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We provide the mathematical and empirical foundations of the friendship paradox
in networks, often stated as “Your friends have more friends than you.” We prove a
set of network properties on friends of friends and characterize the concepts of ego-
based and alter-based means. We propose a network property called inversity that
quantifies the imbalance in degrees across edges and prove that the sign of inversity
determines the ordering between ego-based or alter-based means for any network,
with implications for interventions. Network intervention problems like immunization
benefit from using highly connected nodes. We characterize two intervention strategies
based on the friendship paradox to obtain such nodes, with the alter-based and ego-
based strategy. Both strategies provide provably guaranteed improvements for any
network structure with variation in node degrees. We demonstrate that the proposed
strategies obtain several-fold improvement (100-fold in some networks) in node degree
relative to a random benchmark, for both generated and real networks. We evaluate
how inversity informs which strategy works better based on network topology and
show how network aggregation can alter inversity. We illustrate how the strategies can
be used to control contagion of an epidemic spreading across a set of village networks,
finding that these strategies require far fewer nodes to be immunized (less than 50%,
relative to random). The interventions do not require knowledge of network structure,
are privacy-sensitive, are flexible for time-sensitive action, and only require selected
nodes to nominate network neighbors.

networks | contagion | seeding

We examine the underlying mathematical and empirical foundations of the friendship
paradox and define a network property called inversity, which has implications for
network interventions. The friendship paradox has often been simply referred to by the
maxim, “Your friends have more friends than you do.” However, we show that there
are two distinct ways of understanding this statement, which lead to different network
properties that we term as the ego-based and alter-based mean number of friends of
friends. We find that both means are higher than the average degree across nodes in the
network. We show that the properties are not just conceptually distinct, but they are also
empirically so across a wide class of generated and real-world networks. We identify a
network property, inversity, that connects the two means, and for any network, the sign
of inversity determines whether the ego-based mean or alter-based mean is higher. Since
these mathematical properties apply to any network, not just those based on friendship,
we use neighbor in place of friend henceforth.

The above results have direct implications for interventions by finding highly
connected nodes in a network using privacy-sensitive methods based on the friendship
paradox. The two means lead to corresponding ego-based and alter-based strategies for
obtaining highly connected nodes, of which the alter-based strategy has not been used
in network interventions before. The inversity of the network indicates which strategy
(ego-based or alter-based) is better for obtaining highly connected nodes. We show in
empirical real-world networks, and in generated networks, that the strategy used can
make a meaningful difference. We illustrate, using a simplified application with real
networks, how using inversity to choose the ego-based or alter-based strategy to identify
inoculation candidates considerably reduces the epidemic threshold and peak infection
relative to random selection.

Friendship Paradox

The friendship paradox, which our interventions are based on, is colloquially stated as the
idea that people’s neighbors are more popular than them (1, 2).* The intuition for why

*The phenomenon has also been generalized to the idea that individual attributes and degree are correlated (3), e.g., an
individual’s coauthors are more likely to be cited (4), or that neighbors are more important (5), or more socially active (6).
Of specific relevance to this research is the mathematical generalization to distributions examined in ref. 7.
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the friendship paradox helps obtain well-connected nodes is this:
Since highly connected nodes (hubs) are connected to many
other nodes, obtaining a random friend (neighbor) of a random
node is likely to result in selecting hubs with greater likelihood,
compared to the case of randomly selecting nodes.

We establish that the friendship paradox is not just one
statement, but rather a set of distinct claims (All theorems and
proofs are in SI Appendix, §S.B). First, we find an impossibility,
i.e., the individual-level friendship paradox cannot hold for all
individuals in any given network (SI Appendix, Theorem S1). In
practice, for real networks, it can hold for a large proportion of
nodes in the network (SI Appendix, §S.D and Figs. S3 and S4).
Second, we demonstrate that in contrast to the impossibility of
the individual friendship paradox, the network-level friendship
paradox always holds for any nonregular network. We show
how the average number of neighbors of neighbors can be
characterized in two different ways, using the ego-based and
alter-based means, as defined below. Both ego-based and alter-
based means are greater than the mean degree of the network,
and they are related through a network characteristic we term
inversity.

Ego-Based and Alter-Based Means. We formally characterize
the two distinct but related network properties deriving from
the friendship paradox relating to the “average number of
neighbors of neighbors.” We denote an undirected network (see
SI Appendix, Table S1 for full notation) as a graph G = (V, E)
with V the set of vertices or nodes, and E the set of edges
(eij ∈ {0, 1}, denoting absence or presence of a connection
between i and j). Di refers to the degree of node i, and N (i)
refers to the set of i’s neighbors. We specify the ego-based mean
as the average number of neighbors of neighbors across the nodes
in the network, consistent with (8):

�E =
1
N

∑
i∈V

 1
Di

∑
j∈N (i)

Dj

 . [1]

The alter-based mean is defined as the ratio of the total number
of neighbors of neighbors to the total number of neighbors in
the network, consistent with (1):

�A =

∑
i∈V

[∑
j∈N (i) Dj

]
∑

i∈V Di
[2]

The above means arise from conceptualizing the average
degree across neighbors differently.† Both means above are
consistent with the notion of “average number of neighbors of
neighbors,” although they are distinct network properties (see
SI Appendix, Fig. S1 for an example and detailed explanation).
The alter-based mean was theoretically investigated earlier and
found to be greater than (or equal to) the average degree and
is independent of the network topology, given node degrees
(SI Appendix, Theorem S2). Equality holds only when the
network is regular, with all nodes the same degree within and
across components.‡ The ego-based mean is shown here to be
†We note that a node is also its neighbor’s neighbor under both ego-based and alter-based
properties.
‡There are a number of phenomena that share a similar underlying structure, e.g.,
disproportionately many people grow up in large families, or students experience a class
size that is larger than the average size of classes. The underlying selection process here is
commonly termed probability proportional to size (PPS) (9, 10). In the case of the friendship
paradox, we find that the alter-based mean has a direct mathematical connection to
PPS (neighbors have disproportionately more neighbors). However, the ego-based mean
operates through a different mechanism.

greater than (or equal to) the mean degree (SI Appendix, Theorem
S3).§ However, the contrast is that the ego-based mean has
distinct properties that depend on network topology (i.e., who
is connected to whom). Equality for the ego-based mean only
holds when each component is regular, with no degree variation
within components.

We identify network topologies that result in a greater
divergence between the ego-based and alter-based mean, and
between these means and the average degree, including whether
one of the means is always greater than the other, and whether
they always exhibit correlated variation away from the mean
degree. In SI Appendix, Fig. S2, we find that both the ego-based
and alter-based means can be much greater than the mean degree,
and that between these two means, either one of them can be
greater than the other. In some network topologies, both can be
relatively high compared to the mean degree. We also see that
the alter-based mean is invariant to rewiring the network while
keeping the degree distribution the same, whereas the ego-based
mean is impacted by rewiring (SI Appendix, Theorem S6).

Inversity: Connecting Ego-Based and
Alter-Based Means

We identify and define a network property, inversity, that
determines when the ego-based mean is greater than the alter-
based mean. This property captures all local network information
related to the ego-based mean. We prove that the sign of inversity
determines whether the ego-based mean or the alter-based mean
is higher for any given network.

Inversity is a correlation-based metric that relates the alter-
based and ego-based means for any network, and is obtained as
follows. First, define the following edge-based distributions to
examine the relationship between the means. The origin degree
(O),DO(e), destination degree (D),DD(e), and inverse destination
degree (ID) distribution, DID(e), are defined across directed
edges e ∈ Ê as: DO(ejk) = Dj, DD(ejk) = Dk, DID(ejk) = 1

Dk
.

We define the inversity across the edge distribution as the Pearson
correlation across the origin and inverse degree distributions.

� = Cor
(
DO, DID

)
[3]

We show that the ego-based and alter-based means are con-
nected by inversity and the degree distribution (�m =

∑
i∈V Dm

i )
as follows:

�E = �A + � Ψ(�−1, �1, �2, �3) [4]

where Ψ is a positive function of moments of the degree
distribution (SI Appendix, Theorem S4).

Inversity is a measure of imbalance between the degrees of the
nodes connected by an edge. This imbalance for edge (i, j) is
characterized by the ratio of degrees in both directions, i.e.

(
Di
Dj

)
and

(
Dj
Di

)
. That is, more imbalanced edges tend to have nodes

with a high degree on one end and a low degree on the other
end. This imbalance plays a significant role in both inversity
and the ego-based mean. Consider how the ego-based mean is
obtained: For each node, we take the mean of degrees across the
node’s neighbors. The expected degree of neighbors of nodes (or
ego-based mean) is then 1

N
∑

i
∑

j∈N (i)

(
Di
Dj

)
. This imbalance

§We term these means ego-based or alter-based since they reflect the experience of nodes
in their roles as ego or alter respectively. See SI Appendix, §S.A.
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measure based on ratios explains why inversity is highly sensitive
to stars, whereas assortativity is more sensitive to the presence of
clique-like structures.

When connections (edges) are mostly between nodes of similar
degree, then inversity � is likely to be more negative. In such a
case, the alter-based mean is greater than the ego-based mean.
In contrast, when connections are more likely to be between
nodes of dissimilar degree, then inversity � is positive, and the
ego-based strategy is likely to obtain higher degree nodes. If
inversity is known, we do not need the entire degree distribution
to obtain the ego-based mean. Rather, four moments of the degree
distribution are sufficient for that purpose. Inversity captures the
local information on imbalances in the degrees of nodes across
edges, whereas the moments of the degree distribution represent
global information about the network. Inversity � has a critical
role in determining whether the ego-based or alter-based mean is
greater for a network; specifically, � < 0 indicates the alter-based
mean is higher than the ego-based mean, whereas � > 0 indicates
the opposite. Thus, knowing inversity can help us determine
which strategy to use. Even computing inversity is information-
light, requiring only the 2k distribution, which represents the
degrees of nodes at the termini of each edge, rather than the
entire network (11).

