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Abstract

We study access to ridesharing across geographical regions, using both theoretical and em-

pirical analyses. We specifically model and examine the effects of economies of density in

ridesharing. Our model predicts that (i) economies of density skews access to ridesharing away

from less dense regions, (ii) the skew will be more pronounced for smaller platforms (i.e., “thin-

ner markets”), and (iii) ridesharing platforms do not find this skew efficient and thus use price

and wage levers to mitigate (but not eliminate) it. We show that these insights are robust to

whether the source of economies of density is the supply-side or the demand-side. We then

calibrate our model using ride-level Uber data from New York City. We use the model to sim-

ulate counterfactual scenarios, offering a quantitative evaluation of our theoretical results and

informing platform strategy and policy.

Keywords: Ridesharing; Spatial Markets; Transportation; Economies of Density; Market

Thickness

1 Introduction

Ridesharing markets form a critical part of transportation networks in major metropolitan areas

(Fortune Business Insights, 2021). In these markets, ridesharing firms act as two-sided platforms,

intermediating between consumer (passenger) demand, and driver supply. Ridesharing markets are

spatial, where the characteristics of demand and supply depend on location. Access to rideshar-

ing service is an important issue that has drawn attention from regulators, lawmakers as well as

consumer and community advocates (Diao et al., 2021; Jin et al., 2019). We focus on access, opera-

tionalized as the proportion of potential demand that is realized within a region. We examine how
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market factors drive inequality in access to rides across different geographic areas within a large

metropolitan city.

We use a combination of theoretical and empirical analysis to characterize access across regions.

We first develop a theoretical model of a multi-region ridesharing market with a monopolist plat-

form. We then take the model to data using trip-level data from New York City (NYC) focusing

on the leading platform, Uber. Finally, we use the calibrated model parameters to evaluate coun-

terfactual scenarios, which provide insights into the findings as well as the underlying mechanisms.

In the theoretical model, each region has an arrival rate of potential demand for rides that

could end in the same region or a different one. Actual demand is a fraction of potential demand,

depending on price (and pickup time) in the region. We incorporate drivers’ and passengers’ decision

making among a set of regions. We model driver free entry, with each driver choosing whether and

in which region to enter the market. Each driver makes this choice to maximize her revenue given

other drivers’ choices. Driver revenue in each region is positively related to the wage per ride in

that region and negatively related to the “total wait time” each driver has to wait in the region

to give a ride to a passenger. Total wait time consists of (i) “idle time,” the time it takes for the

driver to be assigned to a passenger requesting a ride, and (ii) “pickup time,” the time it takes to

arrive at the pickup location after being assigned to a passenger. Demand results from consumers

choosing between a rideshare and an outside option, with price and pickup time factoring into their

decision. The platform sets prices for consumers and wages for drivers in each region.

The elements of wait time play an important role in the resulting accesses in each region, and

the differences across them. Both idle and pickup times are directly dependent on the number

of drivers operating in a region. For a given demand, having more drivers operating in a region

implies a higher expected idle time, since drivers are competing for the same pool of customers.

The impact on pickup time is the inverse of the above. Having more drivers in a region implies a

lower expected pickup time, since on average drivers are closer to passengers. Observe that while

the idle time causes drivers to spread out across regions, the pickup time incentivizes drivers to

agglomerate into fewer regions. We examine how the spatial distribution of access to rides is shaped

in response to the incentives of the platform, drivers, and passengers. We consider two different

sources of economies of density (EOD) or agglomeration: drivers directly preferring shorter pickup

times (supply-side EOD) or demand responding positively to shorter pickup times (demand-side

EOD).

The theoretical model’s equilibrium analysis leads to some notable results. First, we find that

access is skewed in equilibrium in favor of regions with higher density of demand. The underlying

mechanism is that sparser regions have higher pickup times, so fewer drivers enter in equilibrium to

balance this with idle times. Second, we find that platform size plays a significant role, with smaller

platforms having more unequal access. Larger platforms have more demand, and correspondingly

more driver entry, leading to lower pickup times in all regions. This reduces the importance of

pickup times relative to idle times, resulting in more equal access across regions. Third, we find

that a profit-maximizing ridesharing platform would optimally use price and wage levers to mitigate
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but not fully eliminate the access skew. The platform implements this by offering higher wages

to drivers in sparser regions but only partially passing the extra wage on to passengers, effectively

subsidizing sparser regions. The reason is that driver entry into sparser regions has a greater

positive externality on other drivers than entry into denser regions, which is internalized by the

platform but not the drivers. Finally, we note that these results hold for both sources of economies

of density, i.e. supply-side and demand-side.

We next take the theoretical model to data using data from Uber, the largest ridesharing

platform in NYC, from March to June 2019. We leverage ride-level data on rides (including pickup

and drop-off locations), driver wages, and prices across the regions (boroughs) of NYC. The dataset

is publicly available from NYC’s Taxi and Limousine Commission (TLC), and is rich in frequency

of observations, with the complete rides within and across the regions of the city available and

collected in a standardized way. We use this data to calibrate and quantify the parameters of our

model, e.g. unobservable potential demand, price sensitivity. We consistently find that the density

of the potential demand is highest in Manhattan and lowest in Queens. Our estimates for measures

such as the number of drivers and price elasticity are consistent with regulatory data and existing

literature. We test a spectrum of models with different combinations of the supply-side and the

demand-side EOD, and find these results to be robust.

We use our calibrated model to simulate several counterfactual scenarios of interest to comple-

ment our theoretical analysis. First, we simulate the platform’s optimal heterogeneous price and

wage policy and find that in equilibrium, access in the most dense region (Manhattan) is higher

by 25% than the least dense region (Queens). Next, we restrict the platform to using the same

price and wage across regions. We find that under such a counterfactual, geographical skew in

access to rides gets exacerbated – access in the most dense region is higher by 55% than the least

dense region. These results indicate that the platform would use spatially differentiated pricing

to mitigate the access inequality. The implication is that imposing equality in actions taken by

the platform across regions could well exacerbate inequality in access that policy makers might

care about. Finally, we assess the impact of platform size (i.e., market thickness) on outcomes by

scaling up potential demand across all regions. Consistent with our theoretical predictions, we find

that as platform size increases, driver entry rises, access levels improve in all regions, and access

inequality diminishes. For instance, in one specification, when Uber’s potential demand grows from

80% to 120% of the estimated size, the access disparity between the most dense and least dense

regions decreases, with the densest region being 28% denser at 80% demand and 22% denser at

120% demand, a 21% decrease in access disparity.

These results are of relevance to platforms, demonstrating the value of different strategies used,

specifically decoupled price and wage levers across regions. The findings are also relevant to policy

makers, who are considering a few ways to regulate platforms, which will impact access disparity.

First, regulations imposing a standard wage rate or price across different regions (Parrott and

Reich, 2018) can hurt access equity by not allowing the platform flexibility to incentivize drivers

to serve sparser regions. Second, we consider a policy maker who wants to go the extreme case of
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trying to equalize access across regions. Our model suggests that contrary to the optimal pricing

policy of the platform (where prices are higher in sparser regions), prices for equalized access would

need to be lower in sparser regions. Wages would also need to be substantially higher in sparser

regions, leading to more pronounced wage difference across regions. Third, a regulation capping

the number of drivers on a platform that has been tried is to reduce platform size (CBS News,

2018). Our model shows that imposing such a cap, while seeming to promote equality of outcomes

across firms or higher pay for drivers, can actually make access disparity across regions worse.

In summary, our paper contributes to the study of access differences and economies of density

across regions in ridesharing markets along several aspects. First, our model endows each region

with a non-trivial size which allows to capture the notion of pickup time in each area and how it

varies with driver density. This, in turn, allows us to model economies of density both on the supply

side and on the demand side, unlike prior research. Second, our empirical strategy to recover access

differences across regions based on relative flows of cross-region rides is powerful and generalizable

to other passenger-transportation markets for inferring unfulfilled demand. This approach helps

infer unobservable access levels using only ride-level data, which is what is commonly available

in most markets, without requiring data based on individual drivers or consumers. Third, our

model accommodates and characterizes economies of density based on region characteristics, driver

behavior as well as strategic choices made by the platform that contribute to access differences.

Finally, we extensively show (both theoretically and empirically) that the major implications of

economies of density for ridesharing markets–as summarized in our main results–are robust to

what proportion of economies of density arises from the supply side and what portion from the

demand side.

There are a few aspects of our model that generalize beyond ridesharing to spatial markets

more broadly. First, our results point to the fact that imposing constraints on firm actions (e.g.,

prices and wages) to make them more equal across regions may backfire by making other outcomes

(e.g., access) more unequal across regions. Second, the concept of relative outflows across regions

is generalizable to other passenger-transportation markets for inferring unfulfilled demand. Third,

the idea that economies of density create inequity in spatial distribution is likely to exist across

many other markets.

2 Literature Review

Our paper relates to multiple strands of literature: (i) the recent and growing literature on the

empirical analysis of geographical distribution of supply, and its possible distortion from that of

demand in spatial markets; (ii) the literature on transportation markets (in particular ridesharing);

and (iii) the literature on the effects of market thickness in two-sided markets.

The empirical literature on spatial supply-demand matching is relatively new and limited. To

our knowledge, only Buchholz (2022) and Brancaccio et al. (2023) directly examine this issue.

These studies extend the empirical methods in the matching literature techniques (see Petrongolo
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and Pissarides (2001) for a survey) to infer the size of unobserved demand (e.g., passengers searching

for rides) in different locations of a decentralized-matching market when only the size of supply (e.g.,

available drivers) and the number of demand-supply matches (e.g., realized rides) are observed. Our

calibration based on relative-outflows complements this approach. On the one hand, our method

requires the additional assumption that potential demand for rides from region i to region i′ is the

same as that for rides in the opposite direction, which is plausible for passengers with a home base

over a daily period. On the other hand, unlike prior methods, ours (i) requires only ride data rather

than vacant supply; (ii) applies broadly to centralized (e.g., ridesharing) and decentralized (e.g.,

taxis) passenger-transportation markets; and (iii) detects supply skew from a given region even

when passengers stop searching due to low supply, which might otherwise appear as low demand.

The second strand of literature relevant to our paper focuses on the market performance and

design of transportation, particularly ridesharing, markets. While some studies focus on non-spatial

questions (e.g., Cohen et al. (2016); Nikzad (2018)), others explore spatial aspects (such as Castillo

et al. (2024); Frechette et al. (2019)) without examining the spatial distribution of supply and

potential mismatches with demand. Research on geographical supply-demand (im)balances (e.g.,

Banerjee et al. (2018); Afèche et al. (2023); Besbes et al. (2021)) focuses on short-run, intra-day

aspects. In contrast, some other papers (such as Bimpikis et al. (2019); Buchholz (2022); Shapiro

(2018)) take a long-term view. Our paper complements this literature by providing a detailed

theoretical and empirical analysis of economies of density (arising from both supply and demand

sides) and market thickness, abstracting away from some of the phenomena considered in these

papers. It is worth noting that a significant portion of this literature explores how ridesharing

platforms improve upon traditional taxi systems, particularly through flexible pricing and advanced

matching algorithms (Cramer and Krueger (2016); Cohen et al. (2016); Shapiro (2018); Castillo

et al. (2024); Besbes et al. (2021); Lam and Liu (2017)). We contribute to this body of work

by showing that, even within centrally matched ridesharing systems, platform size impacts driver

incentives and access disparity across regions.

Also relevant to our work is Rosaia (2023), which examines the NYC ridesharing market using

comprehensive data from Uber and Lyft and employs exogenous price shocks to model drivers’

dynamic decision-making under platform competition. Compared to Rosaia (2023), our focus is on

studying access inequity, and our approach uses a model that expands on the geographic aspects,

focusing on the economies of density and market thickness, but abstracting from competition.

We derive theoretical and empirical insights into these spatial implications, analyzing a broader

geographical market that characterizes dense and sparse regions, empirically measuring access dif-

ferences using relative flows, and conducting counterfactual analyses to inform firm strategy and

policy.1

The third set of papers to which we relate is a large, mostly theoretical, literature on the impact

of market thickness on the functioning of two-sided platforms in general (such as Akbarpour et al.

(2020); Ashlagi et al. (2019)) and transportation markets in particular (such as Frechette et al.

1For a comparison of the geographical scope of the data used in our paper and Rosaia (2023), see Appendix J.
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(2019); Nikzad (2018)). This literature, to our knowledge, has not examined how the spatial

distribution of supply–and its (mis)alignment with that of potential demand–responds to a change

in market thickness. Our paper focuses on this, both empirically and theoretically.

