unpleasant to extremely positive/pleasant with neutral in the middle. The

arousal extremes were low arousal/calm to high arousal/activated/excited. Aljanaki et al. (2017) transform

the data to range from -1 to +1. The midpoint of the numeric scale is therefore (0,0).

It is important that the Q1 to Q4 emotion labels are based on the scale used for each dataset. For example,

Q1 captures positive valence-high arousal emotion. For Soundtracks, this maps to valence ≥ 4 and arousal

≥ 4 or discrete emotion = happy while for DEAM this maps to valence ≥ 0 and arousal ≥ 0. It would be

incorrect to label Soundtracks using the DEAM scale and vice versa. Essentially, we have standardized the

data so that the emotion quadrants mean the same thing for the DEAM and Soundtracks datasets.

H. Impact of Dataset Size

Table H1 Performance by Dataset Size for Mel - Harmonics Model

Precision Accuracy/Recall F1

25% of data 0.5069 0.4713 0.4571
(0.0893) (0.0711) (0.0598)

50% of data 0.5129 0.5023 0.4976
(0.0606) (0.0570) (0.0601)

100% of data 0.5224 0.5049 0.5057
(0.0505) (0.0478) (0.0506)

I. Handcrafted Features

We use 11 handcrafted features highlighted by Panda et al. (2018) for predicting the emotion quadrants.

J. Confusion Matrices

The confusion matrices for the other models are available upon request from the authors.

K. Grad-CAM Visualizations

L. Application Study Details

Below we provide more details for the ad insertion application.
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Table I1 Top Music Emotion Base Features from Panda et al. (2018)

Feature in Panda et al.
(2018)

Feature in MIR
Toolbox

Musical
Concept

Definition

FFT Spectrum - Spectral
2nd Moment (median)

Spectral Spread
(median)

Tone Color Standard deviation of the spectrum; a measure
of the spread of the distribution

FFT Spectrum - Average
Power Spectrum (median)

Spectral Centroid
(median)

Tone Color The geometric center of the spectrum distri-
bution can be an indicator of the “brightness”
or “sharpness” of the sound

FFT Spectrum - Skewness
(median)

Spectral Skewness
(median)

Tone Color The third moment of the spectrum; a measure
of the symmetry of the distribution

Spectral Skewness (std) Spectral Skewness
(std)

Tone Color See above

Spectral Skewness (max) Spectral Skewness
(max)

Tone Color See above

MFCC1 (mean) MFCC1 (mean) Tone Color MFCC offers a description of the spectral
shape of the sound

MFCC1 (std) MFCC1 (std) Tone Color See above
Roughness (std) Roughness (std) Tone Color An estimation of the sensory dissonance
Rolloff (mean) Rolloff (mean) Tone Color Fraction of energy below specific frequency
Spectral Entropy (std) Spectral Entropy

(std)
Tone Color Shannon entropy offers a general description

of the spectral power distribution
Fluctuation (std) Fluctuation (std) Rhythm Estimates the rhythm content based on spec-

trogram transformed by auditory modelling

Figure J1 Confusion Matrices

(a) Mel - Square Filters (b) Mel - Harmonics Filters

L.1. Incorporating Emotion Data from Images and Text

Although music is a key driver of emotion in video, other features like text (what is said), voice tonality

(how it is said), and images can also influence emotion. We use Microsoft Azure to try to extract the emotion

related to these other features to explore the impact of incorporating emotion data from other modalities

beyond the background audio. Azure’s Video Indexer emotion detection algorithm predicts emotion from

speech text and voice tonality. The possible emotions include joy, fear, anger, and sadness. Azure’s Face API

detects emotion based on facial expressions from images.2 The Face API treats the emotion prediction task

2 Starting June 2022, users must apply to use the API due to accuracy concerns for specific demographic groups.
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Figure K1 Frequency and Time Grad-CAM Heatmaps

(a) Frequency Heatmaps

Q1—Exuberance

Q4—ContentmentQ3—Sadness

Q2—Anxiety

Valence

Arousal

(b) Time Heatmaps

Q1—Exuberance

Q4—ContentmentQ3—Sadness

Q2—Anxiety

Valence

Arousal

Notes: Within each quadrant, the Grad-CAM heatmap (left) corresponds to the spectrogram (right). The heatmap

covers the dimensions of the feature map after convolution. The clips are the same as those in Figure 6 of the paper.

as a multiclass problem so the probabilities over the eight possible classes (anger, contempt, disgust, fear,

happiness, neutral, sadness, surprise) sum to one.