How Inversity Depends On Network Topology. Inversity is the
only term that depends on the network topology in the
relationship between ego-based and alter-based means. We
examine how inversity changes as we change the topology, while
simultaneously preserving the degree distribution. In Fig. 1, we
start with a network with the minimum inversity � = −1, and
then use the rewiring theorem (SI Appendix, Theorem S6) to
examine how inversity increases while the degree distribution
remains fixed. Consequently, the mean degree, variance of
degree, minimum and maximum degree, as well as the alter-
based mean all remain fixed and are identical across each of
the networks (A–I ). Specifically, each network has the following
properties in common: N = 25 nodes, �D = 3.5, �2

D = 3.4,
Dmin = 1, and Dmax = 8. Observe that the alter-based mean,
�A = 6.7 > �D = 3.5, is also the same for each of the networks.

The motivation for keeping degree distribution fixed across the
networks is to examine how local network topology impacts only
the ego-based mean, and not the alter-based mean. Specifically,
noting from panel (A), the degree distribution includes 16 nodes
with degree 1 (the dyads), and 9 nodes with degree 8 (clique or
complete subgraph). We note the rewiring patterns, beginning
with (A), which displays a network with a fully connected
complete component with 9 nodes, and 8 dyads. This network
has the lowest possible inversity of � = −1, consistent with the
idea that no edge connects nodes of different degrees, which is
essential for inversity to be greater than its minimum value.

We use the rewiring theorem (SI Appendix, Theorem S6) to
increase inversity; this approach connects low degree nodes to
high degree nodes, while removing connections between nodes
of intermediate degree. The rewiring increases the variation in
the degrees of the nodes connected by an edge, as the network
transforms from (A and B) and in each further step. We observe
that the nodes in each dyad break up their edge (which connects
nodes of identical degrees), and connect to nodes in the large
component, which contains high degree nodes. We next observe
a star-like structure form, beginning with panel (D). Finally, as
the star-like structure expands, in panels (H and I ), we find that
inversity has changed sign to become positive.

A few general observations are worth noting. First, we see
that inversity and the ego-based mean can be highly sensitive to

ρ = −1A µ = 3.5
ρ = −0.85B µ = 4

ρ = −0.69C µ = 4.5

ρ = −0.54D µ = 5
ρ = −0.39E µ = 5.5

ρ = −0.24F µ = 6

ρ = −0.083G µ = 6.5
ρ = 0.069H µ = 7

ρ = 0.22I µ = 7.4

Fig. 1. How inversity changes with rewiring. The network is changed by
rewiring, starting with the Top Left (� = −1), to increase inversity � as we
traverse from panel (A–I). Observe that the number of nodes, N = 25, the
number of edges |E| = 44, as well as the degree distribution for each of the
networks in panels (A–I) is identical, with 16 nodes with degree 1 and 9 nodes
with degree 8. We note that the ego-based mean is �E = �D = 3.5 for network
(A), but increases along with inversity in panels (B–I), reaching �E = 7.4 for
network (I). The alter-based mean, �A = 6.7, remains constant across all the
networks.

network topology. Second, we note that networks which display
little or no variation among the node degrees connected by an
edge have negative inversity, like in network (A). Third, we
find a wide range of possible networks with different levels of
inversity and ego-based mean for a fixed alter-based mean. These
inversity values range from negative to positive. Finally, the degree
distribution can constrain the range of inversity. We next examine
the implications of these findings for network interventions.

There are many reasons why networks may take forms with
high or low inversity. For the present purpose, we provide some
intuition of relevant processes. We can expect hub-based (or star)
networks to have high inversity, where most nodes have a few ties
that largely go to the relatively few hubs with large numbers of ties
(e.g. social media network of a celebrity). In contrast, we expect
that networks of clusters of various sizes will have low inversity. In
such clusters, members of the large clusters are tied to one another,
obtaining high degree nodes within the cluster. Similarly, nodes
in small clusters tend to have few ties, mostly with one another,
reflecting friendship networks based upon group membership.
The various causes of network structures having different levels
of inversity may be the subject of extensive theoretical and
empirical study in the future. We provide a discussion of this in
SI Appendix, §S.F. For details on inversity values in real networks,
see SI Appendix, §S.C.

Inversity and Assortativity. Inversity � = cor(Di, 1
Dj

) is related
to, but distinct from, the commonly used measure of assortativity,
defined as �a = cor(Di, Dj). We observe that the formulation
of both network properties appears similar, and both have values
ranging from −1 to +1. We might therefore expect inversity to
be a reverse of assortativity, or more specifically �a ≈ −�.
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Can assortativity serve as a proxy for inversity? ¶ We show that
inversity and assortativity can both be the same sign, i.e. both
positive (or both negative). We demonstrate that this same-
sign property can hold across a range of networks, with the
effects detailed in SI Appendix §S.G. This leads to cases where
reliance on assortativity as a proxy for inversity would lead to
incorrect decisions about optimal intervention strategies. Next,
these decisions could also require knowing not just the sign of
inversity, but the difference in magnitudes of expected degree
across the intervention strategies. Approximating � ≈ −�a to
obtain expected degree differences would further magnify these
errors. Broadly, we document how using assortativity as a proxy
metric for inversity is not conceptually appropriate, and not
required since inversity is equally easy to compute. However, it
would be useful to further examine this distinction for real-world
networks.
No monotonic ordering. We observe that there are many pairs of
networks for which we do not obtain appropriate monotonic
ordering across inversity and assortativity. Specifically, there are
pairs of networks G1 and G2, such that we have �(G2) > �(G1)
and �a(G2) > �a(G1), so both assortativity and inversity are
higher for one of the networks. Such an ordering should not
be possible to obtain if assortativity and inversity are a reverse
ordering of each other. The implication is that there is not a
clear one-to-one mapping between assortativity and inversity in
networks.

Network Interventions

Consider the following problems: (a) (Reducing) A new infec-
tious disease is spreading through a large population. We want
to minimize the number of infected individuals by inoculating
the population using a new vaccine. However, we only have a
limited number of doses to administer. (b) (Accelerating) We
have a highly effective medical device with limited samples that
we would like to provide to select medical professionals, who
can then share the information through word-of-mouth. (c)
(Observing) We would like to identify a viral contagion as quickly
as possible by choosing individuals as observation stations (or for
contact tracing). Although seemingly disparate, these problems
of how to reduce, accelerate, or observe dynamic contagion
represent a class of network interventions in which we benefit
from identifying more central or highly connected individuals in
the network (12).#

We show how seeding interventions using the friendship
paradox, using the ego-based and alter-based strategies, impact
network interventions by helping to obtain highly connected seed
nodes in a privacy-sensitive manner from the relevant network.
Note that while the ego-based strategy has been commonly
suggested and used in practice (15–17), its theoretical and
empirical properties have not been examined and characterized
for general networks. The alter-based strategy is novel, and to
our knowledge, has not been suggested or used for network
interventions.

Our approach stands in contrast to most existing methods
of identifying seeds for interventions, which focus on taking
advantage of detailed network data on social connections, and
even on activity to identify influential individuals (18–20). In
such cases, privacy concerns are increasingly relevant, making
it challenging to obtain network data (21–25). Users are also

¶For details of each of these arguments and examples, please see SI Appendix, §S.G.
#We focus on the class of “simple contagion” problems, which require only one exposure,
rather than “complex contagion” problems, which require multiple exposures (13, 14).

concerned that their data may be used in algorithms (26) and
even result in discrimination against them (27). There have
been methods proposed to use only local knowledge and leverage
the community structure to identify influential nodes to use in
network interventions for disease control, so that full knowledge
of the network topology is not required. Such approaches can be
used to find bridging nodes that span communities (28). Other
have suggested nodes that are influential within communities
when considering the community structure (29), which arise
from mechanisms like propinquity (30). However, obtaining
theoretical guarantees without full knowledge of the network
structure is challenging. Our approach, in contrast, is focused
on obtaining higher degree nodes, with provable guarantees for
general network topologies.

Relevant Network Topology. When obtaining network topol-
ogy, the challenge in many cases is that we do not have access
to the relevant network. For instance, in application (a), having
the Facebook (or similar) network structure might not be useful,
since the relevant network would be the physical contact network,
which might be more challenging to obtain. In contrast, for
application (b), finding a high degree node using a physical
contact network of everyone who interacts with a medical pro-
fessional is unlikely to be informative in characterizing opinion
leadership in the profession. For (c), carrying out contact tracing
for all individuals can be expensive in effort and time. These
factors emphasize the importance of being able to leverage the
structure of the relevant network, while being sensitive to privacy
concerns.

The friendship paradox based strategies have several advantages
for implementation. First, despite being informationally light,
the strategies here provide provable advantages for virtually any
network topology, in contrast to strategies that do not provide
such guarantees for general networks. The network structure may
also be expensive to collect, may not be possible to obtain in a
timely manner, or may vary over time, making the proposed
method more valuable. Second, the strategies are much more
privacy-sensitive than fully mapping out social networks. Third,
the strategies can be implemented quickly since they only require
local network information obtained by querying individuals or
interaction data. Finally, the class of interventions here can be
used for both advance and consequent interventions, i.e., for both
prevention and treatment.