3 Theoretical Model

We develop a model to study the spatial distribution of access to ridesharing services in the presence

of economies of density. We aim to use the model to understand (i) whether access will be skewed

in favor of some regions over others in equilibrium, (ii) whether the skew will be exacerbated or

moderated as the platform grows in size, (iii) whether the platform would like to use prices and

wages as levers to influence the skew of access, and if so, the direction of this influence, and (iv)

whether the answers to the previous questions are sensitive to whether economies of density arises

from supply or demand side of the market. We abstract away from aspects of the ridesharing

market that are not directly relevant to answering the above questions.

We develop a three-stage model where a monopolistic ridesharing platform optimally sets prices

and wages, drivers decide whether to operate, and which region to operate in, and passengers decide

whether to take the ridesharing service. We start with a setting without inter-region rides across

regions (Section 3.1) and then introduce two variants of the model. First, we model the drivers’

equilibrium spatial distribution where the economies of density comes only from the supply-side

(referred to as the “model with supply-side EOD” or “supply-side model” for brevity) in Section 3.2.

That is, drivers benefit from a larger number of drivers on the platform, as it reduces the pickup time

and thus increases revenue. Second, in Section 3.3, we model the equilibrium spatial distribution of

drivers with only demand-side economies of density, where we assume that ride demand decreases

with pickup time and increases with the number of drivers (referred to as the “model with demand-

side EOD” or the “demand-side model” for brevity).2

We prove the following set of results hold for both models: (i) under the platform optimal

strategy, the equilibrium spatial distribution of rides is skewed towards regions with higher demand

densities, (ii) the skew is more intensified for smaller ridesharing platforms, and (iii) the platform’s

optimal strategy would involve charging lower margins for rides in regions with lower demand

densities. Then we extend the results to the setting with inter-region rides across regions in the

supply-side model and the demand-side model respectively in Section 3.4.

3.1 Model Setup

We model a market with regions i ∈ {1, ..., I} and a monopolist ridesharing platform serving them.

The regions (e.g. neighborhoods, boroughs) are modeled as circumferences of circles, a la Salop.

The time that it takes a driver to travel a full circumference of circle i is denoted t′i. Let t′ denote

2Nevertheless, in both the supply-side model and the demand-side model, the agglomeration of drivers in a region
increases the idle time and “turns away” drivers if the region becomes too dense. Therefore, under the assumption
of a pool of infinite drivers and free entry of drivers, the equilibrium spatial distribution of drivers is reached when
the two forces, the pickup time and the idle time, are balanced.
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the vector (t′1, ..., t
′
I). For ease of exposition, we assume t′i is measured in hours. Intuitively, t′i

captures the geographical size of the region. For any given numbers of drivers and riders, the

drivers and the riders distribute more sparsely in a region as t′i becomes larger.

In each region, the platform decides price per ride pi and wage per ride ci.
3 Let p denote the

vector of (p1, ..., pI) and c denote the vector of (c1, ..., cI). A distribution of drivers is denoted by

vector n = (n1, ..., nI), where ni denotes the number of drivers in region i. To ease the analysis,

we assume ni are real numbers as opposed to integers. Let ωi denote the pickup time of each ride

in region i. Passengers arrive at a rate λi per unit of time (i.e. λi passengers arrive per hour).

Demand arrival rate is a function of price per ride pi and can also be a function of ωi, depending

on our assumption of the source of economies of density. We discuss this in further details in the

subsequent sections. For now, we assume that the demand arrival rate takes the following form:

λi(pi, ωi) = λ̄if(pi, ωi)

λ̄i is the “potential demand” in region i, which captures the total demand of transportation in

region i per hour and thus is the maximum number of realized rides achievable in region i for the

ridesharing platform. Equivalently, this is the volume of demand when both pi and ωi are zero.

Function f(·) –which is assumed uniform across regions– captures the fraction of λ̄i that would be

willing to pay pi for a ride given they observe pickup time ωi, which is the time it takes a driver,

after being assigned to a ride request, to drive and arrive at the passenger’s pickup location. f(·)
takes the values between 0 and 1. λ̄ represents the vector (λ̄1, ..., λ̄I).

Given t′i, λi and ni, there is a wait time for drivers before they can provide a ride to a passenger.

This total wait time is denoted by Wi(ni) and is a function of ni, the number of drivers present in

the region (this notation suppresses the implicit dependence of Wi on prices, as we detail later).

Total wait time in each region has two components: idle time and pickup time. Idle time is the

time it takes a driver to get assigned to a ride requested by a passenger. Idle time in region i is

increasing in ni. That is, the more drivers in region i, the longer it takes for each of them to get

assigned to a passenger. Pickup time ωi in region i is decreasing in ni. This is because the more

drivers in region i, the more densely the region is populated with them. Therefore, each driver

becomes less likely to be asked to pick up a passenger who is far away in the region.4 We assume

that each arriving passenger’s location is uniformly distributed on the circumference of the circle.

Then the pickup time ωi as a function of ni can be written as

ωi(ni; t
′
i) =

t′i
4ni

The total wait time for each region i is given by:

3We assume that the rides are homogeneous.
4We assume that the centralized platform assigns each passenger to the closest driver. See Appendix C for details.
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Wi(ni)︸ ︷︷ ︸
Total Wait Time

=
ni
λi︸︷︷︸

Idle Time

+
t′i

4ni︸︷︷︸
Pickup Time

=

(
ni
λi

+
ti
ni

)
(1)

where ti =
t′i
4 . In Appendix C, we provide a micro-foundation for this functional form. From this

point on, we refer to ti (instead of t′i) as the size of region i. Let t denote the vector (t1, ..., tI). Given

ti and λ̄i, we define the density of potential demand for region i as λ̄i
ti

. Without loss of generality,

we assume that the density of potential demand decreases in region index: ∀i < j : λ̄i
ti
≥ λ̄j

tj
.

We model a game of three stages. In the first stage, the platform optimally decides prices per

ride pi and wages per ride ci for each region i to maximize the total profit across all regions. In

the second stage, drivers from an infinitely large pool simultaneously decide whether to enter the

market and, if so, which region to operate in. In the third stage, consumers observe both price pi

and pickup time ωi and decide whether to choose the ridesharing service. Then actual demand λi

is realized.

We solve the equilibrium using backward induction starting from the third stage. In the third

stage, given λ̄i, pi and ωi, the actual demand per hour is λi = λ̄if(pi, ωi). In the second stage,

each driver seeks to maximize her expected hourly revenue. The hourly revenue for a driver in

each region i equals the wage per ride in that region multiplied by the frequency of rides assigned

to each driver in the region. That is, the revenue is ci
Wi(ni)

.5 Let c̄ denote the exogenously given

reservation value, i.e., the hourly revenue that each driver can make by leaving the market and

taking the outside option.

Now we formally define the partial equilibrium distribution of drivers (given pi and ci) as follows:

Definition 1. Under “market primitives” (λ̄, t, c̄) and given the platform’s strategy (p, c), a distri-

bution of drivers n∗ = (n∗1, ..., n
∗
I) among the I regions is called an equilibrium if no small mass of

drivers currently operating in region i can strictly profit from changing their strategy and operating

instead in region j, where i, j ∈ I.6 That is, ∃δ > 0 s.t. ∀i, j ∈ I, ∀δ′ ∈ [0, δ] we have:7

ci
Wi(n∗i ; pi)

≥ cj
Wj(n∗j + δ′; pj)

We call n∗ an “all-regions” equilibrium allocation if it is an equilibrium and if n∗i > 0 for all i.

Directly following the definition above, we have the following statement that gives the necessary

condition for the partial equilibrium of driver distribution:

5Note that this formulation abstracts from the time it takes to drive passengers to dropoff locations, simplifying
some of our analysis. We do not expect the results to be qualitatively sensitive to it.

6The reason why we focus on “small mass” deviations is that our continuous-mass model of drivers is an approx-
imation for a large population. In this environment, allowing for “large-mass” deviations from any given strategy
should be interpreted as drivers coordinating a deviation, which we do not allow.

7Note that the wait time Wi is a valid definition only if n∗i > 0. If the drivers are currently taking the outside
option in region i (i.e. n∗i = 0), then the left hand side of the inequality is replaced by c̄. If the drivers are considering
switching to outside option, then the right hand side of the inequality is replaced by c̄.
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Lemma 1. Suppose function Wi(·; ·) is continuous. For any given (p, c), if n = (n∗1, ..., n
∗
I) with

n∗i > 0 ∀i is the equilibrium distribution of drivers, then

ci
Wi(n∗i ; pi)

= c̄, ∀i (2)

Given the drivers’ response, in the first stage of the game, the platform optimally chooses

(p, c) based on market primitives (λ̄, t, c̄) to maximize the platform profit, which is the sum of the

regional profits. The total number of rides per hour in region i, denoted ri(ni), is given by the total

number of drivers in that region divided by the time each driver has to wait before giving a ride:

ri(ni) ≡ ni
Wi(ni)

. If the distribution of drivers satisfies eq. (2), then ri(n
∗
i ) =

n∗i (pi,ci)
ci/c̄

in equilibrium.

The platform’s profit per hour, which is the object the platform seeks to maximize by choosing

regional prices and wages, is given by:

π(p, c) = ΣI
i=1(pi − ci)ri

(
ni(pi, ci)

)
Then the equilibrium of the game is given by (p∗, c∗, n∗, λ∗), where p∗ and c∗ are the prices and

wages that maximize platform profit, n∗ is the equilibrium driver distribution given (p∗, c∗), and

λ∗ is the actual demand corresponding to prices p∗ and pickup times ωi(n
∗) of each region.

Next, we introduce the notion of “access” to rides in region i by Ai(ni) and define it as the

fraction of the potential demand λ̄i that leads to rides. That is:

Ai(ni) ≡
ri(ni)

λ̄i
(3)

3.2 Supply-Side Economies of Density

In this section, we assume that the market involves supply-side economies of density (but does not

involve demand-side economies of density). That is, a driver in a given region i can benefit from

the presence of other drivers in that region because with higher driver density, she is less likely to

be asked to pick up a passenger far away in the region. On the other hand, to abstract from the

effect from the demand-side EOD, we assume that passengers’ arrival rate does not depend on the

number of drivers (and hence on pickup time). Specifically, given λ̄i, the demand arrival rate of

region i is only a function of pi, and we assume that f(pi, ωi) = 1− αpi so that 8

λi = λ̄i(1− αpi)
8The linear demand model has been used in literature. See e.g., Bimpikis et al. (2019). We also provide a

micro-foundation here. The demand function can be derived under the following assumptions: (1) there is one
unit of potential customers and (2) the valuation for each ride in region i, denoted vi, follows a uniform distribution
unif(0, 1

α
). That is, at a given price pi, only customers with vi > pi will demand the ride from the platform, resulting

in 1− αpi of the population choosing to ride.
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Accordingly, the wait time is given by:

Wi(ni) =
ni

λ̄i(1− αpi)
+
ti
ni
, (4)

where the first component is the idle time and the second component is the pickup time. The wait

time curve given by eq. (4) is illustrated in Fig. 1. As can be seen there, Wi(·) is initially decreasing

in ni because the effect of pickup time is dominant. When ni is large enough, pickup time becomes

less important and Wi(·) becomes increasing in ni due to the effect of idle time.

Figure 1: Wait Time as a Function of the Number of Drivers

Note. The function is given by given by eq. (4). The figure is illustrated with λi(pi) = 10 and ti = 2. The dashed line is ni
λi

,

depicting how long the wait time would be if pickup time were zero.

In the propositions below, we characterize the equilibrium spatial distribution of supply, and

how this distribution changes in response to a changed market thickness.

Lemma 2. Suppose prices and wages are both positive and flexible and that market primitives are

(λ̄, t, α, c̄). Then an equilibrium (p∗, c∗, n∗) exists and n∗ is unique. Also p∗i and c∗i for any i with

n∗i > 0 are unique.

Proposition 1. Suppose prices and wages are both flexible and that market primitives are (λ̄, t, α, c̄).

Also suppose (p∗, c∗, n∗) is an equilibrium. Then for any two regions i, j with n∗i 6= 0 6= n∗j , we have:

λ̄i
ti
≥ λ̄j
tj
⇒ Ai(n

∗
i ) ≥ Aj(n∗j )

where the latter comparison holds with equality only if the first one does. Moreover, regions that

are not supplied are those with lowest demand densities:

∃µ > 0 : s.t.∀i :
λ̄i
ti
< µ⇔ n∗i = 0

The proof is provided in Appendix E.1, but here we develop an informal intuition for the above

proposition in two steps. First, we argue that if all prices and wages were spatially homogeneous,
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equilibrium driver allocation (fixing those prices and wages) would give higher access to rides in

denser regions relative to sparser ones. Next, we argue that the platform does not have the incentive

to use prices and wages to fully eliminate such an access skew.