For the content videos, the Video Indexer predicted no speech emotion for two of the content videos

since they do not contain speech. The first row in Figure L3 shows the distribution of speech emotion for

the remaining two videos. Each distribution is defined as the average over the 30 seconds prior to the ad

insertion time. The third row shows the human-tagged emotion distributions for comparison. For Run With
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Table L1 Content Video Details

Title Description URL

Lost & Found Two crocheted stuffed animals try to save each
other. Animated and no speech. 6.6 min.

www.youtube.com/watch?v=35i4zTky9pI

Hope A new hatched turtle learns about its surroundings
and tries to get to the ocean. Animated and no
speech. 6.2 min.

www.youtube.com/watch?v=1P3ZgLOy-w8

Unspoken Two people get to know each other and develop
a relationship through writing notes. Live-action
and some speech. 5.7 min.

www.youtube.com/watch?v=8mpFYQbOCFo

Run With Me A handicapped high school student participates in
the 400m race to prove he doesn’t need special
treatment. Live-action and speech. 7.9 min.

www.youtube.com/watch?v=EisaD0ZsL3E

Note: The length captures the length of video shown to participants. Some videos are originally longer and we shorten

them to start and end at natural times. Table K2 specifies the start and end times.

Table L2 Ad Insertion Times

Video Start Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 End

Lost & Found 0:16 1:15 2:00 3:01 3:48 5:11 6:05 6:50

Hope 0:18 1:20 2:10 2:55 3:45 4:45 5:59 6:30

Unspoken 0:01 1:01 1:57 2:54 3:26 4:12 5:14 5:43

Run With Me 4:30 5:37 7:44 9:00 9:45 10:45 11:40 12:24

Note: Times are minute:second and based on time since 0:00 rather than time since Start.

Table L3 Ad Details

Brand Start Time End Time URL

Kit Kat 0:00 0:30 www.youtube.com/watch?v=4X_e3UWS9aA

Fragile Childhood 0:23 0:53 www.youtube.com/watch?v=XwdUXS94yNk

Eli Lilly–Cymbalta 0:13 0:43 www.youtube.com/watch?v=Nf6Mm__M5RU

Calm App 0:00 0:30 www.youtube.com/watch?v=LWisCdA5rB4

Me, Segment 3 aligns with the human-tagged emotion but Segments 1 and 2 less so. For Unspoken, Segments

4 and 5 are identified to be negative by the Video Indexer as well as by humans.

The Face API predicted no emotion for two of the content videos since they do not contain human faces

but instead contain animated animal faces. The second row in Figure L3 shows the distribution of facial

emotion for the remaining two videos. Each facial emotion distribution is defined as the average over the

30 seconds prior to the ad insertion time. For the most part, the faces are predicted to be either neutral

or happy. For Run With Me, we see that there are some similarities with human-tagged emotion in that

Segments 3, 4, and 6 are higher in facial happiness and higher in Q1.

Given the little speech present in the first six seconds of the four ads, we cannot use the Video Indexer for

speech emotion in our setting. We can, however, use the Face API in combination with the music emotion

classifiers to determine the optimal emotion-based ad insertion point for the two content videos Run With

Me and Unspoken. We calculate the JS distance based on face emotion and the JS distance based on

music emotion for each ad insertion and ad combination and sum the two distances to determine which ad

insertion point is the most emotionally similar for each ad and content video combination. Following the

same procedure used with music emotion we calculate the average human-tagged JS distance, skip rate, and
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Figure L1 Human-Tagged Emotion Distributions of Content Videos

Figure L2 JS Distance between Ads and Content Videos

recall rate for each model. Table L4 compares these measures from using face and music emotion versus

using only music emotion for the two content videos Unspoken and Run With Me.

Including face emotion slightly improves the recall rate but hurts the skip rate. Overall, there is potential

in incorporating emotion information from images and text but the existing tools are limited in their ability

to extract emotion information from short clips (i.e., first six seconds of ads) and animated videos. The
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Figure L3 Content Speech and Facial Emotion Distribution

(a) Speech Emotion - Video Indexer

(b) Facial Emotion - Face API

(c) Human-tagged Emotion
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Table L4 Face and Music Emotion vs. Only Music Emotion - Unspoken and Run With Me

Feature Model JS Distance Skip Rate Recall Rate

Music Emotion
Mel - Harmonics CNN 0.429 42.0% 48.9%
Mel - Harmonics + Tempo Features CNN + RF 0.395 40.7% 48.8%
Face and Music Emotion
Mel - Harmonics CNN 0.459 46.1% 49.9%
Mel - Harmonics + Tempo Features CNN + RF 0.445 47.6% 49.0%

results suggest that audio models like the one included in Azure’s Video Indexer service could benefit from

incorporating music emotion classification.
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