Implementing the Intervention Seeding
Strategies

The above formulations of the ego-based and alter-based means
suggest distinct strategies for choosing seeds for interventions, or
intervention strategies. We illustrate random, ego-based, and alter-
based strategies to choose a “seed” node in the network beginning
with an initial randomly chosen node (Table 1). For example,
the ego-based strategy would query randomly selected individual
nodes with the query, “could you suggest the name of a randomly
chosen neighbor?”

The alter-based strategy would ask individual nodes to choose
each of their neighbors with a probability that is fixed across
nodes. The probability can be set to be small (say P = 0.05)
based on how many total seeds are required for interventions, and
also to balance privacy concerns. The alter-based strategy gives
each neighbor of each random person an equal chance of being
selected, and we prove that the expected degree of chosen nodes
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Table 1. Implementation of seeding strategies
Step Details

0 Fix P ∈ (0,1] (only used for alter-based strategy in Step
2G).

Repeat Steps 1 to 2 below until at least k seeds are present in
the seed set S.

1 Draw a random node r uniformly from set of nodes, V .
If r is an isolate, repeat this step.
In example network, Nodes 10, 18, and 12 (in black) are
drawn for (R), (E) and (A) strategies respectively.

2 Depending on the strategy Random (R), Ego-based (E),
or Alter-based (A), do the following:

2R (Random): Add r to the seed set S.
In example network, add node 10 to the seed set.

2L (Ego-based): Obtain a node s chosen with uniform
probability from r ’s neighbors, i.e., s ∈ Nr . Add the
neighbor s to the seed set S.
In example network, one of node 18’s neighbors, node
14 (in red), is chosen at random. Add node 14 to the
seed set.

2G (Alter-based): For each of r ’s neighbors, s ∈ Nr : with
probability P (0 < P ≤ 1), add s to the seed set S.
In example network, each of node 12’s neighbors,
nodes 1, 2, 8, and 9 (in green), are added probabilis-
tically (with probability P) to the seed set.
Implementation: For each s ∈ Nr , draw from an
independent uniformly distributed random variable
zs ∼ U[0,1]. If zs < P, add s to the seed set S.

Note: With Random and Ego-based strategies, we will obtain exactly k nodes in the seed
set S. With the Alter-based strategy, we might obtain more than k nodes in the seed set.
In such a case, we select k nodes at random from the seed set S without replacement.

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

Example Network

is equal to the alter-based mean (SI Appendix, Theorem S5).||
The crucial distinction between the ego-based and alter-based
strategies lies in whether we are choosing one random neighbor
(ego-based) or a fixed probability for each neighbor (alter-based)
of randomly chosen individuals. Depending on the application,
these strategies could be different in ease of implementation, with
ego-based strategy appearing to be simpler. Table 1 details the
algorithms to obtain k seeds in a network of size N � k.

We illustrate how our approach is able to obtain the relevant
network structure in a straightforward manner. Specifically, we
query nodes to select from the relevant network. For instance, in
application (a) where the focus was on physical contagion, the

||These ego-based and alter-based strategies also have connections with respondent
driven sampling (RDS), in which respondents nominate random neighbors or alters, e.g., by
giving them participation tickets (31). An additional advantage of using such an approach
is that the privacy risks are reduced further. The fact that these RDS-based approaches
have been commonly used in earlier interventions indicates that our proposed strategies
are practical and knowledge about implementing them in specific contexts is likely to
already exist.

relevant network is the in-person contact network. The query
would then be phrased as “among the people you have interacted
with in-person, choose one at random.” The idea of such queries
to obtain the relevant network is general, and conditions can be
added to the query (e.g. specifying a time period), depending
on the desired intervention. Similar conditions can be used
for applications (b) and (c). We can thus view the above as a
query that provides a network that is relevant to the specific
application. Next, we evaluate the relative effectiveness of these
intervention strategies.

Effectiveness of Strategies: Leverage

To evaluate how much of an improvement over the random
strategy is possible, and how this varies across a variety of
generated and real networks, we examine the relative effectiveness
of strategies, with the random strategy as the baseline and
characterize leverage as the improvement in expected degree.
Leverage for strategy s on network G is defined as �s(G) = �s(G)

�D(G)

for s ∈ {R, E, A} (since the random strategy obtains the mean
degree in expectation, the leverage for R is �R(G) = 1 and it
serves as a baseline). We examine the leverage of both generated
and real networks.

Generated Networks. The generated networks were obtained
using three generative mechanisms (32–34): (a) Random or
Erdos–Renyi (ER), (b) Scale Free (SF), and (c) Small World
(SW) models, as detailed in SI Appendix, §S.E.

The results are detailed in SI Appendix, Fig. S5. We find that for
ER networks, at very low density (edge probability), the leverage is
very low because most edges connect nodes that have a degree of 1.
As density increases, we obtain more variation in degrees, and ego-
based leverage increases. However, beyond an edge probability
of P = 0.05, leverage decreases as the density of the network
increases. Ego-based leverage thus forms a nonmonotonic pattern
with ER networks. For SF networks, rather than density or edge
probability, we initially examine leverage as the network becomes
more centralized (as  increases above 1, very high degree nodes
have a lower probability of occurring). We find that as  increases
from 1 to 2, the leverage increases, but then decreases beyond 2.
For SW networks, unlike in the ER and SF networks, leverage is
monotonically decreasing with number of neighbors (or density)
and is monotonically increasing with rewiring probability.

Real Networks. The range of real networks is detailed in SI Ap-
pendix, §S.C. First, observing the ego-based strategy (Fig. 2A),
we find that for all networks, as expected, the friendship paradox
strategies are at least as good as the random strategy. Second,
for networks like Twitter (OS4) or Internet Topology (C1),
the leverage can be highly substantial—on the order of 100—
implying that obtaining a connection of a random node will
provide a 100-fold increase in expected degree. Third, we observe
that both ego-based and alter-based leverage (Fig. 2 A and B) are
higher for nodes when average degree is intermediate, i.e., not
too low or high. Some networks like the CA Roads network
(I3) have very little degree variation, and ego-based and alter-
based strategies are relatively less effective. Finally, we examine
the conditions under which ego-based and alter-based strategies
have a relative difference (Fig. 2B). We find that the highest
ratio of ego-based to alter-based mean is for the Twitter network
(OS4), whereas the lowest ratio (indicating that the alter-based
strategy has a higher expected mean degree) is shown by Flickr
(OS2), both of which belong to the same category of online
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Fig. 2. Alter-based and ego-based leverage in real networks ego-based and
alter-based means across networks (each circle is a network). Area of circles
indicates size of networks (number of nodes) in log scale. Color of the circle
indicates network category. (A) The average of ego-based and alter-based
mean is higher than mean degree in all real networks, with the highest
differences occurring in online social networks and computer networks. Most
large networks also tend to show a higher leverage ratio. For in-person or
face-to-face networks, the pattern is more variable. The isoleverage line
indicates leverage levels of 1, 2, 5, 10 and 100. We find that all networks
have leverage greater than 1, a majority of networks have leverage greater
than 5, and 2 networks have leverage close to 100. (B) Comparison: Ratio of
ego-based to alter-based mean. The ratio of ego-based to alter-based mean
�E
�A

is represented as follows (<1
2 in black circle, 1

2 <
�E
�A

< 1 in dark gray
circle and 1 <

�E
�A

< 2 in light gray circle. For example, in the Twitter network,
ego-based mean is almost twice the alter-based mean, whereas in the Flickr
network, alter-based mean is almost twice the ego-based mean. Computer
networks have higher values of the ratio, whereas Infrastructure networks
have similar values of ego-based and alter-based means.

social networks. Citation networks tend to have a higher alter-
based mean, whereas for infrastructure networks, both strategies
seem to work just as well.

Application: Controlling Contagion in Networks

We next illustrate the approach of using the friendship paradox
strategies to obtain seeds for intervention, specifically vaccination
in the face of simple contagion spreading through a network. Our
goal is not for the application to directly inform immunization
policy for a particular disease, but rather to serve as a proof of
concept. The virus propagation model here is simple and reduced
to essential components. To be more realistic, the model would
be more general, e.g. richer spatial models incorporating het-
erogeneity, potentially continuous and discrete time, and having
parameters calibrated to match epidemiological data (35, 36).

We focus on simple models of contagion that can be
characterized by a single parameter termed the epidemic threshold
to focus our analysis on the benefit provided by the ego-based and
alter-based strategies. The epidemic threshold captures the idea
that a contagion in the network will die out if the reproductive
number (R0) is below the epidemic threshold, and will lead to
an epidemic if R0 is above the threshold. Thus, a network with
a higher epidemic threshold would be able to better withstand
or control an infection. We then examine how the epidemic
threshold changes as a function of the proportion of nodes
vaccinated (removed), using each strategy (random, ego-based,
and alter-based).

For a wide class of virus propagation models (VPM), the
epidemic threshold is characterized as the inverse of the greatest
(first) eigenvalue of the adjacency matrix of the network, denoted

as �(E) =
1

�1(E)
(details in SI Appendix, §S.H). The above

formulation applies to a range of VPMs, including SIR, SEIR,
etc., which include models commonly used for infectious diseases
(37).

We use in-person contact networks for modeling contagion,
with data on 75 village social networks from India (38). The social
networks are captured at two different levels of aggregation, at
the level of individuals and of households. The advantage of
this dataset is that villages are relatively geographically isolated
and can therefore be treated as separate networks. Details of the
network dataset are provided in SI Appendix, §S.C.