For intuition of the first argument in the previous paragraph, consider regions i and j with
λ̄i
ti
>

λ̄j
tj

and observe that with spatially homogeneous prices and wages, the total wait time for

drivers should be the same between the two regions. This directly implies that the distribution

of drivers should be skewed toward i, that is: ni
nj

> λ̄i
λ̄j

. To see why, note that if we instead had

ni
nj

= λ̄i
λ̄j

, then idle times would be equal between the two regions but pickup time in region i would

be shorter than that in j, incentivizing drivers to relocate from j to i. But given total driver wait

times are equal between the regions, ni
nj
> λ̄i

λ̄j
is equivalent to ri

rj
> λ̄i

λ̄j
which by definition means

Ai > Aj .

It is helpful to understand the intuition for why the platform does not benefit from fully elimi-

nating the access gap. The simple argument here is that drivers spending long times en route for

pickups hurts not only drivers themselves but also the profitability of the platform. As a result, it

should not be surprising that the platform’s optimal decision accounts for driver incentives (and

pays drivers more to compensate for longer pickup times).

Consider the case of equal access across all regions. Drivers in less dense regions would have a

greater pickup time, whereas the idle time would be the same across all regions if the price and the

wage are the same. In such a case, drivers would have a higher wait time in sparser regions, and

would have to be compensated more.

Next, we turn to examining the impact of platform size (i.e. market thickness) on the access

skew across regions. Before that, we provide a formal definition of market thickening.

Definition 2. Consider a market with the primitive of potential demand as λ̄. We call a market

with potential demand γλ̄ with γ > 1 and all other primitives remaining the same a “thickening”

of the market with potential demand λ̄.

Intuitively, market thickening increases the potential demand in each region proportionally so

that the ratio of potential demand is preserved between any two regions. Nevertheless, as our next

result shows, making a market thicker will mitigate the skew of supply distribution.

Proposition 2. Suppose prices and wages are both flexible and that market primitives are (λ̄, t, α, c̄),

for which (p∗, c∗, n∗) is an equilibrium. Consider a thickening of the market from (λ̄, t, α, c̄) to

(γλ̄, t, α, c̄) where γ > 1. Then, the following are true:

1. There exists an equilibrium (p∗
′
, c∗
′
, n∗

′
) under the new primitives (γλ̄, t, α, c̄), where n∗

′
is

unique. Also p∗
′
i and c∗

′
i for any i with n∗

′
i > 0 are unique.

2. For any i: n∗i > 0⇒ n∗
′
i > 0.

3. For any i, j:

λ̄i
ti
≥ λ̄j
tj
⇒

Aj(n
∗
j )

Ai(n∗i )
≤
Aj(n

∗′
j )

Ai(n∗
′
i )
≤ 1
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4. There will be equitable access to rides as the market gets sufficiently thick:

∀i, j : lim
γ→∞

Aj(n
∗′
j )

Ai(n∗
′
i )

= 1

Recall we assume that passengers are matched with the closest drivers.9 The intuition for the

result is that as market thickens (i.e., the platform grows), all regions become denser with both

drivers and passengers. As such, the importance of pickup times relative to idle times decreases in

drivers’ decision making, leading to a supply distribution that is more balanced with demand.

We now delve deeper into the incentives of the platform and how it aligns with those of the

drivers. In interpreting Proposition 1, we argued that the platform, similarly to drivers, does suffer

from long pickup times and is, hence, not willing to use prices and wages to fully eliminate access

skew among regions of different densities. The next natural question is: does the platform have the

incentive to at least mitigate the skew? The following proposition sheds light on this.

Proposition 3. Suppose prices and wages are both flexible and that market primitives are (λ̄, t, α, c̄).

Also suppose (p∗, c∗, n∗) is an equilibrium. For any regions i, j with n∗i 6= 0 6= n∗j , we have:

λ̄i
ti
≥ λ̄j
tj
⇒


p∗i ≤ p∗j
c∗i ≤ c∗j
p∗i − c∗i ≥ p∗j − c∗j

where the latter three comparisons hold with equality only if the first one does.

As this proposition shows, the platform obtains lower margins (pi − ci) for its services in less

dense regions. That is, the platform optimally gives higher wages to drivers in sparser regions

but does not pass the entire wage increase on to passengers in the form of higher prices. Thus,

the platform effectively “subsidizes” sparser regions, relative to denser ones. This is consistent

with an incentive to mitigate the access skew across regions. The intuition for why the platform

would like to mitigate the access skew has to do with externalities. Consider a driver’s decision

to operate in a denser region i as opposed to a sparser region j. This choice leaves region j even

sparser, thereby increasing the pickup time in j and negatively affecting incentives of other drivers

to choose j. While the driver’s decision to operate in region i makes the region even denser, the

positive marginal impact of region i being denser does not compensate for the loss from region j

being sparser. This externality on other drivers is internalized by the platform through profits, but

not directly internalized by the driver. This creates a wedge between platform and driver incentives

and leads the platform to use price and wage levers to mitigate such externalities by drivers.

There are a few interesting observations. First, the platform’s optimal strategy is more complex

than what might seem based on the intuition in the above paragraph. The complexity arises from

the fact that the platform simultaneously determines optimal prices and optimal wages: offering

9See Appendix C for details.
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higher wages in sparser regions put some upward pressure on prices. Likewise, lower prices in

sparser regions put some downward pressure on wages. One question, which Proposition 3 above

helps answer, is “which lever, prices or wages, does the platform use to mitigate the access skew?”

Proposition 3 suggests that in sparser regions, the platform optimally builds economies of density by

providing higher wages. Despite the platform charging higher prices, which reduces the economies

of density, overall the effect of lower wage dominates. Thus, the platform trades off getting a lower

margin in sparser regions in order to build economies of density.

In the empirical section (Section 6.1), we connect the margin results in Proposition 3 to access.

Specifically, in our counterfactual simulations, we show that access among regions becomes more

skewed if the platform is restricted to spatially uniform prices and wages (and thus, spatially

uniform margins). With our analysis of supply-side model completed, we now turn to a version of

the model where economies of density arises only from the demand side; and we study if the above

insights are robust to such a change in the model.

3.3 Demand-Side Economies of Density

The pickup time for a driver is equivalent to the total wait time experienced by a passenger riding

with that driver, and decreases as the number of drivers increases. Therefore, it is natural to model

the riders’ sensitivity to pickup time as demand-side EOD and examine the consequences of it. This

would be a model for demand-side economies of density: higher pickup times in sparser regions

diminish demand in those regions, making the market sparser and further increasing local pickup

times.

We model demand-side EOD only, where pickup times do not directly impact driver behavior

or revenue but impact passengers. To incorporate the latter assumption, we need to make demand

λi not only a function of prices, but also pickup times:

λi(pi, ni) = λ̄i(1− αpi)
(

1− β ti
ni

)
,

where α > 0 measures the price sensitivity and β > 0 measures the sensitivity to pickup time,

thereby capturing the magnitude of demand-side economies of density.

To capture the idea that pickup times do not directly impact drivers, we need to make two

assumptions. First, region sizes ti (and hence pickup times) are so small that driver wait time

is approximated by idle time only. Second, in spite of all ti values being vanishingly small, the

sensitivity to pickup times β is sufficiently large so that β× ti values are non-negligible and, hence,

passengers still care about pickup times. In this setting, driver wait times are given by:

Wi(ni) =
ni

λi(pi, ni)
=

ni

λ̄i(1− αpi)(1− β ti
ni

)
, (5)

The wait time curve is illustrated in Fig. 2. Similar to the model with supply-side EOD, Wi(·)
initially decreases in ni as the effect of pickup time dominates. As ni is large enough, Wi(·) becomes
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increasing in ni due to the effect of idle time. The number of rides per hour, ri, and access, Ai, are

as previously defined.

Figure 2: Wait Time as a Function of the Number of Drivers

Note. The function is given by eq. (5). The figure is illustrated with λ̄i(1− αpi) = 10 and βti = 2.

The following proposition characterizes the equilibrium spatial distribution of supply and its

response to market thickness under demand-side economies of density.

Proposition 4. Suppose the market primitives are (λ̄, t, α, β, c̄). Both prices and wages are flexible.

Under the model with demand-side economies of density, all propositions with the model with supply-

side economies of density (Lemma 2, Propositions 1 to 3) continue to hold.10

The key lesson from this proposition is that our main insights are robust to the source of

economies of density. This is because both the supply-side and demand-side models share a similar

mechanism. We detail the underlying intuition connecting the models.11 In equilibrium, drivers

distribute across regions to balance the idle time and pick-up time in different regions. Recall that

idle time increases with number of drivers in a region, whereas pick-up time asymptotically goes to

zero as number of drivers grows. The difference between the supply-side and demand-side models

lies in how the pick-up time affects drivers’ payoffs. In the supply-side model, pick-up time directly

affects drivers’ payoffs since they internalize this as a cost, similar to idle time. In the demand-side

model, drivers are not directly sensitive to pickup time. However, they are indirectly impacted

by it, since consumer demand is responsive to pickup time (in addition to price). Specifically,

demand decreases as pickup time increases. Thus, in both models, pickup time has either a direct

or indirect impact on the drivers in the same direction. Since both direct and indirect effects above

are directionally (and qualitatively) similar in terms of the impact on drivers, we should expect the

main results to hold regardless of the source of economies of density (supply-side or demand-side).

Proposition 4 verifies that this is indeed the case.

10One small exception is that in the demand-side model, the first comparison in Proposition 3 (i.e., p∗i ≤ p∗j )
always holds with equality.

11We thank an anonymous reviewer for this point.
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In addition to being interesting in its own right, the robustness of our main insights to the

source of economies of density will play a key role in our empirical analysis: there, we will argue

that demand- and supply-side economies of density are not separately identifiable from each other

(at least with ride-level data). Hence, robustness of our main insights to the source of economies

of density becomes crucial when it comes to practical recommendations to firms and policymakers.

Next, we include inter-region rides to make the model realistic for empirical analysis.

3.4 Inter-Region Rides

An abstraction in our model so far is the assumption that rides take place only within regions.

In this section, we first define the equilibrium notion with inter-region rides. Then we show that

Propositions 1 to 4 continue to hold with inter-region rides.

Let λ̄ij denote the potential demand for rides from region i to region j. By construction, we

have λ̄i = Σj λ̄ij . Define realized demand λij
(
pi, ωi

)
in a similar way: λij

(
pi, ωi

)
= λ̄ijf

(
pi, ωi

)
.

Define rij as the realized number of rides from i to j. In this framework, one can think of ni, the

number of drivers in region i, as a stock variable with flows in and out. Realized rij values lead to

“cross-regional flows” of drivers. These flows of drivers are already in the market. In addition, we

also allow for a (negative or positive) net flow of drivers ρi from each region i to the outside option.

In this setting, we need a new notion of equilibrium which is given by Definition 3.

Definition 3. Suppose the “market primitives” (λ̄, t, c̄) and platform strategy (p, c) are given. Let

ρi denote the (positive or negative) net flow of drivers out of each region i. n∗ = (n∗1, ..., n
∗
I) denote

the distribution of drivers among the I regions. The pair of vectors (n∗, ρ∗) is an equilibrium if it

satisfies the following two conditions:

1. Steady State: Net flow out of each region i is zero: ∀i : ρ∗i +
∑

j r
∗
ij −

∑
j r
∗
ji = 0

2. Optimality: No small perturbation in rates ρ∗ is able to strictly improve driver revenue in

any region. Formally, fixing some elapsed time T̄ > 0, and perturbation ∆ρ 6= 0, the following

will hold ∀i ∈ I, ∀T ∈ (0, T̄ ):

ci
Wi(n∗i )

≥ ci
W (n∗i + T ×∆ρ)

Also, we call n∗ an “all-regions” equilibrium allocation if (n∗, ρ∗) it is an equilibrium and if n∗i > 0

for all i.

We now show that the results provided in the previous sections (i.e., without inter-region rides)

all hold with inter-region rides as well. Proposition 5 formalizes this.

Proposition 5. Suppose market primitives (λ̄, t, c̄) and platform strategy (c, p) are given. Then

for any (n∗, ρ∗) with n∗ >> 0, the pair (n∗, ρ∗) is a driver equilibrium according to Definition 3 if

and only if n∗ is a driver equilibrium in the no-inter-region-ride version of the problem.
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The proof of this proposition is straightforward and is provided in Appendix E.3. This result

shows that as long as we focus on all-region equilibria, all of our results from Section 3.2 and Section

3.3 should hold. The intuition is simple. If there are too many incoming rides into a region i with

overall low payoff, that will lead to many drivers opting to exit the market and pursue an outside

option upon dropping a passenger in i. Similarly, attractive payoff in a region i with low inflow of

rides will garner higher entry of local drivers.

Note that the purpose of Proposition 5 is not to provide conceptually new insights on economies

of density (the proposition only claims that the old results hold). The purpose is, rather, to connect

our theory to the forthcoming empirical analysis, where we will use relative magnitudes of inter-

region rides to identify the strength of economies of density and measure access skew. Next, we

detail the data used in the empirical analysis.

4 Data and Summary Statistics

The primary source of data is the ride-level data on Uber in New York City (NYC) from March

to June in 2019. The dataset is publicly available from NYC’s Taxi and Limousine Commission

(TLC). Uber is the largest ridesharing platform whose total number of rides given in NYC per

month was about 14.4 million in June 2019. The regions are defined as the four boroughs of NYC:

Bronx, Brooklyn, Manhattan and Queens.12 We use the terms region and borough interchangeably

in the following sections of this paper. For each ride, we observe the exact date, time, and location

both for the pickup and the drop-off. Besides, we observe the wage paid to the driver and the price

paid by the passenger.13

There are a number of reasons why we chose the NYC TLC Data from March to June 2019

as the setting for our empirical analysis. First, TLC provides data on both pickup and drop-off

locations. Second, starting in February 2019, additional ride-level price and wage data became

available. Both of these features play key roles in our analysis. Third, NYC is one of the densest

cities in the world. Therefore, if frictions from low density impact the spatial distribution of supply

and access in NYC, it is reasonable to conclude they must also be relevant in other ridesharing

markets.

We aggregate the ride-level data at borough-day level. For each borough i and day d, we

calculate the average price per ride, pid, and the average wage per ride, cid, for all rides originating

from borough i on day d. Fig. 3 illustrates the daily average prices and wages by borough throughout

the dataset. Additionally, we compute the average number of rides picked up from each borough

per hour, denoted as rid. Table 1 reports the summary statistics of these variables for each borough

across days, revealing substantial variation in all three variables across regions and days. For the

reservation level of wage, c̄, set to $24, we rely on figures from Hall and Krueger (2018), who report

12We exclude rides either picked up or dropped off in Staten Island because the rides between Staten Island and
other boroughs are scarce on some of the days within our data period. This leads to extreme outliers in the measures
of relative outflows and biases the estimates.

13We exclude shared rides, since the data does not provide separate wage and price for each co-rider. We retain
rides with positive trip time and distance and exclude rides where the passenger fare is lower than the driver pay.
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this as the mean hourly gross earnings before expenses for NYC UberX drivers for October 2015.14

We set c̄ to be uniform across boroughs and across days. Finally, we use data on the borough areas

(in square miles)15 and calculate the square root of each area, denoted as si.
16

Figure 3: Price and Wage across Days and Boroughs

Table 1: Summary Statistics of Number of Rides, Price and Wage at Borough-Day Level

Borough Num Rides (rid) Price (pid) Wage (cid)

q25 median q75 q25 median q75 q25 median q75

Bronx 2181 2334 2654 13.0 13.3 13.7 10.9 11.1 11.4
Brooklyn 3853 4334 5012 16.5 16.8 17.1 13.3 13.6 13.9
Manhattan 6559 7265 7944 18.9 19.8 21.0 15.1 15.9 16.6
Queens 2934 3146 3504 20.3 21.4 22.3 16.6 17.6 18.2

Before introducing the empirical model, we present some data patterns that shed light on

connections between our theoretical results and the empirical analysis. Fig. 4 provides evidence

suggesting that access is skewed toward denser regions. The first plot on the left shows population

density (people per square miles) by borough, while the second plot displays the average number

of drop-offs per hour, normalized by region size si as previously defined. Both measures serve

as loose proxies for ride demand. The third plot presents the average number of pickups per

hour, normalized by si. Perhaps unsurprisingly, as shown in the figure, the rank ordering among

the four boroughs is consistent across the first three panels: Manhattan, Brooklyn, Bronx, and

Queens. The last panel of Fig. 4 displays the pickup/drop-off ratio for each borough. If every

passenger who used Uber to leave a borough also used Uber to return, all these ratios would equal

14We use gross earnings before expenses rather than net earnings after expenses because our model assumes that
the number of drivers is determined by ci, the payment from the platform before expenses. Intuitively, for a driver
comparing driving on Uber to a minimum-wage job (e.g., at a restaurant), Uber must offer higher gross earnings to
account for vehicle maintenance and fuel costs. Parrott and Reich (2018) reports a similar gross earnings of $22-$23
for NYC in October 2017 and proposes a minimum gross earnings standard of $25.76 for NYC drivers.

15https://www.census.gov/quickfacts/fact/table/newyorkcountynewyork,richmondcountynewyork,

kingscountynewyork,queenscountynewyork,bronxcountynewyork,newyorkcitynewyork/LND110220
16We consider the square root of the borough area as its size based on the following simple hypothetical: if a

borough’s size doubles in each dimension (quadrupling its area), the average distance between two randomly picked
points doubles rather than quadrupling. The notion of measuring the region size in length as opposed to area is also
implemented in the micro-foundation for our theory model, as detailed in Appendix C.
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1. Interestingly, however, the ratios differ from 1, and follow the same rank ordering as the other

measures: Manhattan, Brooklyn, Bronx, and Queens. This suggests that access to rides is easier

in denser regions, consistent with the predictions of our theory.

Figure 4: Population Density, Drop-offs, Pickups, and Pickup/Drop-Off Ratios by Borough

Based on the intuition provided by Fig. 4, we now construct a measure that will prove directly

useful in our empirical analysis. Using the inter-region rides rijd, defined as the average number of

rides per hour starting in borough i and ending in borough j on a given day d, we construct the

“relative outflow” between i and j as follows:

ROijd =
rijd
rjid

(6)

Table 2 displays all such pair-wise relative outflows from our data, averaged across days. In-

terestingly, for any two boroughs i, j where i is denser than j in any of the three left panels of

Fig. 4, we have ROij > 1. Again, this suggests that rides are more accessible in those denser

regions, consistent with our theory. Next section further formalizes this idea, clearly sets out the

assumptions underneath it, and develops it into an identification/estimation strategy.

Table 2: Average Relative Outflows ROij across Days

region j
Bronx Brooklyn Manhattan Queens

region i
Bronx – 0.93 0.93 1.05
Brooklyn 1.07 – 0.91 1.14
Manhattan 1.07 1.1 – 1.25
Queens 0.96 0.87 0.8 –

5 Empirical Model

Our theory model characterizes platform, driver and passenger behavior under profit maximizing

assumption for platforms and drivers. We now take the model to data to obtain parameter esti-

mates of model primitives and to run counterfactual analyses to provide policy recommendations.

18



Section 5.1 sets up the empirical calibration problem, specifying observable data and parameters to

be calibrated. Section 5.2 presents the empirical model with supply-side EOD. Section 5.3 presents

the empirical model with demand-side EOD. Section 5.4 introduces a comprehensive model that

incorporates both supply-side and demand-side EOD. Before describing the model, we summarize

the notation used for both the theoretical and empirical models in Appendix A.

5.1 Connecting the model to data and the role of inter-region rides

This section sets up the empirical calibration problem. We detail a proposition that will prove

useful in finding the solution to the problem.

Start by noting that each driver makes 1
Wid

trips per unit of time, which in our context corre-

sponds to trips per hour. Thus, the number of rides is given by: rid = nid
Wid

. Free entry of drivers

ensures that drivers’ revenue is equivalent to the outside option in equilibrium, implying Wid = cid
c̄ .

These relationships imply that the number of drivers can be directly estimated on the data from

the number of trips, driver wage, and the outside option:

nid = rid ×
cid
c̄

(7)

Let D denote the set of observable data and the variables that can be derived from the data

as described above: D = {pid, cid, rid, nid}i∈I,d∈D ∪ {rijd}i,j∈I,d∈D ∪ {c̄}, where I denote the set of

regions and D denote the set of days covered in our dataset. The objective of our empirical exercise

will be to recover using D the following set of parameters: {λ̄id}i∈I,d∈D, {ti}i∈I , α, β.

In recovering the above parameters, we leverage additional parameterization as well as additional

results based on our model. Starting by region sizes ti, we assume ∀i : ti = a × si, where si is

the square root of borough i’s area (hence observable) and a is a parameter to be estimated. This

parameter could be interpreted as the expected pickup time in a region if the region had one

driver per unit of size. We assume a is homogeneous across regions.17 This approach reduces the

estimation burden for sizes ti to only one scalar.

For unobservable potential demand λ̄id, we leverage an assumption that cross-regional demand

is balanced: ∀ i, j ∈ I, λ̄ij = λ̄ji. The motivation for this assumption is that given our time periods

are daily, for every trip there is a “return trip” shortly after. We now show that this assumption,

combined with the rest of the structure of our model, creates a tight connection between the

unobservable potential demand and the observable ride counts.

Proposition 6. Let I denote the set of regions served by the platform. (n, ρ) is a steady-state

(not necessarily equilibrium) driver allocation according to Definition 3, under (c, p, λ̄, t). Suppose

potential demand for rides are “balanced”: ∀ i, j ∈ I, λ̄ij = λ̄ji. Also suppose the proportion of

17In reality, a could be heterogeneous due to different regional extents of traffic congestion, etc. We abstract from
those in this paper. Note that this abstraction likely understates economies of density, given that denser regions tend
to have higher traffic.
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unfulfilled demand does not depend on destination: ∀i, j ∈ I , rij
λ̄ij

= ri
λ̄i

= Ai.
18 Then we have:

∀i, j ∈ I,
ri
λ̄i
rj
λ̄j

≡ Ai
Aj

=
rij
rji
≡ ROij

The proof can be found in Appendix F.1. This result shows that the access ratio between two

regions is equal to the relative outflow. To interpret the result, if region i has a lower access than

region j, that is, the supply is more skewed to region j rather than region i, then there are more

inter-region rides from j to i than those from i to j following our assumptions. This illustrates

how observable relative flows ROij help infer the skew among unobservable access levels Ai and Aj ,

which in turn helps calibrate the magnitude of economies of density. We carry out this calibration

exercise for both the supply-side and the demand-side models.

Although the assumptions in Proposition 6 are nontrivial, the approach provides meaningful

advantages. First, the data requirement is mild: only the numbers of rides rather than vacant

cars, search behavior, etc. Second, it can help identify spatial supply-demand mismatch (i.e., skew

in access) in passenger transportation markets regardless of whether the matching technology is

centralized or decentralized. The measure of potential demand it helps infer (as we do later in the

calibration procedure) includes not just the set of passengers who searched for rides by showing up

on their app but failed to obtain a ride, but also those who skipped searching for rides in the first

place due to anticipating that one would be difficult to find or the rides are too expensive.19

With this result at hand, we next turn to empirically calibrating our model.

5.2 Supply-Side Economies of Density

We adapt the theory model with supply-side economies of density to the empirical setting here.

Next, we describe the procedure to estimate the model parameters with the data. Finally, we show

the identification of the model parameters.

In contrast to the theory section, here we do not (need to) assume that the platform optimally

sets prices and wages in the empirical model. Instead, we focus on estimating the model parameters

from the driver and passenger behavior, and our approach is agnostic to the price and wage setting

process. Our focus in on using the estimated model parameters to make recommendations to the

18A similar proportionality assumption can be found in Bimpikis et al. (2019). See equation (2) on page 748 and
the subsequent explanation. One might think an alternative assumption could be that the proportion of fulfilled
demand over the actual demand does not depend on the destination, i.e.

rij
λij

= ri
λi

. We note that both in our paper

and in Bimpikis et al. (2019), these two assumptions are equivalent because of one key underlying assumption: we
assume that passengers in any region i react the same way to prices (and to pickup time in our demand-side model)

regardless of their destination. In this way, we have
λij

λ̄ij
= λi

λ̄i
= f(pi, ωi) for any region i, j. If one relaxed this

assumption and allowed, for instance, those who travel from Manhattan to Bronx to be more/less price-sensitive than
those who travel from Manhattan to Brooklyn, then rij/λij = ri/λi would no longer be equivalent to rij/λ̄ij = ri/λ̄i.

19To illustrate, suppose passengers consistently use rideshare to go to region i but never open their apps to find a
ride back out of region i because they have learned that supply is scarce in that region. Even hard-to-obtain data on
app sessions cannot detect this phenomenon and would, hence, understate the low access to rides in region i, but a
method based on relative ride flows can.
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platform in our counterfactual analysis.