We find that the village networks can have either positive
or negative inversity depending on how nodes and edges are
defined and aggregated. Fig. 3A illustrates the inversity values
across the 75 villages separately for individual and household
networks. When nodes are defined as individuals, we find that the
networks have negative inversity, whereas if the nodes are defined
as households, the inversity values of the resulting networks
are mostly positive. Since household-level ties are aggregated
from the individual-level ties, we find that networks obtained
from similar underlying relationships can result in dramatically
different inversity characteristics, which can lead to different
interventions. Considering interventions, the inversity values
suggest that a household-based intervention might use the ego-
based strategy, whereas the individual-based intervention might
use the alter-based strategy.

We next evaluate how the epidemic threshold � changes as
we immunize nodes from the network for each of the strategies
(random, ego-based, and alter-based). While immunizing (or
removing) any node from the network is likely to increase the
epidemic threshold, immunizing highly connected nodes is likely
to prove especially beneficial. In Fig. 3B, we show how the
epidemic thresholds vary across strategies and proportion of
nodes immunized (1% to 75%). In both household and indi-
vidual networks, we find that the friendship paradox strategies
obtain higher epidemic thresholds than the random strategy,
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Inversity in India Villages at Individual and Household Level

Inversity Value
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Fig. 3. Inversity and epidemic characteristics on village networks. Data for these networks (N = 75) obtained from Indian villages are publicly available and
detailed in ref. 38. The data include both individual-level (individual network) ties as well as connections between households (household network). (A) Inversity:
Frequency plot of inversity across village networks. (B) Epidemic thresholds with immunization: The epidemic threshold

(
� = 1

�1

)
is computed at different

levels of immunization, and for different immunization strategies (random, ego-based, and alter-based). The strategies are used to select nodes, which upon
immunization lose the capability to transmit contagion, and infect other nodes. (C) Epidemic peak infection: The proportion of the network nodes that are
infected during the peak of the epidemic is represented as a density plot. Variation is obtained due to differences in outcomes across villages as well as
simulation variation. See SI Appendix, Table S5 for simulation parameters. Note that in panels (B and C), the red curves correspond to the ego-based strategy,
whereas the blue curves correspond to the alter-based strategy.
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for the same proportion of nodes immunized. For instance,
in the household networks, to achieve a epidemic threshold
� = 0.15, the random strategy needs to have about 50% of
nodes immunized, but the ego-based and alter-based strategies
require less than half of that, at around 25%. For the household
networks, we find that the ego-based strategy is better than
the alter-based strategy, especially at higher levels of removal.
However, for individual networks, we find that the alter-based
strategy obtains greater thresholds than the ego-based strategy.
This broadly signifies that it is helpful to know which among the
alter-based or ego-based strategies to use, as determined by the
sign of inversity.

Finally, we simulate an infection process and evaluate the
epidemic characteristic of peak infection using an SIR virus
propagation model (details in SI Appendix, §S.H) (39), with
parameters of the simulation detailed in SI Appendix, Table S5.
We examine peak infection since it is known to be an important
characteristic of epidemics (40), directly impacting the load on
the healthcare system. We denote Iit ∈ {0, 1} as an indicator
of whether an individual i is infected at time t. We evaluate
the proportion of the population infected at the peak of the
epidemic

( 1
N maxt(

∑
i Iit)

)
, which is a useful measure in cases

where healthcare capacity is constrained. There has been much
discussion about the value of interventions to avoid and minimize
such a peak (41). A strategy with a density plot to the left of
another is better in terms of reducing the severity of the epidemic.
Thus, for household networks, the ego-based strategy (in red) is
better than alter-based, which in turn is better than the random
strategy in reducing peak infection. For individual networks,
however, the alter-based strategy is better than the ego-based
strategy. Overall, we find that friendship paradox strategies (ego-
based and alter-based) clearly improve upon the random strategy.

Conclusion

We have shown fundamental mathematical properties that
underlie the friendship paradox, which we find to be multifaceted.
We define and characterize the properties of the ego-based mean,
alter-based mean, and inversity to connect the means for any
network. We show that for unknown networks, the ego-based
and alter-based strategies based on these means have theoretical
guarantees on obtaining better-connected individuals from the

relevant network. With both generated random networks and
real networks, our results show the substantial value of using the
friendship paradox strategies to obtain highly connected nodes.
In the vast majority of networks, these strategies obtain at least
double the average degree, and some networks show increases
of close to a hundred-fold increase in node degree. We expect
the advantages of these strategies, including sensitivity to privacy
concerns, speed of implementation, and generality of application
areas, to be important factors in using them for interventions in
unknown network structures.

Materials and Methods

Our analysis combines theoretical results along with simulation and empirical
analysis on generated and real-world networks, in order to characterize the
fundamental properties of the friendship paradox and related constructs.

Theoretical Properties. The theoretical results are contained in SI Appendix,
§S.B.WeprovetheTheoremsontheindividual friendshipparadox, theproperties
of ego-based mean and alter-based means, and inversity by using the properties
of networks and identifying the conditions under which these relationships
hold.

Empirical Analysis. For the empirical analysis, there are two separate but
related parts. First, for the generated networks, in SI Appendix, §S.E, we examine
the most commonly used generative mechanisms, i.e., Random Graphs (Erdos–
Renyi), Scale Free (Barabasi–Albert), and Small World (Watts–Strogatz) networks.
Second, we use real-world network data for simulations and include the empirical
analysis in SI Appendix, §S.C. Finally, we conducted a study of virus propagation
under immunization carried out using the ego-based, alter-based, and random
strategies. The model specification, simulation, parameterization, and values
are contained in SI Appendix, §S.H. Simulation and empirical analysis was
performed in R software, using igraph and sna packages.

Data, Materials, and Software Availability. Previously published data were
used for this work (42).
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S.A. Ego-based and Alter-based Means in Example Networks12
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Fig. S1. Ego-based and Alter-based Means in Example Network. (A) Network. Example network with 4 nodes a,b,c and d. (B) Illustration of Neighbors and Neighbors of
Neighbors. Each node is mapped out with its neighbors and neighbors of neighbors. The node is in light blue, neighbors are in gray, and neighbors of neighbors are in red.
Node a has 2 neighbors, b and c. Node a also has 5 neighbors of neighbors.

Ego-based Mean: The ego-based mean number of neighbors of neighbors, detailed in (1), addresses the question, How many
neighbors of neighbors does each node “experience” in the network? . Specifically, the first node a has two neighbors, and those
two neighbors have (2 + 3) = 5 neighbors. Thus, on the average, ego a observes that her neighbors have 5

2 = 2.5 neighbors,
which is more than she has herself. Similarly, ego b also has two neighbors, who in turn have (2 + 3) = 5 neighbors, for an
average of 5

2 = 2.5 neighbors per neighbor. c on the other hand has three neighbors, and each neighbor has on the average only
2+1+2

3 = 5
3 neighbors; thus, c’s experience is that he has more neighbors than his neighbors do. Finally, ego d only has one

neighbor, and that neighbor has 3 neighbors; thus, d’s experience is that he has far fewer neighbors than his neighbors have.
Overall, on the average, the four egos experience the following (ego-based) average number of neighbors that their neighbors
have:

µE = 1
Number of nodes

∑
i∈Nodes

(Node i’s average number of neighbors of neighbors) = 1
4

(5
2 + 5

2 + 5
3 + 3

1

)
= 2.42

Alter-based Mean: The alter-based mean, detailed in (2), addresses a similar idea but focuses on the average number of
neighbors each alter has, where alters are the immediate neighbors of egos. For our purposes here, an alter is a special kind of
neighbor; it is simply defined as an immediate neighbor of ego. In a network of N nodes, there are precisely N egos; but each
node will frequently count more than once in their role as an alter, resulting in many more alters than egos in the network.
That is, each node exists once in the network, but they play the role of alter perhaps several times (once for each of the nodes
they are connected to). In the present example containing four egos, there are eight alters (colored gray in Panel B in the
example above), and each alter has a certain number of adjacent neighbors. Counting how many neighbors each alter has is
straightforward: The first alter above (b, who is an alter of a) has two neighbors (a and c); the second alter above (c, who is
also an alter of a) has three neighbors (a, b, and d); and so on. Thus, the total number of neighbors of these alters (i.e., all the
nodes in red in Panel B) is (2 + 3 + 2 + 3 + 2 + 1 + 2 + 3) = 18. The alter-based mean is then:

µA = Total number of neighbors of alters
Total number of alters = 18

8 = 2.25
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Fig. S2. Four Illustrative Networks with Varying Ego-based and Alter-based Means.
Each network in (A)-(D) has the original network plot (left), ego-based weighted network (middle), and alter-based weighted network (right). On the right is a barplot indicating
the mean degree, ego-based mean, and alter-based mean for each of the networks. Ego-based Panel (Red): In the weighted network plot (middle), nodes are sized proportional
to their weight

(
wE

i

)
in contributing to the ego-based mean. Edges that receive a higher than median weight in computing the ego-based mean are in black. Otherwise, the

edges are not plotted in the middle panel. Note that although the original networks are undirected, the selected edges are directed. Alter-based Panel (Green): Nodes are sized
proportional to their weight