Recall from the theory section 3.2, for each region i and each day d, given the market primitives

(λ̄id, ti, c̄, α) and (pid, cid) chosen by the platform, the equilibrium number of drivers is given by

cid
Wid(nid)

= c̄

Following the theoretical model, the wait time is given by Wid = nid
λ̄id(1−αpid)

+ ti
nid

.20

We had operationalized the region size parameter t as ti = asi, where si is the square root of

the region (borough) size, and is therefore observable. Thus, having nid estimated from eq. (7)

and observable platform choices pid and cid, the driver free-entry equilibrium ensures that the wait

time obtained equates the drivers’ ridesharing wage to the outside option. This leads the following

estimating equation:
nid

λ̄id(1− αpid)
+
asi
nid

=
cid
c̄

(8)

The parameters to be estimated in the supply-side model are, therefore, (α, a, {λ̄id}i∈I,d∈D).

Calibration

The model calibration follows two steps. First, for any candidate pair (α, a), we use the model

structure and observable data to recover the potential demand λ̄id for each region i and day d.

Next, we use these recovered potential demand values to simulate relative outflows between pairs of

regions, which are inherently a function of the initial (α, a). We then match these simulated relative

outflows to the observed data by minimizing the sum of squared differences, yielding estimates (α̂, â)

(McFadden, 1989). Formally, our steps are as follows:

Step 1 We obtain the number of drivers from the data following eq. (7). Using the number of

drivers, eq. (8) allows us to express λ̄id in terms of data (pid, cid, si and now nid) and

parameters (a, α) as follows:

λ̄id(a, α;D) =
nid

(1− αpid)( cidc̄ −
asi
nid

)
, (9)

Step 2 Given the observables and following step 1, we express the relative outflow given by the

empirical model between each pair of regions i, j on each day d as a function of the parameters

(a, α):

ROmodelijd =
Aid
Ajd

=
ri/λ̄id(a, α;D)

rj/λ̄jd(a, α;D)
,

where the first equality is given by Proposition 6, and the second equality is given by the

definition of access as in eq. (3). We estimate (a, α) by matching the moments of ROij

for every pair of regions i, j, where we take the average difference in ROij across d ∈ D

between the model simulation and the data. Specifically, for each pair of regions i, j, denote

20We assume that the trip time is 0 as in our theory model.
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dij(a, α;D) = | 1
|D|
∑

dRO
model
ijd (a, α;D) − 1

|D|
∑

dRO
data
ijd (a, α;D)| and let d(α, a;D) be the

vector consisting of dij . To obtain the estimates (α̂, â), we minimize

min
α,a

d(α, a;D)′d(α, a;D), (10)

The estimates of λ̄id are then obtained from λ̄id(a, α;D) following eq. (9).

5.2.1 Identification

We informally discuss the identification of model parameters here, and relegate the formal statement

and proof of the identification to Appendix F.2. Below, we outline the intuition behind this process.

Using the number of drivers obtained from eq. (7), eq. (8) allows us to express λ̄id in terms of

data and parameters (a, α). Next, observe that each λ̄id can be written as an explicit function of

a, α and data as in eq. (9). Therefore, the identification problem involves only the parameters α,

and a using variation in the RO moments. We consider the relative outflow across regions for a

single day d. For notational brevity, we drop the day subscript d. The model relative outflow can

be written as

ROmodelij =
Ai
Aj

=
ri/λ̄i
rj/λ̄j

=

ni
ci
/λ̄i

nj
cj
/λ̄j

=
(1− αpi)

(
1− a sic̄

nici

)
(1− αpj)

(
1− a sj c̄

njcj

) (11)

The third equality holds given the assumption of driver equilibrium distribution. The fourth equal-

ity is obtained if we substitute λ̄i and λ̄j with a, α and observable data D following eq. (9). Note

that in this equation, everything is data except for a and α.

The formal proof of how matching the moments in eq. (10) identifies both a and α is relegated

to Appendix F.2. To see the intuition, first let us assume α = 0. In this case, roughly, a is identified

by the variation in relative outflows: the larger the magnitude of a, the larger the imbalance of

flows between denser and less dense regions.21 In addition, variation in wage levels over time and

regions also contributes to the identification.

Price sensitivity α would be identified in a similar fashion if we assumed a = 0: the larger the

magnitude of α, the larger the imbalance of flows between more and less expensive regions.22 Now,

note that if there is sufficient independence between regional price variation and regional density

variation, both a and α are identified.23

21More specifically, ROij being close to 1 is consistent with low values of a. As a increases, ROij would need to
diverge from 1. For example, if sic̄

nici
>

sj c̄

njcj
, then ROij is less than 1 and it decreases as a increases.

22In principle, the price variation across region is prone to endogeneity, which might bias the results. One possible
solution to this problem would be to calibrate the parameter α in a way that would lead to the a similar price
elasticity of demand to what is found in other research that leverages exogenous variation for the same market (such
as Rosaia (2020)), instead of directly recovering it from our data. We did not do so, however, given that the α we
found indeed implies price elasticity levels that are close to Rosaia (2020) (See Table 4 for the results).

23Broadly speaking, sufficient independence requires that the comparison of p between two regions cannot inform
how sc̄

nc
compares between the two regions, and vice versa. Specifically, there exists a pair of regions where both p

and sc̄
nc

are high for one of the regions; and there also exists another pair of regions where one region has higher p
and another region has higher sc̄

nc
. See the proof in Appendix F.2 for more details.
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5.3 Demand-Side Economies of Density

In this section, we adapt the theory model with demand-side economies of density to the empirical

setting. The overall strategy is analogous to the case of supply-side EOD, so we skip details

when they are similar. We describe the estimation procedure and identification for this model in

Appendix D.

Again, we do not assume that the platform optimally sets prices and wages and focus on

estimating the model parameters from the driver and passenger behavior. Following the theoretical

model with demand-side economies of density, the wait time is given by Wid = nid

λ̄id(1−αpid)
(

1−β′ ti
nid

) .

Recall from our discussion in the theory section 3.3 that to model demand-side-only EOD, we need

to assume that ti ≡ a × si is vanishingly small but β′ is so large as to make βsi ≡ β′ × a × si of

non-trivial magnitude. Thus, in equilibrium, we will have:

cid
Wid(nid)

= c̄⇐⇒ nid

λ̄id(1− αpid)
(

1− βsi
nid

) =
cid
c̄

(12)

The parameter β can be interpreted as the reduced-form aggregation of (i) the model parameter of

pickup time as a function of region size and the number of drivers (ii) the sensitivity of ride demand

to pickup time. Therefore, β captures the demand-side EOD. In this model, the parameters to be

estimated are (α, β, {λ̄id}i∈I,d∈D).

5.4 The Comprehensive Model

In taking the model to data, we construct a comprehensive model here that includes both supply-

side and demand-side economies of density that we have separately examined above. In the compre-

hensive model, the passenger pickup time affects both the demand arrival rate and drivers’ supply

decisions, where the total wait time per ride is given by

Wid(nid; λ̄id, α, β, a) =
nid

λ̄id(1− αpid)
(

1− βsi
nid

) +
asi
nid

(13)

The distribution of drivers on a given day d is still obtained as an equilibrium outcome, where the

ratio of wage per ride to wait time equals the value of the outside option:

∀i, ci
Wid(nid; λ̄id, α, β, a)

= c̄ (14)

As before, the number of rides is given by rid = nid
Wid

.

The parameters to be estimated are (a, α, β, {λ̄id}i∈I,d∈D). This general model encompasses,

as special cases, the two models we have examined so far: the supply-side-only EOD (β = 0) and

the demand-side-only EOD (a = 0). As discussed, separately identifying a and β is not feasible

given our data. As demonstrated earlier, each parameter can be identified if we assume the other

is zero. Similarly, a and β would be identified if we assume that the ratio between them is known.
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This effectively translates to the idea that the relative contributions of the supply-side and the

demand-side EOD are known.

We can use this idea to test for robustness across a wide range of relative contributions of these

effects. Specifically, we calibrate the model using the following ratios: a
β ∈ {10, 1, 0.1}. A larger

ratio implies that supply-side effects are stronger, while a smaller ratio implies that demand-side

effects have a greater contribution. Observe that a model estimated with each of these assumptions

on a
β is in nature “arbitrary” and uninformative on its own, since we cannot test this assumption.

However, the analysis across this wide range of a
β is useful since it helps to show that our results

are robust across a wide range of possible ratios of the relative importance between supply-side and

demand-side EOD, as opposed to just the two extreme cases.24

5.5 Empirical Results

We present estimates from the models with supply-side EOD, demand-side EOD, and the compre-

hensive model with both sources of EOD. Table 3 presents the estimates of the parameters from

the supply-side and the demand-side model. The parameter estimates are qualitatively similar.

Table 4 shows the price elasticities implied by the model estimates. As a benchmark, Rosaia (2020)

finds a broadly consistent price elasticity ranging from 0.55 to 1.09.25 Cohen et al. (2016) finds an

overall price elasticity of 0.61 for the NYC.

Table 3: Parameter Estimates from the Supply- and Demand-Side Models

Supply-Side Model Demand-Side Model

α 0.0201 0.0138
(33.36) (21.17)

a 23.27 N/A
(29.82)

β N/A 42.64
(26.88)

Average λ̄id by Regions
Bronx 4674 3943
Brooklyn 7824 6791
Manhattan 12650 10535
Queens 6565 5629

Note: We report the point estimates (with t-statistics in parentheses) for the parameters (α, a, β).
Since our model estimates λ̄id for each day and each region, we therefore only present the average
of the point estimates of λ̄id across days for each region.

Table 5 displays the average potential demand densities and accesses across days in each region,

as estimated by each model. The results reveal significant variation in the demand density across

regions, with Manhattan exhibiting more than four times the density of Queens, according to both

the models. This spatial disparity highlights the importance of characterizing and estimating these

24In addition to a
β
∈ {10, 1, 0.1}, we also ran the analysis with a

β
∈ {0.01, 100}. The results were similarly robust.

25Rosaia (2020) is an order version of Rosaia (2023). It reports the price elasticities implied by the model estimates.
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Table 4: Price Elasticities by Regions

Region Supply-Side Model Demand-Side Model

Bronx 0.37 0.34
Brooklyn 0.51 0.36
Manhattan 0.67 0.40
Queens 0.75 0.55
All Regions 0.60 0.41

Note: The table shows the average demand elasticities across days with respect to prices given by
supply-side and demand-side models separately. The averages are weighted by the number of rides,
rid.

regional differences.

Furthermore, the access levels follow an ordering that is consistent with the demand density.

Specifically, Queens, the least dense region, is found to have the lowest access and Manhattan,

the most dense region, the highest access. These results remain robust across varying model

specifications that allow for different relative levels of supply-side and demand-side EOD, as detailed

in Appendix G, where we present the demand densities and accesses from the alternative models.

With model calibration results at hand, we next turn to counterfactual analysis.

Table 5: Model Outcomes (Regions Ordered by Demand Density)

Model Spec. Supply-Side
Model

Demand-Side
Model

Demand Density ( λ̄isi )
Queens 630 540
Bronx 719 607
Brooklyn 939 815
Manhattan 2655 2211

Access ( ri
λ̄i

)
Queens 0.49 0.57
Bronx 0.51 0.61
Brooklyn 0.57 0.66
Manhattan 0.58 0.69

Note: The results presented correspond to averages across days over the data time periods.

6 Counterfactual Analysis

We next simulate several counterfactual scenarios using the estimated model parameters. Our

primary objective is to empirically quantify the key theoretical insights presented in Section 3.

First, we simulate the platform’s optimal price and wage policy in Section 6.1 to assess the extent

to which economies of density skews access away from less dense regions, and to what degree the

platform might counter such a skew. We demonstrate that the platform mitigates but does not

eliminate the access skew by comparing the access skew under the optimal heterogeneous and
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homogeneous pricing strategy. Second, we simulate the platform’s optimal policy with the demand

levels in each region scaled by a uniform factor, as described in Section 6.2, to quantify how much

the access skew becomes more pronounced for smaller platforms. Finally, in Section 6.3, we go

beyond quantifying the theoretical insights and explore the region-specific prices/wages necessary

to achieve equalized access across regions.

Our counterfactual analysis reveals findings that are robust across different models, regardless

of whether and to what extent economies density originates from the supply-side, the demand

side, or both. Note that we do not have theory results in the case of mixed supply-and-demand

EOD, but we can obtain counterfactual findings for this case too. The counterfactual demonstrates

that our insights are consistent across all models empirically. To avoid redundancy, we provide

the counterfactual results only for the supply-side model here. Appendix G has the results for all

models: the supply-side model, the demand-side model, and the model with both supply-side and

demand-side EOD.