(
wA

i

)
in contributing to the alter-based mean. Edges are all weighted equally in the alter-based weighted network. (A) Small World Ring: Each

node has four friends, and ego-based and alter-based mean are both equal to the average degree (4). None of the edges are shown in the middle panel since all edges have
identical weight in computing the ego-based mean. All nodes in both ego-based and alter-based means have the same weight and size in the middle and right panel. (B) Two
Central Hubs with Spokes: Each central hub is connected to 7 nodes. The mean degree is lowest in this network. However, ego-based mean is substantially higher than the
alter-based mean, and is higher than the mean degree across all networks (a)-(d). In the ego-based panel, we see that the weight of central hubs has increased, whereas the
corresponding weight for the low degree “spoke” nodes has decreased. In the alter-based panel, the node weights are proportional to degree. (C) Heavy Core with Detached
Cycle: The alter-based mean is substantially higher than the ego-based mean (and mean degree). Here, we see in the ego-based panel that the weight of each of the nodes
has not changed, and all nodes have the same weight. However, in the alter-based panel, we see that the high degree nodes in the complete graph have higher weights
compared to the original network, whereas the weights for the nodes in the 2-cycle are lower than in the original network. (D) Heavy Core with Pendants: Both the ego-based
and alter-based mean are substantially higher than the mean degree. In the ego-based panel, the edges connecting core nodes to other nodes (both core and pendant) have a
relatively low weight, and are not displayed.
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S.B. Mathematical Appendix13

Formally, the network graph G = (V, E) is comprised of a set of N individual nodes and a set of undirected edges E. Each14

element of E is a pair of nodes, and (i, j) indicates an edge (connection) with eij ∈ {0, 1}. We also define the directed edge15

set Ê including both (i, j) and (j, i) as distinct elements of Ê corresponding to an undirected edge i ↔ j. We use neighbor16

and friend interchangably to try and connect with the literature. We note that neighbor is the more general terminology, and17

appropriate in this article, since the network phenomena studied are not limited to social networks. We detail the table of18

notation in Table S1.19

Table S1. Table of Notation

Symbol Term Definition
G,V ,E Network Network Graph of Nodes V and Edges E

Ê Directed Edge Set Each edge in E is replaced by two directed edges
N (i) Neighbors Set of friends (neighbors) of i, N (i) = {k ∈ V : (i, k) ∈ E}
Di Degree Number of friends (neighbors) of i, Di = | {k ∈ V : (i, k) ∈ E} |
Fi Average degree of friends of i 1

Di

∑
j∈N (i) Dj

µD , σ2
D Mean and variance of Degrees 1

N

∑
i

Di, 1
N

∑
i

(Di − µD)2

µE Ego-based Mean 1
N

∑
i

Fi

µA Alter-based Mean

∑
i

DiFi∑
i

Di

ρ Inversity Corr
(

Di, 1
Dj

)
∀(i, j) ∈ Ê

The basic idea of the friendship paradox can be expressed as “your friends have more friends than you.” We examine the20

degree to which the friendship paradox holds for individual nodes, or the individual friendship paradox. We find in the result21

below that it cannot hold for all nodes, but can hold for an arbitrarily high proportion (< 1) of nodes.22

Theorem S1. For a finite network G = (V, E) and Ni is the set of i’s connections. We find the following:23

(i) The friendship paradox statement, “on average, your friends have more friends than you do,” specified as 1
|N (i)|

(∑
j∈Ni

Dj

)
>24

Di ∀i ∈ V , cannot hold for all nodes in G or any connected component of G.25

(ii) There exists G for which the friendship paradox statement holds true for all nodes, except one.26

Proof. Consider a multi-component network with C components, V =
⋃C

k=1 Ck, where each component Ck represents the set of27

nodes in a connected network.28

To prove part (i) of the theorem, first consider each of the components in turn, with k = 1. First, in the trivial case29

of a degree-regular component, part (i) trivially holds. Next, consider the case with degree variation within component k.30

Within Ck, for a finite network, there must be a finite set of nodes Vmax
k with maximum degree within this component. At31

least one of the nodes in Vmax
k must then be connected to a node of lower degree; otherwise, the component would not be32

fully connected. Now, for that node, call it i ∈ Vmax
k connected to a node of lower degree, the friendship paradox statement33

1
|N (i)|

(∑
j∈Ni

Dj

)
> Di ∀i ∈ Ck cannot hold. Thus, for each component k, there is at least one node for which the friendship34

paradox statement does not hold. In the overall network G, there must be at least C nodes for which the friendship paradox35

statement cannot hold.36

For part (ii), we only need to consider the star or hub and spoke network. The friendship paradox statement can easily be37

verified to hold for all nodes except the central node.38

Theorem S2. [Feld 1991] For a network G = (V, E) with degree mean µD and variance σ2
D, the alter-based mean of friends of39

friends is µA =
(

µD + σ2
D

µD

)
40

Proof. (as given in Feld, 1991). µA =
∑

i

∑
j

eijDj∑
i
Di

=
∑

i
D2

i∑
i
Di

= µ2
D + σ2

D

µD
. We note that the above proof is not affected by41

isolates, since they add zero to both the numerator and denominator, leaving µA unchanged, whether or not we remove these42

isolates.43

Theorem S3. For any general network G = (V, E) with mean degree µD, the ego-based mean of friends is given by44

µE = µD + 1
2|V |

∑
(i,j)∈V ×V

eij

[
(Di − Dj)2

DiDj

]
[1]45

where Di is the degree of node i, and eij ∈ {0, 1} indicates a connection between i and j.46
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Proof. Let Di denote the degree of i. Define Fi = 1
Di

∑
j∈N(i) Dj as the mean number of neighbors for neighbors of i. The47

ego-based mean is defined as:48

µE = 1
|V |
∑

i

Fi =
∑
i∈V

 1
Di

 ∑
j∈N (i)

Dj

49

Rewriting the expression for µE in terms of the connections (edges) between individuals, we obtain:50

µE = 1
|V |
∑
i∈V

[
1

Di

(∑
j∈V

eijDj

)]
= 1

|V |
∑
i∈V

∑
j∈V

[
eij

1
Di

(Dj)
]

51

= 1
2|V |

∑
(i,j)∈V ×V

[
eij

(
Dj

Di

)
+ eji

(
Di

Dj

)]
= 1

2|V |
∑

(i,j)∈V ×V

eij

[
Dj

Di
+ Di

Dj

]
52

= 1
2|V |

∑
(i,j)∈V ×V

eij

[
D2

j + D2
i

DiDj

]
= 1

2|V |
∑

(i,j)∈V ×V

eij

[
(Di − Dj)2 + 2DiDj

DiDj

]
53

= 1
2|V |

∑
(i,j)∈V ×V

eij

[
(Di − Dj)2

DiDj

]
+ 1

2|V | (4|E|)54

= µD + 1
2|V |

∑
(i,j)∈V ×V

eij

[
(Di − Dj)2

DiDj

]
55

56

Note that what we characterize as the ego-based mean defined above was independently shown to be greater than the mean57

degree, including by the present authors at (3). It has also been documented by others, including C. Borgs & J. Chayes in a58

later comment to an article by (4), and by (5). However, the properties of the ego-based mean have not been formally examined59

and characterized.60

For the results below, we consider networks without isolates.61

Theorem S4. Define the m-th moment of the degree distribution by κm = 1
N

∑
i∈V

Dm
i . The ego-based and alter-based means62

are connected by the following relationship involving the inversity ρ and the -1,1,2, and 3rd moments of the degree distribution:63

µE = µA + ρ

√(
κ1κ3−κ2

2
κ1

) [
κ−1 − (κ1)−1]

64

Proof. We define the moments of the degree distribution as: κm = 1
N

∑
i
Dm

i . We defined inversity ρ as the correlation65

of two distributions that we specify as the origin degree (O) and inverse destination degree (ID) distributions. The O66

distribution consists of the degree of nodes corresponding to edges, and the ID distribution consists of the inverse degree of67

nodes corresponding to edges. Thus, each connection (edge) contributes two entries to each distribution. For example, if there68

is a connection between i and j, i.e., eij = 1, we would have
(

Di,
1

Dj

)
and

(
Dj , 1

Di

)
. Observe that each individual appears in69

both distributions multiple times based on degree.70

Next, we detail the mean and variance of the distributions. First, we consider the means. The mean of the origin distribution71

is µO = 1
2|E|

∑
i
D2

i = µ2
D+σ2

D
µD

= µA = κ2
κ1

. Similarly, the ID mean is µID = 1
2|E|

∑
i
Di

( 1
Di

)
= 1

µD
. Next, we consider the72

variances. The variance of the origin distribution (O) is computed as:73

σ2
O = 1

2|E|
∑

(i,j)∈E

(Di − µO)2 = 1
2|E|

∑
i∈V

Di (Di − µO)2
74

= 1
NµD

∑
i∈V

[
D3

i − 2µOD2
i + (µO)2 Di

]
= κ3

κ1
−
(

κ2

κ1

)2
75

Next, we express the corresponding variance of the inverse destination degree distribution (ID), σ2
ID. Again, recall that 1

Di
76

does not appear just once, but Di times. Therefore, we have:77

σ2
ID = 1

2|E|
∑

(i,j)∈E

[(
1

Dj
− 1

µD

)2
]

= 1
2|E|

∑
(i,j)∈E

(
1

D2
j

+ 1
µ2

D

− 2
µDDj

)
78

= 1
2|E|

 ∑
(i,j)∈E

1
D2

j

+ 1
µ2

D

 ∑
(i,j)∈E

1

− 2
µD

∑
(i,j)∈E

1
Dj

 = 1
2|E|

[∑
j∈V

1
Dj

+ 1
µ2

D

2|E| − 2
µD

N

]
79

= 1
µDN

[∑
j∈V

1
Dj

]
− 1

µ2
D

= (κ1)−1 [κ−1 − (κ1)−1]
80
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We next turn to the inversity, and based on the definition, we connect it to the ego-based and alter-based means and the degree81

distribution.82

ρ =
(

1
2|E|σOσID

) ∑
(i,j)∈E

eij

[
(Di − µO)

(
1

Dj
− 1

µD

)]
83

(NµDσOσID) ρ =

 ∑
(i,j)∈E

eij

(
Di

Dj

)
− µO

 ∑
(i,j)∈E

1
Dj

− 1
µD

∑
(i,j)∈E

Di +
∑

(i,j)∈E

eij

(
µO

µD

)84

=

N (µE) − µO · N − 1
µD

∑
(i,j)∈E

Di +
∑

(i,j)∈E

eij

(
µO

µD

)85

=

(NµE) − NµO − 1
µD

∑
(i,j)∈E

Di + 2|E|
(

µO

µD

)86

=⇒ µE = µA + ρ · µD · σOσID87

Finally, substituting µD = κ1 and the expressions for the variances, we obtain:88

µE = µA + ρ

√(
κ1κ3 − κ2

2
κ1

)[
κ−1 − (κ1)−1] [2]89

90

Theorem S5. The expected degree of nodes chosen by alter-based strategy is the alter-based mean.91

Proof. To determine the expected degree of a node chosen by the alter-based strategy: Choose M = 1 node initially, (say X).
With probability q, choose each neighbor of X. For a node k with degree Dk, the probability of being chosen by this process is
the first step when any of k’s neighbors is chosen as the initial node, and the second step is k being chosen with probability q.
This probability is pk = 1

N
Dk × q = qDk

N
. The expected degree of a chosen “seed” node is then the degree-weighted probability:∑

k∈V
pkDk∑

k∈V
pk

=
∑

k∈V
1
N

q D2
k∑

k∈V
1
N

q Dk

=
1
N

∑
k∈V

D2
k

1
N

∑
k∈V

Dk

= µ2
D + σ2

D

µD
= µA

92

Similar logic applies if we choose any arbitrary initial sample of size M as long as the network is large, i.e., N ≫ M .93

Theorem S6. [Rewiring Theorem] Let network G = (V, E) with N > 3 nodes include nodes a, b, c, d with degrees ordered94

as: Da ≤ Db < Dc ≤ Dd. If there are nodes a, b, c, d ∈ V such that (a, b), (c, d) ∈ E, but (a, d), (b, c) /∈ E, then by rewiring95

the network to G′ = (V, E′), containing edges (a, d), (b, c) ∈ E′, but (a, b), (c, d) /∈ E′, we obtain: µE(G′) > µE(G) whereas96

µA(G′) = µA(G). Also, it follows that ρ(G′) > ρ(G).97

Proof. First, observe that the degree distribution is unaffected by the change, since each node’s degree is unchanged by the98

rewiring. Therefore, the alter-based mean (which only depends on mean and variance of the degree distribution) is also99

unaffected, i.e., µA(G) = µA(G′). Recall that the ego-based mean is µE = 1
N

∑
i

∑
j

eij

[
Di

Dj
+ Dj

Di

]
. Since between G and G′

100

the degrees of all nodes are the same, and all edges are the same except the two rewired edges, we can write the difference101

between their ego-based means as:102

µE(G′) − µE(G) = 1
N

[(
Da

Dd
+ Dd

Da
+ Db

Dc
+ Dc

Db

)
−
(

Da

Db
+ Db

Da
+ Dc

Dd
+ Dd

Dc

)]
103

= 1
N

[
(Dd − Db)

( 1
Da

− 1
Dc

)
+ (Dc − Da)

( 1
Db

− 1
Dd

)]
> 0104

The last inequality follows from the ordering of the node degrees. Note that we actually only require the conditions Db < Dd105

and Da < Dc to hold. Since the degree distribution does not change with rewiring, by Theorem S4, we must have an increase106

in inversity, ρ(G′) > ρ(G).107

108
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S.C. Data on Real Networks109

We use a wide variety of real networks to characterize their properties, and illustrate how relate to the interventions detailed in110

the paper. We use data from two repositories.111

A. Koblenz Network Collection. The networks are selected across several categories (Affiliation, Face-to-face Social, Online112

Social, Computer, Infrastructure and Biological networks), and span a wide range in network characteristics like size and113

density (Table S2). These networks also vary widely in terms of their size, from a low of 25 to networks with millions of nodes114

(e.g., Youtube). All network data was obtained from the Koblenz Network Collection (KONECT) (6). We examine these real115

networks on a number of dimensions, including the number of nodes, edges, and the variation in the degree distribution.116

Table S2. Real Network Characteristics

Label Network N |E| µD µE µA ρ

Collaboration
A1 Actor-Movie 383640 1470338 7.67 36.29 35.12 0.02
A2 Club Mmebers 25 91 7.20 10.39 9.39 0.39
A3 Citation (Physics) 28045 3148413 224.53 569.15 667.24 -0.06
A4 Citation (CS) 317080 1049865 6.62 18.53 21.75 -0.10

Face-to-Face Interaction
FS1 Physician 117 464 7.93 10.19 9.95 0.09
FS2 Adolescent Health 2539 10454 8.23 9.85 10.49 -0.20
FS3 Contact 274 2124 15.50 74.78 56.69 0.26
FS4 Conference 410 2765 13.49 17.10 18.72 -0.19

Online Social
OS1 PGP Users 10679 24315 4.55 13.46 18.88 -0.17
OS2 Flickr 105722 2316667 43.83 187.12 349.21 -0.22
OS3 Advogato 5042 40509 15.56 99.31 82.52 0.06
OS4 Twitter 465016 833539 3.58 437.74 226.53 0.65

Topology of Computer Networks
C1 Internet Topology 34761 107719 6.20 530.34 319.46 0.22
C2 WWW (Google) 855802 4291352 10.03 226.59 170.35 0.06
C3 Gnutella P2P 62561 147877 4.73 13.22 11.60 0.15

Infrastructure
I1 Power Grid 4941 6593 2.67 3.97 3.87 0.06
I2 US Airports 1572 17214 21.90 120.27 112.23 0.04
I3 CA Roads 1957027 2760387 2.82 3.15 3.17 -0.04

Biological
B1 Human Protein 1 2783 6222 4.32 19.61 15.78 0.15
B2 Human Protein 2 5973 146385 48.81 117.83 143.31 -0.09
B3 Yeast Protein 1458 1970 2.67 9.65 7.13 0.31
B4 C. Elegans 453 2033 8.94 51.57 40.10 0.21

A few observations are worth noting here. First, there are many networks with both positive and negative values of inversity,117

both within and across categories. Second, we do not see Inversity ρ close to ±1. However, the Twitter network is closest in118

magnitude, with an inversity of ρ = 0.65. Third, the variation in inversity is low in some categories like Infrastructure, whereas119

it is relatively greater in Online Social networks. Finally, we see that even low values of inversity can impact the difference120

between the ego-based and alter-based means substantially, as well as between each of these and the mean degree. The WWW121

(Google) network, for example, displays such meaningful differences, even with a low inversity value of 0.06. This is due to the122

multiplier effect of the moments of the distribution function, detailed in equation (3).123

B. India Village Networks. In addition, we also use data from N = 75 villages in India made publicly available (see (7) for124

details). The summary statistics for those village household networks are detailed in Table S3.125

Table S3. Summary Statistics of Village Networks

Network Statistic Mean SD Min Max
Number of households 216.69 61.22 77 356
Number of (undirected) edges 993.31 348.77 334 2015
Density 0.05 0.02 0.02 0.11
Degree Mean 9.10 1.573 6.13 12.78
Degree Variance 52.03 19.88 27.80 124.56
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S.D. Individual Friendship Paradox126

A basic view of the friendship paradox is developed by plotting the average number of friends (degree) of individual nodes’127

“friends” on the vertical axis against the average degree (Fig. S3, Fig. S4). For example, in the Contact (In-person Social)128

network, we see a deep blue region above and to the left of the 45◦ line. Although present across all networks, the pattern is129

most prominent in the WWW (Google) or Twitter (Online Social) network. Observe also that in the Road Network, only130

∆ = 37% of nodes have a higher average number of friends of friends than their own degree.131
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Fig. S3. Friendship Paradox at Individual Level. Density plot of average number of friends of nodes compared to node degree in networks. ∆ indicates the proportion of nodes
that have a higher average number of friends of friends than their degree. Lowest density regions within each network are marked by white / orange, and highest density
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S.E. Leverage in Generated Networks132
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Fig. S5. Ego-based Leverage Density in Generated Networks from three different generative models, spanning the parameter space of each. A sample of 1,000 networks was
used for each of the models. (A) Erdos-Renyi (ER) networks generated with edge probabilities, p ∈ [0.05, 0.95], and size ranging from N=50 to N=1,000 nodes. We find that
ego-based leverage is highest for the lowest edge probabilities, and leverage converges to 1 as the networks become more dense. (B) (SF) Static Scale Free networks with
scale-free parameter γ ∈ [1, 6] (8). For these networks, observe that the leverage spans a wider range, e.g., for γ = 2, the samples range from leverage of 1 to over 40. The
mean leverage is non-monotonic in terms of γ, increasing when γ < 2 and decreasing for γ > 2. The distribution of leverage across the samples also displays decreasing
variance when γ > 2. At very high levels of γ ≈ 6, the ego-based mean converges to the mean degree. With (SW) small world networks, we have two parameters (9). First is
the number of neighbors each node is connected to initially, n. The edges are then rewired with a specified probability, pr . First, in panel (C), we find that with a small number
of neighbors, the leverage distribution is quite spread out, and there is a substantial leverage effect. However, as we begin to create very dense networks, both the mean and
the variance of the leverage distribution diminish substantially. Second, we examine the impact of rewiring probability on the leverage distribution in panel (D). We find that with
lower rewiring probabilities, say pr = 0.05, the leverage distribution is closer to 1, whereas with higher rewiring probabilities, the distributions feature increased variance as
well as higher mean leverage.
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S.F. Network Features that Impact Inversity133