6.1 Platform Optimal Strategy

Recall that our estimation did no rely on any assumptions about the platform’s pricing policy. In

this section, we first simulate the platform’s optimal prices and wages to quantify the idea that the

platform might set higher prices and wages but accepts lower margins in less dense regions. Further,

we examine the platform’s responses when it is restricted – either by regulation or company policy –

to implement a uniform price and wage across all regions. Comparing these scenarios, we find that

while the platform does not fully eliminate spatial access skew, its optimal strategy is to mitigate

access skew using flexibility in setting prices and wages across regions.

Based on our model estimates, we first simulate the platform’s optimal prices and wages across

each of the regions for each day over the four-month span of data. Fig. 5a illustrates the optimal

prices and wages for each region (averaged across days), with regions arranged in descending order

by demand density from left to right. The platform’s optimal policy pays drivers approximately 77%

more per ride in the least dense region (Queens) compared to the most dense region (Manhattan).

However, the platform does not pass on more than 25% of this wage difference to passengers.

Overall, our simulation recommends a higher price relative to what Uber charged during the data

period. This recommendation aligns with Uber’s more recent pricing adjustments that have been

implemented after the period of our data.26

Next, we examine access levels. Fig. 5b displays the access levels across regions (averaged across

days) under the optimal heterogeneous and homogeneous price and wage policies.27 Two key pat-

terns emerge. First, lower-density regions exhibit lower access levels. Under optimal heterogeneous

prices and wages, access in the most dense region (Manhattan) is higher by 25% compared to the

least dense region (Queens).

26See Appendix I for more details.
27Note that compared to accesses level calibrated from the model shown in Table 5, the accesses here are at a

relatively lower level. This is because our model predicts prices that are higher than the observed levels.
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Second, compared to the scenario where the platform is restricted to set uniform price and

wage across regions, the platform mitigates but does not fully eliminate access inequality across

regions with pricing flexibility. Specifically, as Fig. 5b illustrates, access in the most dense region is

higher by 55% than the least dense region under homogeneous pricing, but only 25% higher under

heterogeneous pricing. This aligns with our interpretation of Proposition 3 and Proposition 4,

which suggests that the platform optimally charges smaller margins in sparser regions under full

pricing flexibility (effectively “subsidizing” sparser regions) in order to build economies of density

and mitigate spatial access skew.

Figure 5

(a) Platform optimal heterogeneous prices and
wages

(b) Accesses with/without flexibility in prices
and wages

Note: The regions (boroughs) are arranged in descending order by demand density from left to right.

6.2 Impact of Platform Size

There have been regulations that cap the number of drivers on ridesharing platforms, effectively

reducing platform size (CBS News, 2018). To illustrate how the degree of access skew changes as

the market thickens, we scale the demand levels for each region by a uniform factor to simulate

a larger or smaller platform. This allows us to observe how access skew is either mitigated or

intensified. We use the average potential demand (λ̄id) across days as the base demand levels for

each region. We then scale these demand levels by a uniform platform size multiplier, with values

set to 0.8 and 1.2. Following this adjustment, we calculate the optimal prices and wages as well as

the associated access levels in equilibrium. Under the supply-side EOD model, if Uber’s size were to

shrink by 20%, then the access of the most dense region is 28% higher than the least dense region.

On the other hand, if Uber’s potential demand grows by 20% of the estimated size, the access in

Manhattan is higher by 22% than Queens. Consistently, as depicted in Fig. 6, the access ratios

of the three less dense regions (Brooklyn, Bronx and Queens) relative to Manhattan approach 1

as the platform expands. This indicates that the access skew is mitigated as the platform grows
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larger.

Figure 6: Access Ratio (relative to Manhattan) as market thickens with supply-side EOD model.

6.3 Equalizing Accesses

Policy makers are sensitive to unequal access to important services like transportation. We examine

the extreme case where the policy maker might want to equalize access across all regions to provide

insight into what such a policy would require. Specifically, we evaluate the extent to which Uber

would need to adjust its regional prices/wages in order to achieve uniform access across regions,

set to the average access level across regions, which is closest to that of Brooklyn.

We set the potential demands of each borough at the estimated ones (averaged across days).

We then fix either wages (c∗) or prices (p∗) at the optimal level as determined when the platform

jointly optimizes (p∗, c∗). We then vary the other lever – prices or wages accordingly.

First, we fix the wage at c∗ and then calculate the regional price levels pi needed to equalize

access across all regions (at the average access level under the full equilibrium). We find that, as

shown in Fig. 7a, to equalize access, the upward trend in prices (where prices are higher in sparser

regions) is reversed, resulting in a downward trend. Specifically, the price in the most dense region

increases by 8.4%, while the price in the least dense region decreases by 4.1%.

Next, we fix prices at p∗ and adjust regional wages to set all access levels to the global average.

The upward trend in wages as demand density decreases becomes more pronounced, as illustrated

in Fig. 7b. To achieve equal access, the wage in the most dense region needs to be reduced by

16.5%, while the wage in the least dense region must increase by 9.6%. This adjustment further

amplifies the wage disparity across regions.

These finding aligns with the idea that, to build economies of density, the platform increases

wages in less dense regions, but does not pass these costs fully onto passengers. Furthermore, under

optimal prices and wages, the margin in the least dense region is 29% lower than in the most dense

region, a percentage that increases to 43% and 42% when accesses are equalized using price and

wage levers respectively. This implies that the sparser regions are effectively subsidized to an even

greater extent.
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Figure 7

(a) Optimal prices and the prices that
equalize accesses

(b) Optimal wages and the wages that
equalize accesses

Note: Consider the prices and wages denoted as (p∗, c∗), determined under the optimal heterogeneous pricing
scheme described in Section 6.1. The left panel illustrates a comparison between p∗ and the prices required
to achieve equal access when the wages are fixed at c∗. The right panel compares c∗ with the wages necessary
to ensure equal access when prices are fixed at p∗. The regions (boroughs) are arranged in descending order
by demand density from left to right.

Robustness of Findings

We carry out a battery of additional robustness checks to evaluate the validity of the findings in

the paper. First, we adjust for and incorporate trip time into the empirical model. Specifically,

we construct a price measure adjusted for trip distance and time and incorporate an additional

average trip time in the model. We re-estimate the extended model with this new price measure.

See Appendix H for more details on how we implement this. Second, we allow for region-dependent

parameters, such as price sensitivity, in both theory and empirical models. Third, we conduct

empirical analysis using finer grid partitions of each NYC boroughs. Finally, we examine alternative

functional forms for modeling pickup time and customer response to price and pickup time. Our

main insights continue to hold across all of these specifications.28

7 Conclusion

This paper examines the effects of economies of density and market thickness on spatial distribution

of access to service. We focus on ridesharing and analyze this market both theoretically and

empirically. Theoretically, we show that in equilibrium, relative to lower density regions, regions

with higher densities of potential demand get more supply–even after normalizing by their higher

demand. We show that this “spatial access skew” is more intense for smaller platforms. Finally,

we show that a ridesharing platform’s optimal pricing strategy would involve mitigating, but not

28The complete set of results for these robustness checks are available from the authors.

29



fully eliminating, the spatial mismatch between supply and demand. All of these results are robust

to whether the source of economies of density is the supply-side or the demand-side.

Empirically, we calibrate our model using ride-level data on Uber from New York City. A key

aspect of our calibration exercise is the identification of relative access to service across regions,

achieved by leveraging the “relative outflows” of rides between pairs of regions. The core idea

behind our strategy for identifying the extent of economies of density is broadly applicable beyond

our specific context to all passenger-transportation markets, whether the matching technology is

centralized (e.g., ridesharing) or decentralized (e.g., taxicabs). Using our calibrated model, we ad-

dress several important questions, including platform optimal prices and wages across regions, the

impact of constraining the platform to set spatially homogeneous price and wage, the role of plat-

form size (i.e., market thickness), and the extent of price/wage adjustment needed to homogenize

access across regions.

The analysis in this paper can be extended in multiple directions, especially if additional driver-

level and passenger-level data are available. First, extending the model to markets with decentral-

ized matching, such as the taxicab market, would provide useful insights on the relative effectiveness

of policies in that market compared to ridesharing. Second, incorporating a trip-level structural

model could help explore how trip-level dynamics contribute to access differences, allowing for

heterogeneity in trip characteristics. Such an extension would also facilitate the empirical disen-

tanglement of supply- and demand-side economies of density. This would also allow us to better

examine competitive dynamics between platforms (Rosaia, 2023). Third, research could examine

the differing incentives of social planners and platforms in terms of access differences across regions,

and the conditions under which they converge and diverge. Fourth, a useful next step would be

to examine the tradeoff between platform size, which we find to have a positive effect here, with

the effect of competition, in considering whether platforms should be allowed to coordinate or even

merge. Finally, understanding the value of other policy instruments like regulating the total num-

ber of drivers in a region or congestion pricing would be of broad interest in other spatial markets

beyond ridesharing.
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Appendices

This section provides ten appendices. Appendix A summarizes the notation used in the paper.

Appendix B provides anecdotal evidence for the relevance of our model. Appendix C provides

a micro-foundation based on a circular city model for the total wait time formula that we use

throughout the paper. Appendix D provides calibration and identification details of the empirical

model with demand-side EOD (see main paper for supply-side EOD). Appendix E gives proofs

of the propositions for the theory model. Appendix F presents proofs of identification results

related to the empirical model and showing sufficiency of relative outflow in obtaining potential

demand. Appendix G presents the counterfactual results of all variations of the empirical models.

Appendix H presents the empirical analysis incorporating trip time. Appendix I shows the price

trend after 2019. Appendix J compares the data used in our analysis to that in Rosaia (2023).

A Table of Notations

Table 6 summarizes the notations we use in both the theoretical and empirical models.

B Anecdotal Evidence of Driver Factors

This appendix points to a list of anecdotal pieces of evidence (by no means exhaustive) from

online rideshare forums on how drivers complain about Lyft’s far pickups in suburbs and how they

recommend responding to it. The explanations in brackets within the quotations are from us.

• From the online forum “Uber People,”29 a thread in the Chicago section: The

title of the thread is “To those who drive Lyft in the suburbs.” The thread was started on

Dec 19 2016. The first post says “Are the ride requests you get on Lyft always seem to be far

away from you location? Seems like they are always 5 miles or more for the pickup location.

I got one for 12 miles last night. I drive in the Schaumburg/Palatine area [two northwestern

suburbs of Chicago about 30mi away from downtown].”

• From the same thread: “iDrive primarily in Palatine. about two out of every five ride

requests are for more than 10 minutes away. I ignore those”.

• From the same thread: “I was a victim of that once. Never again I take a ping more than

10 minutes away in the burbs”.

• From the same thread: “Yesterday was my 1st day on Lyft. Was visiting in Homer Glen

[a village about 30mi southwest of downtown Chicago] & decided to try Lyft for the first

time. First ping was 18 minutes away. Dang, I could make it 1/2 way downtown in that

time! I ignored the ride request. 2nd ping was also 18 minutes away. Lyft app complained

my acceptance rate is too low. I ignored the 2nd ping & went off-line.”

29In spite of what the name suggests, this is a general ridesharing forum, not exclusively about Uber.

33



Table 6: Table of Notations

Symbol Category Meaning
Theory Model Empirical Model

i Index Index Region(Borough) index
j Index Index Region(Borough) index
d NA Index Day index

ti Market Primitive Model Parameter Size of region i
a Market Primitive Model Parameter Ratio of ti to si
α Market Primitive Model Parameter Passenger’s price sensitivity
β Market Primitive Model Parameter Passenger’s sensitivity to pickup time
λ̄i, λ̄id Market Primitive Model Parameter Potential demand of rides per hour of region i (on

day d)
si NA Data Square root of area of borough i
c̄ Market Primitive Data Reservation level of wage

pi, pid Decision Variable Data/Decision
Variable

Price per ride of region i (on day d)

ci, cid Decision Variable Data/Decision
Variable

Wage per ride of region i (on day d)

ni, nid Outcome Variable Data/Outcome
Variable

Number of drivers in region i (on day d)

Wi, Wid Outcome Variable Outcome Variable Wait time (pickup time plus idle time) per ride in
region i (on day d)

ri, rid Outcome Variable Data/Outcome
Variable

Number of rides per hour originating from region
i (on day d) (destination could be region i or other
regions)

rijd NA Data/Outcome
Variable

Number of rides picked up from region i and
dropped off in region j per hour on day d

ROijd NA Data/Outcome
Variable

Relative outflow between region i and region j on
day d

D NA Data Set of observable data and the variables that can
be derived directly from data

Ai, Aid Outcome Variable Outcome Variable Access of region i (on day d)

• From the same forum, a thread titled “First 3days of Lyft”: “If your area is spread

out...and you have to take those > 10 minute requests, well...I might look for another job.”