Inversity is strongly dependent on the structure of connections, who is connected to whom. We observe in the main paper that134

star-type network structures lead to positive values of inversity, whereas clusters or cliques contribute to negative inversity135

values.136

Star or hub-based networks First, we observe that there is significant evidence for hub-based network structures appearing137

in real-world networks. Such hub-like structures are common across a wide range of networks, including co-author networks,138

the underlying interlink network that forms the Internet, as well as Airline networks (10–13). The early networks literature139

explaining the emergence of such hub-like patterns posited preferential attachment as a mechanism, where newly joining nodes140

connected disproportionately to highly connected nodes (8, 14). The economics literature involving the economic incentives141

underlying network formation posits that agents form links based on the expected benefits to such formation. The resulting142

network is an equilibrium outcome based on the decisions of each of the agents, who are maximizing their own utilities (15). In143

this stream, an influential paper (16) finds that even when agents are homogeneous — where they have identical constraints,144

preferences, and incentives — star networks arise across a wide range of equilibria. Stars are predicted to occur even though145

agents are symmetric with identical incentives and opportunities. Complementing this research, star networks are found to146

arise over time in experimental settings where agents vary in terms of costs, incentives, and even information (17).147

Clusters and Communities in networks Clusters or communities as well as cliques (fully connected or complete subnetworks) are148

commonly observed in networks. A typical conceptualization of community is the following: “Qualitatively, a community is149

defined as a subset of nodes within the graph such that connections between the nodes are denser than connections with the150

rest of the network.” (18). There are several reasons why communities form, including homophily and social foci. In homophily,151

when a number of individuals are similar, then they are much more likely to be connected to each other, and also part of the152

same larger grouping or community (19). However, it should be noted that not all such connections will happen; rather, such153

connections and communities are more likely to happen when individuals are homophilous. We note that homophily has also154

been tied to polarization and segregation (20).155

A prominent theory that explains how communities form is the idea of foci (21). The essential idea is that most ties originate156

around foci of activity, where a limited set of people share a focus that organizes activity, and thereby tend to generate repeated157

interaction among the same people in the set over time that leads to ties among many of them. Each person tends to be158

associated with many different foci. Alters from the same focus tend to be tied to one another, but not those from separate159

foci. Consistent with this notion, research has found that the way organizational environments are structured moderates the160

tie-formation process (22).161

An implication of this theory for the present paper is that larger, denser foci of activity contribute large numbers of ties for162

all their tied participants, and small and/or sparse focused sets generate few for their participants. Thus, the size and density163

of focused sets may contribute to positive or negative inversity.164
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S.G. Inversity and Assortativity: Connections and Differences165

A natural question is whether inversity, ρ = Corr
(

DO,
1

DD

)
, captures the same information (with opposite sign) as degree166

assortativity, which is a well known network property, ρa = Corr
(
DO, DD) (23–25). Inversity and assortativity are negatively167

correlated, as we might expect.168

Can Assortativity Be Used as a Proxy for Inversity?. There are several specific reasons why we don’t think it is a good idea to169

use assortativity as a proxy metric in place of inversity. We demonstrate specifically how using assortativity as a proxy for170

inversity would lead to incorrect choices to the network intervention questions below.171

Network Intervention Questions: We begin with our objective for the network intervention strategies, which is to choose a172

strategy that maximizes the expected degree of target nodes. We have two questions that need to be answered.173

(a) Identify whether the ego-based strategy leads to higher expected degree than the alter-based strategy (or vice versa), i.e.174

whether µE > µA or µA > µE .175

(b) Evaluate the improvement in expected degree offered between any of random, ego-based and alter-based strategies, i.e.176

(µE − µD), (µA − µD) and (µE − µA).177

The requirements for problem (a) are different from those of (b). For (a), we need to just know the correct ordering of178

ego-based and alter-based strategies, and not the magnitude. Inversity (ρ) gives us a direct answer to question (a), since179

µE > µA ⇐⇒ ρ > 0. For (b), the ordering is not sufficient, and we need to know the magnitude, and we explore this below.180

Why Magnitudes of Differences Matter: The decision maker could evaluate the benefit of using a friendship paradox strategy is181

worth the potential cost relative to the random strategy, which requires the least amount of information and effort from the182

people originally selected. Thus, the decision maker would trade off the increase in expected degree relative to the marginal183

cost of using the strategy (26). This logic implies that knowing just the ordering of the different strategies is not sufficient, and184

we would need to know the magnitudes of the differences in order to select a strategy.185

Inversity allows for a direct linear transformation from alter-based mean (µA) to ego-based mean (µE) calculation of186

neighbors of neighbors. We can see this using the formulation from equation (2) in page 5 of this Supplement:187

µE = µA + ρ

(√(
κ1κ3 − κ2

2
κ1

)[
κ−1 − (κ1)−1])

︸ ︷︷ ︸
ω

= µA + ρ ω188

where the κs represent the moments of the degree distribution. This formula implies that µE = µA + ωρ =⇒ µE − µA = ωρ,189

where ω is a function of the moments of the degree distribution.190

We have found no comparable transformation between alter-based and ego-based means using assortativity, and argue191

that such a relationship is unlikely to exist (see point below about monotonic ordering between these metrics). Thus, to use192

assortativity in place of inversity, we must first assume ρa ≈ −ρ in order to make an approximation of the form: µE −µA ≈ −ωρa.193

We don’t know whether and when this approximation would be valid.∗194

If we do make this approximation, high values of the quantity ω can amplify small differences in the values of ρ. Therefore,195

even small errors in approximating inversity with assortativity would be highly problematic in evaluating magnitude of effect196

sizes. We also see that this impact is practically important. In Table S2 of Supplement §S.C, for instance, we observe that even197

small values of inversity can result in large differences between the different means. Please see the statistics corresponding to198

the A3 (Citation) and C2 (WWW) networks.199

∗We further note that without Theorem S5, it would not be possible to quantify the differences between ego-based and alter-based means in terms of the degree distribution and inversity.
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Decisions using Assortativity versus Inversity: Inversity is sensitive to and positively affected by stars and star-like structures.200

Assortativity, on the other hand, is more sensitive to and positively affected by cliques and clique-like structures. Supplement201

§S.F shows that cliques and stars are commonly present in real world networks.202

Illustative Example Networks by Simulation: We explore this logic quantitatively by simulating specific type of networks203

with stars and cliques to make things concrete. We examine how inversity and assortativity change as the size of the star204

network is varied, keeping the cliques constant. To make this deterministic, we have fixed the cliques to include all cliques from205

size 2 to size 20. We add only one star network and vary the size of the star network, with the number of nodes in the star206

varying from 1 to 61.207

We plot in Figure S6 both the assortativity and inversity levels for each network as a function of how large the star is in the208

network. All other parameters remain fixed. The blue circles indicate the inversity (ρ) for the generated network; the red209

plus-signs indicate the assortativity (ρa) for the same generated network. The plot also includes inset sociograms (A)-(D) at210

specific points of interest.211

First, we note that inversity and assortativity are highly correlated, with cor(ρ, ρa) = −0.992. Similarly, we test a linear212

regression model of ρ and ρa and find the R2 of the model to be R2 = 0.983. Thus, the measures seem on the surface to be213

very closely related. However, we observe if we use assortativity as a proxy for inversity, we would not make the right decisions214

for questions (a) or (b). Using assortativity as proxy, we would approximate ρ ≈ −ρa.215

We now detail the problems with using assortativity:216

(1) In the shaded region, where the size of the star networks is between 29 and 47 (approximately), we observe that the sign217

of assortativity and inversity is the same, i.e., both are positive. In such a case, the answers to both questions (a) and (b)218

would be incorrect.219

(2) To the left of the shaded region, where the size of the star network varies from 2 to 29 (approximately), we note that220

|ρa| > |ρ|, implying that even though the sign of ρa and ρ are opposite, the magnitudes are quite different. More221

specifically, assuming ρ ≈ −ρa, we would overestimate the benefit of the ego-based strategy, leading to errors in answering222

question (b).223

(3) To the right of the shaded region, i.e., when star networks have size greater than 47, we observe that |ρ| ≫ |ρa|.This224

difference in magnitudes implies that using the proxy assumption ρ ≈ −ρa would be highly problematic for obtaining225

magnitudes required for (b). More specifically, we would substantially underestimate the benefits of the ego-based strategy226

relative to alter-based and random.227

Broadly, in these networks, assortativity cannot reliably help us determine which mean (ego-based or alter-based) is larger,228

or which strategy dominates. We also don’t know the conditions under which it could serve (or not) as a reasonable proxy229

for inversity for these or more general networks. Thus, even when these metrics are highly correlated, using the proxy of230

assortativity in place of inversity could lead to errors over a substantial range of networks.231

Monotonic Ordering between Assortativity and Inversity? Since Assortativity (ρa) as a proxy is directionally the reverse of Inversity232