• From the same thread: “Yeah, another (mostly) Lyft-specific problem, especially when

working in the suburbs, is you sometimes (fairly frequently, actually) receive trip requests

that are not close to your current location. I’ve received requests from passengers 20 miles

away.”

• From Chicago Tribune article titled “Lyft takes on Uber in suburbs”: Jean-Paul

Biondi, Chicago marketing lead for Lyft is quoted to explain the reason for Lyft’s planned

expansion into surburbs as follows “The main reason is we saw a lot of dropoffs in those
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areas, but people couldn’t get picked up in those areas.” Which is in line with our reasoning

that small relative-outflow is a sign of potential demand which does not get served due to

under-supply.

• From the rideshare website “Become a Rideshare Driver”: It says successful Lyft

drivers use the following strategy:

– “The drivers usually run the Lyft app exclusively when they are in the busy downtown

or city areas.”

– “Usually in the suburbs, Uber is busier than Lyft, and in such areas, the drivers run

both the Uber and Lyft apps.”

C Micro Foundation for the Total Wait Time Formula

This section provides a simple micro-foundation for the total wait time formula eq. (1) using a

circular city model ala Salop. The circular model of regions is illustrated in Figure 8. The ni

drivers (in the figure, ni = 5) are placed on equidistant locations on the circumference. 30 Drivers

are matched to arriving passengers via a centralized matching system. Each driver’s “range” or

“catchment area” will be the arc consisting of all the points on the circle that are closer to that

driver than they are to any other driver in region i. Given that the total arrival rate in the region

is λi, the arrival rate in each driver’s catchment area is λi
ni

. Each driver picks up the first passenger

that arrives within that driver’s catchment area. In practice, ridesharing platforms implement a

similar matching rule (Frechette et al. (2019) use a similar approach to model a centralized matching

market).

Suppose the time it takes a driver to travel a full circumference to pick up a passenger is t′.

The platform allocates an arriving customer to the closest driver. Because drivers are situated

at equidistant points on the circumference of the region, their catchment areas include half the

distance to their nearest neighbors on both sides. The idle time expected for a customer to arrive

in the driver’s area is ni
λi

. The distance between drivers is l
ni

where l is the circumference. Since

consumer location is uniform, the distance a consumer will be from the driver along the arc is

distributed d ∼ U [0, l
2ni

], implying that the expected distance is E[d] = l
4ni

. Thus, the expected

pickup time is t′

4ni
.

Based on the above, the expected total wait time Wi(ni) defined from the driver’s perspective

as:

Wi(ni)︸ ︷︷ ︸
Total Wait Time

=
ni
λi︸︷︷︸

Idle Time

+
t′i

4ni︸︷︷︸
Pickup Time

=

(
ni
λi

+
ti
ni

)
(15)

where t = t′

4 . This is exactly the same as eq. (1) except the notation on λi(pi) is suppressed to λi.

30While we do not model the locational choice of drivers within the region, it is fairly easy to see that equidistant
positioning location from neighbors is an equilibrium. While there might be other locational choices that might also
be equilibria, we focus on the equidistant positioning equilibrium.
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Figure 8: Illustration of Circular Model of each Region i and Driver Allocation

Driver 1

Driver 1's range

D Calibration and Identification of the Empirical Model with

Demand-Side EOD

This appendix outlines the calibration and identification results of the empirical model with demand-

side EOD. The overall strategy is analogous to the model with supply-side EOD. As such, we skip

some of the details.

D.1 Calibration

We adopt a similar approach to the calibration of the supply-side model. Specifically, we estimate

the model parameters following the two steps below:

Step 1 Following eq. (12), We express λ̄id in terms of data and parameters (α, β) as follows:

λ̄id(α, β;D) =
nid

(1− αpid)( cidc̄ )(1− βsi
nid

)
(16)

Step 2 Given the observables and following step 1, we express the relative outflow between each

pair of regions i, j on each day d as a function of parameters (α, β):

ROijd =
Aid
Ajd

=
ri/λ̄id(α, β;D)

rj/λ̄jd(α, β;D)
,

We estimate (α, β) by matching the moments of ROij for every pair of regions i, j, where we

take the average across d ∈ D between the model prediction and the data. The estimates of

λ̄id are obtained from λ̄id(α, β,D) accordingly.

D.2 Identification

The identification follows a similar intuition as the supply-side empirical model. Given eq. (16),

the identification problem reduces to identify α and β from the RO moments. Simular to the model

with supply-side EOD, we consider the relative outflow across regions for a single day d. Dropping
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the day subscript d, the model relative outflow can be written as

ROmodelij =
Ai
Aj

=
ri/λ̄i
rj/λ̄j

=

ni
ci
/λ̄i

nj
cj
/λ̄j

=
(1− αpi)(1− β sini )
(1− αpj)(1− β sini )

(17)

Following a similar intuition as the empirical model with supply-side EOD, it can be seen that

as long as there is sufficient independence between regional price variation and regional density

variation, both α and β are identified. The formal statement and the proof can be found in the

appendix.

Our informal identification argument sheds light on why separately identifying supply-side from

demand-side EOD is not possible using relative outflows data: variation in density across regions

creates geographical skew in access (and hence in relative outflows) through both of the EOD

sources. As a result, one cannot separate out how much each source is contributing to the overall

economies of density by just observing the relative flows. This is why in calibration with our data,

we need to assume (rather than infer) the relative magnitudes of the two sources. That said, as

was discussed in the theory section and as will be further elaborated when we report estimation

results and counterfactual simulations, our main insights are robust to the source of EOD.

E Proofs of Propositions in the Theory Sections

This appendix provides proofs for all the results we state for the theory model. It consists of three

part. Appendix E.1 gives proofs for the model with supply-side EOD and without inter-region

rides (i.e. Proposition 1 through Proposition 3). Appendix E.2 presents proofs for the model

with demand-side EOD (i.e. Proposition 4). Appendix E.3 provides the proof for the setting with

inter-region rides (i.e. Proposition 5).

Before we get to the proofs for the specific models, we first prove Lemma 1 that speaks to the

equilibrium driver equilibrium in general.

Proof of Lemma 1. The proof is straightforward. First, observe that, for each region i, Wi(ni; pi)

must be non-decreasing at n∗i . Otherwise, because Wi(ni; pi) is continuous, there exists a small ε > 0

such that ci
Wi(n∗i ;pi)

> ci
Wi(n∗i+ε;pi)

, the condition in Definition 1 is violated.

Next, we prove the lemma using contradiction. If ci
Wi(n∗i ;pi)

> c̄, then given Wi(ni; pi) is contin-

uous and non-decreasing in ni, there exists δ > 0, such that ci
Wi(n∗i ;pi)

> ci
Wi(n∗i+δ;pi)

> c̄. That is, a

mass of δ drivers will switch from the outside option to driving in region i. If ci
Wi(n∗i ;pi)

< c̄, then

the condition in Definition 1 is also violated, so n∗i cannot be an equilibrium.

E.1 Proofs of the theory model with supply-side EOD

Before starting the proofs, we make an observation. With free entry of drivers and abstraction

from inter-region rides, the problem in each region is, in some sense, separated from other regions.

As such, from the platform’s perspective, maximizing the profit over all regions is the equivalent

to maximizing the profit of each region independently. Therefore, when solving for the equilibrium
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number of drivers for each region, it suffices to look at the equilibrium under the price and wage

that maximize the profit of that specific region.

Proof of Lemma 2, Proposition 1, Proposition 2, and Proposition 3.

The overall strategy is to prove the lemma and the propositions in a unified framework. First,

we prove a series of lemmas that show that, under the parameters (λ̄, t, c̄, α), the lemma and the

propositions can be reduced to a numerical problem. That is, we first show using Lemma A1

- Lemma A5 that each of the propositions holds for a general (λ̄, t, c̄, α) if and only if it holds

for (λ̃, 1, 1, 1), where λ̃ = λ̄
(c̄α)2t

. Showing that the propositions holds for (λ̃, 1, 1, 1) is essentially

numerical, which we carry out accordingly in Lemma A6.

Lemma A1. Assume γ ∈ R is a strictly positive number. Under primitives (λ̄, t, c̄, α), vectors p∗,

c∗, and n∗ constitute an equilibrium if and only if under primitives (λ̄′, t′, c̄′, α′) = (γ2λ̄, t, γc̄, α),

vectors p∗
′

= p∗, c∗
′

= c∗, and n∗
′

= γn∗ constitute an equilibrium (note that here we are not

suppressing the ∗ notation for equilibria or the regional indices). Additionally, access to rides in all

regions are equal under these two equilibria: ∀i : A∗
′
i = A∗i .

Proof of Lemma A1 Let us expand the notation on platform profits and equilibrium numbers

of drivers across the market in a way that allows for explicitly tracking the dependence of all of

these on market primitives. To be more specific, we denote the equilibrium number of drivers in

region i under primitives (λ̄, t, c̄, α) and platform strategy (p, c) by:

n∗i (p, c|λ̄, t, c̄, α)

Similarly, we denote the platform profit by:

πi(p, c|λ̄, t, c̄, α)

Before proving the lemma, we first derive the equilibrium number of drivers given the primitives

and the platform strategy. First, note that in equilibrium, the hourly revenue for drivers has to be

equal to the reservation value c̄. Therefore, we have:

c

W
= c̄

Under the model with supply-side EOD, the wait time W can be expressed in terms of n

W (n) =
n

λ
+
t

n

Replacing W and then solve for the equilibrium n∗, we get two solutions:

n∗ =

c
c̄ ∓

√
( cc̄)

2 − 4t
λ(p)

2
λ(p)

Note that only the larger solution (i.e., the one with the + sign) is an equilibrium because at the
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smaller solution, further driver entry will lead to lower overall wait time, increasing driver revenue.

As such, we have:

n∗ =

c
c̄ +

√
( cc̄)

2 − 4t
λ(p)

2
λ(p)

(18)

We now turn to the proof of the lemma, starting with a claim:

Claim 1. For any given (p, c) where region i attracts no drivers under (λ̄, t, c̄, α), we have:

πi(p, c|γ2λ̄, t, γc̄, α) = γ2πi(p, c|λ̄, t, c̄, α).

Proof of Claim 1. To see this, note that under (λ̄, t, c̄, α), from eq. (18), region i will attract no

drivers –hence will generate zero profit– if any only if:

(
c

c̄
)2 − 4t

λ̄(1− αp)
< 0

The corresponding condition under (γ2λ̄, t, γc̄, α) will be:

(
c

γc̄
)2 − 4t

γ2λ̄(1− αp)
< 0

The above two conditions are equivalent. This finishes the proof of the claim. �

Now let us assume p and c are such that region i does get a positive number of drivers. There,

the number of drivers present in i under (λ̄, t, c̄, α) will be uniquely give by:

n∗i (p, c|λ̄, t, c̄, α) =

ci
c̄ +

√
( cic̄ )2 − 4ti

λ̄i(1−αpi)
2

λ̄i(1−αpi)

The same quantity under (γ2λ̄, t, γc̄, α) will be uniquely give by:

n∗i (p, c|γ2λ̄, t, γc̄, α) =

ci
γc̄ +

√
( ciγc̄)

2 − 4ti
γ2λ̄i(1−αpi)

2
γ2λ̄i(1−αpi)

= γ

ci
c̄ +

√
( cic̄ )2 − 4ti

λ̄i(1−αpi)
2

λ̄i(1−αpi)
= γn∗i (p, c|λ̄, t, c̄, α)

Also note that the equilibrium driver wait time Wi in region i under (λ̄, t, c̄, α) has to be
ci
c̄ in order to equate driver revenues in the region with the reservation value. Similarly, under

(γ2λ̄, t, γc̄, α), the driver wait time in region i will be ci
γc̄ .