(ρ), we would naturally expect that it to vary monotonically with inversity. Specifically, we would expect for any pair of233

networks G1 and G2, when ρ(G1) > ρ(G2) ⇐⇒ ρa(G1) < ρa(G2). However, there are (many) examples of pairs of networks where234

both assortativity are directionally the same, i.e. ρ(G1) > ρ(G2) and ρa(G1) > ρa(G2). Using common network generation235

algorithms, it is easy to obtain many such pairs of networks, where one of the networks has both higher assortativity and236

higher inversity than the other. Thus, we find that assortativity as a proxy metric for inversity does not even preserve237

ordering, making it problematic to rely on it as a proxy for network intervention problems. When we examined inversity and238

assortativity for a set of 45 village networks from India, we found 3 of the 45 village networks had both positive inversity and239

assortativity.240

Variation of Inversity and Assortativity with Set of Cliques. † We also experimented with varying sets of cliques to understand241

how and when inversity and assortativity diverge. First, we begin with all cliques of size 2 to 15 included in a network. We242

then alter the network to selectively remove cliques. The sociograms indicate the cliques that are included in the network.243

†We thank an anonymous reviewer for suggesting this exercise.
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Fig. S7. Networks with varying number of cliques

Each panel corresponds to a network, which here is a set of cliques, ranging in size from 2 to 15. We illustrate the degrees of nodes connected by

edges in each panel, with each edge in the network corresponding to a point in the plot. The points (and lines) in blue corresponding to (di, dj)

depicting edge (i, j) that connects nodes i and j. This illustration views the degrees the way assortativity would see them. The points (and lines)

in red plots (di, 1/dj), corresponding to the way inversity would view the edge (i, j).
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We then plot the degrees of nodes that connect an edge in the x-axis and y-axis. For edge (i, j), we include (di, dj) in the244

plot in blue. For the same edge, we also include (di, 1/dj) in red. Thus, we observe a few different things.245

1. We observe that assortativity for all the sets of cliques we have tested is always 1. However, the inversity is only -1 in the246

trivial case where we have 2 cliques.247

2. Inversity and assortativity have a non-linear relationship with the degree as expected. Specifically, when we have low248

degree nodes, they contribute disproportionately more to inversity.249

3. The inversity across the set of cliques appears to vary in a non-monotonic manner. Specifically, we have ρ = −0.77 in250

panel (A), where we have all the cliques between size 2 and 15 included in the network. As we remove cliques, we find251

that in panel (B), the inversity ρ = −0.764 is closer to zero. This pattern continues in (C) and (D) when we remove even252

more cliques, we observe that inversity increases and becomes less negative. However, in the extreme case when we have253

only 2 cliques (size 2 and size 15), we observe that inversity ρ = −1. Thus, we see that there does not appear to be a254

simple pattern for how inversity varies with the number or set of cliques. We think future research might find it useful to255

examine the patterns of variation of inversity, and how it contrasts with assortativity.256

S.H. Virus Propagation Models257

We detail below several examples of virus propagation models being used for characterizing the transmission and spread of258

diseases. These models build upon the early work of Kermack and McKendrick (27). All individuals in a population (in our259

case, the nodes in a network) are in one of the states, either susceptible (S) or infected (I). Based on the viral propagation, they260

can move to other states like Exposed (X), Recovered (R), or Deceased (D). For example, the SIR model involves individuals261

being in one of three states, (S), (I) or (R), and transitioning between the states probabilistically. Typically, the vast majority262

of nodes are present in the susceptible state (S), in which they might contrast the disease. The exposed state (X) is used to263

indicate a node that has been exposed to the disease, but could be asymptomatic during an incubation period and is not264

capable of infecting others. In contrast, the infected state (I) indicates a node that is capable of infecting others. The (R)265

recovered state implies permanent immunity. There are further extensions possible, e.g., adding infants who have maternal266

antibodies (state M) that provide passive immunity. See (28) or (29) for an overview and survey of these models. These267

models have been extensively used in epidemiological studies to characterize disease dynamics as detailed in Table S4, including268

measles, influenza, and COVID-19.269

There has been recent notable work that aims to characterize the epidemic thresholds of these compartmental models with
disease transmission over a network (30, 31). The critical idea is that the epidemic threshold of a network can be characterized
as the inverse of the greatest (first) eigenvalue of the adjacency matrix A of the network, denoted as:

τ(A) = 1
λ1(E)

.270

Eigenvalue λ1, termed the spectral radius, characterizes the connectivity of the network graph. Thus, networks that have271

higher connectivity or λ1 are more likely to allow contagions along different paths to grow into epidemics, whereas in networks272

with low connectivity, contagions are more likely to die out.273

While there have been a number of epidemic thresholds for specific network generating processes (e.g., small world), the274

generality of the result above is valuable since it allows: (a) any arbitrary network, without placing restrictions on its topology275

or structure, and (b) a wide range of compartmental models like SIS, SIR, and others detailed in Table S4 typically used to276

model infectious disease.277

Whereas we consider an SIR model for illustration, the results also hold for the other models. The model is parametrized by278

two rates: β is the probability of an infected node infecting a susceptible node in a given time period, and δ is the probability279

at which an infected node recovers (or is cured) during the period. If time is continuous, β and δ can be viewed as the rates of280

infection and recovery. In either case, R0 is defined as R0 = β

δ
.281

The epidemic threshold τ is defined as follows (30):R0 = β

δ
< τ(E) =⇒ infection dies out over time

R0 = β

δ
> τ(E) =⇒ infection grows over time

There are a few observations relevant here. First, the critical value of epidemic threshold is a function of the adjacency282

matrix E of the network topology (structure) G. Second, a network topology with a higher epidemic threshold is less likely to283

have an epidemic. Third, interventions like immunizing nodes or reducing the number of connections (edges) can increase the284

threshold τ(E) so that infections are more likely to die out.285
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Table S4. Virus Propagation Models Used for Diseases

Virus Propagation Model Infectious Diseases [References]

SIS Malaria (32)

SIR Measles (33), Swine Flu H1N1 (34), Ebola (35)

SXIR Chicken Pox (36), SARS (37), COVID-19 (38)

SIRD COVID-19 ((39))

Note: The states refer to (S)usceptible, (I)nfectious, (R)ecovered / (R)emoved, (X)Exposed, (D)eceased

Implementation of VPM. We begin with a seed set of 1% of the nodes being infected, and evaluate epidemic outcomes using the286

SIR model. All the nodes in the network that are not infected or recovered are susceptible (S) to the infection. Each infected287

node can transmit an infection in each period probabilistically to each of its neighbors. The probability of an infection is288

Ptransmit = β. Thus, a node can become infected (I) from contact with any of its neighbors. In each period, an infected node289

can be cured or recovered (R) probabilistically, with the likelihood Pcure = δ. Recovered nodes cannot be reinfected and cannot290

transmit infections.291

The process of immunizing (or vaccinating) a set of nodes involves choosing a proportion of nodes (5%, or 10% or 20%)292

and ensuring that these nodes do not transmit any disease. The nodes for immunization are chosen based on three strategies:293

random, ego-based, and alter-based. The parameters used in the simulation of the epidemic are detailed in Table S5.294

Table S5. Parameters of SIR Network Propagation Model

Parameter Value Description

Ptransmit = β 0.20 Probability of an infected node transmitting the disease to a susceptible neighbor.

Pcure = δ 0.15 Probability of an infected node recovering. Thus, moving from (I) =⇒ (R) is PI→R = Pcure, and

PI→I = 1 − Pcure

P k
S→I 1 − (1 − β)N infected

k Probability of a susceptible node k becoming infected. Depends on the number of infected

neighbors N infected
k

. Thus, k can become infected through any of its infected neighbors. So we

have: P k
S→I = 1 − (1 − Ptransmit)N infected

k . Similarly, P k
S→S = (1 − Ptransmit)N infected

k .

n0
infected 1% Proportion of nodes in network that are infected at the beginning

nsim 100 Number of simulations

Note: (S)usceptible, (I)nfectious, (R)ecovered / (R)emoved

Thus, a strategy A is better than an alternative strategy B if it results in lower levels of peak infections, total infections,295

and total suffering.296

S.I. Epidemic Outcomes297

In Figure S8, we examine the epidemic propagation characteristics on the Facebook network (40) using the same parameters as298

detailed in Table S5. The epidemic could be viewed as an informational epidemic propagating through Facebook. Alternatively,299

one might consider the Facebook network structure to serve as an approximation of contact network for the purposes of this300

evaluation.301

We evaluate epidemics using the following metrics:302

• Proportion Infected at Peak = 1
N

maxt(
∑

i
Iit): Since epidemics increase in intensity and eventually die down, an303

important characteristic is to measure the proportion of the population who are infected at the peak of the epidemic.304

This directly impacts important decisions like hospital capacity planning, etc.305

• Proportion Ever Infected = 1
N

∑
i
maxt(Iit): The proportion of the population that was ever infected by the disease306

is important since it represents the total spread of the disease in the population. It could also represent the number of307

people who might have immunity to future recurrences of the disease.308
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• Total Suffering: 1
NT

∑
i

∑
t
(Iit) Here, the total suffering metric captures not just how many infections occur, but also309

the length of the infections. This represents the proportion of individual-period combinations with an infection.310

For the Facebook network sample, we find that an epidemic’s outcomes are better when using the ego-based strategy311

compared to the alter-based strategy, which in turn is better than the random strategy. This conclusion holds for all the312

metrics considered above.313
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Fig. S8. Epidemic Outcomes with Immunization in Facebook Network. See Table S5 for parameters of simulation. All outcomes are density plots. We plot 3 outcomes: (a) the
proportion of population infected at the peak, (b) proportion of population that was ever infected, and (c) total suffering. In each panel, the x-axis represents proportions and the
y-axis represents density. We plot the outcomes for 3 strategies: (R)andom, (E)go-based, and (A)lter-based. The dashed vertical lines represent the means for the 3 strategies.
We find that for the Facebook network, the ego-based strategy is better for all outcomes than the alter-based strategy, which in turn is better than the random strategy.
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