Next, note that for any p, c:

πi(p, c|λ̄, t, c̄, α) = (pi − ci)×
n∗i (p, c|λ̄, t, c̄, α)

ci
c̄

Also:
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πi(p, c|γ2λ̄, t, γc̄, α) = (pi − ci)×
n∗i (p, c|γ2λ̄, t, γc̄, α)

ci
γc̄

= (pi − ci)×
γn∗i (p, c|λ̄, t, c̄, α)

ci
γc̄

= γ2πi(p, c|λ̄, t, c̄, α)

Therefore, the profit functions under (λ̄, t, c̄, α) and (γ2λ̄, t, γc̄, α) are fully proportional in each

region, which mean they will have the exact same maximizers p∗ and c∗. Given these maximizers,

we will have the number of drivers in each region i under (γ2λ̄, t, γc̄, α) will be given by:

n∗
′
i ≡ n∗i (p∗, c∗|γ2λ̄, t, γc̄, α) = γn∗i (p

∗, c∗|λ̄, t, c̄, α) ≡ γn∗i

Finally:

A∗
′
i =

n∗
′
i

(
c∗i
γc̄)× γ2λ̄i

=
γn∗i

(
c∗i
γc̄)× γ2λ̄i

=
n∗i

(
c∗i
c̄ )× λ̄i

= A∗i

The proof of the lemma is now complete. �

Lemma A2. Assume γ ∈ R is a strictly positive number. Under primitives (λ̄, t, c̄, α), vectors

p∗, w∗, and n∗ constitute an equilibrium if and only if under primitives (λ̄′, t′, c̄′, α′) = (λ̄, t, γc̄, αγ ),

vectors p∗
′

= γp∗, c∗
′

= γc∗, and n∗
′

= n∗ constitute an equilibrium Additionally, access to rides in

all regions are equal under these two equilibria: ∀i : A∗
′
i = A∗i .

Proof of Lemma A2. The steps of the proof for this lemma are very similar to those in the

proof of Lemma A1. Hence, we skip the details. �

We just point out that there is a simple intuition for this result: a change of primitives from

(λ̄, t, c̄, α) to (λ̄, t, γc̄, αγ ) should not be expected to change the equilibria because it is effectively a

“currency change.” The only two places where “money” becomes involved in the model are where

demand is determined based on the price of a ride and where supply is determined based on wage.

If the reservation hourly revenue is multiplied by γ and, at the same time, the price sensitivity of

passengers is divided by the same factor γ, it is as if we are looking at the same market but with

a new currency one unit of which is worth 1
γ times one unit of the old currency. This should not

change the equilibrium supply, demand, and access. It should only multiply the equilibrium prices

and wages by γ.

Lemma A3. Assume γ ∈ R is a strictly positive number. Under primitives (λ̄, t, c̄, α), vectors p∗,

w∗, and n∗ constitute an equilibrium if and only if under primitives (λ̄′, t′, c̄′, α′) = (γλ̄, γt, c̄, α),

vectors p∗
′

= p∗, c∗
′

= c∗, and n∗
′

= γn∗ constitute an equilibrium Additionally, access to rides in

all regions are equal under these two equilibria: ∀i : A∗
′
i = A∗i .

Proof of Lemma A3. Again, the steps of this proof are very similar to those in the previous

two lemmas. As such, we skip the details. �.

Our next lemma combines the previous three.
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Lemma A4. Under primitives (λ̄, t, c̄, α), vectors p∗, c∗, and n∗ constitute an equilibrium if and

only if under primitives (λ̃, 1, 1, 1) where λ̃i = λ̄i
(c̄α)2ti

for each i, the following vectors constitute an

equilibrium: p∗
′

= αp∗, c∗
′

= αc∗, and n∗
′

= 1
(c̄α)tn

∗. Additionally, access to rides in all regions are

equal under these two equilibria: ∀i : A∗
′
i = A∗i .

Proof of Lemma A4. Apply Lemma A1 with γ = 1
c̄α on primitives (λ̄, t, c̄, α). On the resulting

primitives, apply Lemma A2 with γ = α. Finally, on the resulting primitives, apply Lemma A3

with γ = 1
t . This will establish the equivalence claimed in this lemma. �

With this result in hand, we now turn to the main two lemmas that prove Lemma 2 and

Proposition 1 through Proposition 3.

Lemma A5. Lemma 2 and Proposition 1 through Proposition 3 hold under all generic primitives

(λ̄, t, c̄, α) if they hold under primitives in the form of (λ̃, 1, 1, 1).

Proof of Lemma A5. Suppose Lemma 2 and Proposition 1 through Proposition 3 hold under

primitives that take the form of (λ̃, 1, 1, 1). We show it holds for a general (λ̄, t, c̄, α). To this end,

choose vector λ̃ such that ∀i : λ̃i = λ̄i
(c̄α)2ti

. Next, we prove each lemma/proposition for general

primitives.

Lemma 2:

Given that Lemma 2 holds under (λ̃, 1, 1, 1), there exists a unique equilibrium under (λ̃, 1, 1, 1).

Denote it (p̃, c̃, ñ). By Lemma A4, there also exists equilibrium (p∗, c∗, n∗) under (λ̄, t, c̄, α), which

is given by n∗ = ñi(c̄αti) for each i. And ñ being unique implies that n∗ is unique. Also, for any i

for which n∗ > 0, we know ñ > 0. From the lemma, we know there are unique equilibrium price p̃i

and wage c̃i. Then p∗ and c∗ are also unique.

Proposition 1:

First we show the first half of the proposition that speaks to n∗i 6= 0 6= n∗j holds for the generic

primitives. By assumption, this statement holds under (λ̃, 1, 1, 1). By the construction of λ̃, it is

immediate that:

λ̃i > λ̃j ⇔
λ̄i
ti
>
λ̄j
tj

Also by Lemma A4, we know that equilibrium access to rides in each region i is the same under

(λ̃, 1, 1, 1) and (λ̄, t, c̄, α). It immediately follows that the first half of the statement holds under

(λ̄, t, c̄, α, ).

For the second half of the proposition that speaks to the regions without supply, by assumption,

we know there is a µ such that:

∀i :
λ̃i
1
< µ⇔ ñi = 0

Note that by construction, λ̃i < µ is equivalent to λ̄i
ti
< µ(c̄α)2. Also note that n∗i = 0 if and

only if ñi = 0. Therefore, we have:

∀i :
λ̄i
ti
< µ(c̄α)⇔ n∗i = 0
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This finishes the proof of Proposition 1 under the generic primitives.

Proposition 2:

Key to proving the four statements of Proposition 2 is the observation that the same equiva-

lence established between (λ̃, 1, 1, 1) and (λ̄, t, c̄, α) by Lemma A4 may also be established between

(γλ̃, 1, 1, 1) and (γλ̄, t, c̄, α) for any positive real γ. Even the multipliers 1
(c̄α)2t

remain the same.

With this observation, we turn to the proofs.

Statement 1. By Lemma A4, We know p̃ = αp∗, c̃ = αc, and ñ = 1
(c̄α)tn

∗. By the first statement

being true for (λ̄, 1, 1, 1), there exists equilibrium (c̃′, p̃′, ñ′) under the primitives (γλ̃, 1, 1, 1), where

ñ′ is unique. Also (p̃′, c̃′) are unique for ñ′ > 0. Then by Lemma A4, there exists equilibrium

(p∗
′
, c∗
′
, n∗

′
) under the primitives (γλ̃, t, α, c̄), with n∗

′
= (c̄)αtñ′, p∗

′
= 1

α p̃, and c∗
′

= 1
α c̃. Therefore

, n∗
′

is unique, and (p∗
′
, c∗
′
) unique for n∗

′
> 0.

Statement 2. By Lemma A4, we know n∗i > 0 ⇒ ñi > 0. By the proposition being true for

(λ̃, 1, 1, 1), we know that ñi > 0 ⇒ ñ′i > 0 where ñ′ is the equilibrium driver allocation under

(γλ̃, 1, 1, 1). Finally, again by Lemma A4, we have ñ′i > 0 ⇒ n∗
′
i > 0. This finishes the proof of

this statement.

Statement 3. Lemma A4 shows that access to rides in all regions is preserved under the transfor-

mation from (λ̄, t, c̄, α) to (λ̃, 1, 1, 1) and the transformation from (γλ̄, t, c̄, α) to (γλ̃, 1, 1, 1). This,

together with λ̃i ≥ λ̃j ⇔ λ̄i
ti
≥ λ̄j

tj
and the assumption that the proposition holds under (λ̃, 1, 1, 1)

gives the proof of this statement under (γλ̄, t, c̄, α).

Statement 4. The logic for the proof of this statement is identical to that for the proof of the

previous one.

Proposition 3:

Note that by construction of λ̃ and by Lemma A4, for any i, j the following hold:

1. λ̃i ≥ λ̃j ⇔ λ̄i
ti
≥ λ̄j

tj
and a similar statement when both inequalities are strict.

2. c̃i ≤ c̃j ⇔ c∗i ≤ c∗j and a similar statement when both inequalities are strict.

3. p̃i ≤ p̃j ⇔ p∗i ≤ p∗j and a similar statement when both inequalities are strict.

4. p̃i− c̃i ≤ p̃j− c̃j ⇔ p∗i − c∗i ≤ p∗j − c∗j and a similar statement when both inequalities are strict.

These four statements, together with the assumption that Proposition 3 of the proposition on

economies of density holds under (λ̃, 1, 1, 1) imply that it also holds under (λ̄, t, c̄, α).

The proof of Lemma A5 is now complete. �

Our last step in proving Lemma 2 and Proposition 1 through Proposition 3 is to show that it

does indeed hold under (λ̃, 1, 1, 1). The convenient feature of this remaining step is that it can be

done fully numerically. The following lemma takes on this task.

Lemma A6. Lemma 2 and Proposition 1 through Proposition 3 holds if (λ̄, t, c̄, α) takes the specific

form of (λ̃, 1, 1, 1).
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Proof of Lemma A6. We start by proving the second part of Proposition 1 that gives

conditions for a region not to be supplied, and then move to all others.

Second half of Proposition 1. Here, we are looking for conditions on potential demand λ̄i such

that the platform can get a positive number of drivers into region i without sustaining any loss.

Note that from our analysis before, we know the region can get a positive number of drivers if:

(
ci
c̄

)2 ≥ 4ti
λ̄i(1− αpi)

From c̄ = ti = α = 1 and λ̄i = λ̃i, this turns into:

c2
i ≥

4

λ̃i(1− pi)

Or, equivalently:

λ̃i ≥
4

c2
i (1− pi)

As such, the minimum requirement volume for λ̃i depends on the maximum possible value for

c2
i (1− pi) subject to the constraint that the platform does not run any losses. This happens when

pi = ci. Therefore, the region will get a positive number of drivers if and only if:

λ̃i ≥
4

maxci c
2
i (1− ci)

= 27

This says each region i gets a positive number of drivers if and only if λ̃i ≥ 27 which proves the

second half of Proposition 1.

Existence of equilibrium in Lemma 2. Now we prove the statement on the existence of the

equilibrium in Lemma 2. The proof above shows that if λ̃ < 27, then the maximum profit is always

0 and it is trivial that (p∗, c∗) exists and n∗ = 0 exists for λ̃ < 27. As such, we focus on the

case where λ̃ ≥ 27. We show the existence by dividing the parameter space R2 for (p, c) into four

subsets and show that the maximum of the profit function exists in each case. Then combining all

cases, there exists (p∗, c∗) and corresponding n∗ that maximizes the profit function.

Case (1): If ci ≤ 0, then drivers receive zero revenue and no drivers operate in the platform and

no rides realized. Thus the equilibrium is p∗i ∈ R, c∗i ≤ 0, n∗i = 0, which gives π∗i = 0.

Case (2): If pi ≥ 1, then there is no demand and no rides are realized. Drivers receive zero

revenue from the platform and thus the equilibrium is achieved for p∗i ≥ 1, c∗i ∈ R, n∗i = 0, which

gives π∗i = 0.

Now we discuss the remaining parameter space for (p, c) where pi < 1 and ci > 0. Recall that

the wait time as a function of number of drivers is given by

W (ni) =
ni

λ̃i(1− pi)
+

1

ni
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The function W (ni) (with ni > 0) is decreasing in (0,
√
λ̃i(1− pi)), increasing in (

√
λ̃i(1− pi),∞)

and minimized at ni =
√
λ̃i(1− pi). The minimum is W (

√
λ̃i(1− pi)) = 2√

λ̃i(1−pi)
.

Case (3): If pi < 1 and 0 < c < 2√
λ̃i(1−pi)

, then c ≤ minni>0W (ni). Therefore, c
W (ni)

< 1 =

c̄, ∀ni. That is, the driver revenue is always lower than the reservation wage. So n∗i = 0 and

π∗i = 0. The equilibrium is achieved with (p∗i , c
∗
i ) ∈ {(p, c) : p < 1, 0 < c < 2√

λ̃i(1−pi)
} and n∗i = 0,

which gives π∗i = 0.

Case (4): If p < 1 and c ≥ 2√
λ̃i(1−pi)

, then as the roof of Lemma A1 shows, only the larger

solution of the equation W (ni) = c is the equilibrium. The equilibrium number of drivers is given

by

n∗i (pi, ci) =
ci +

√
c2
i −

4
λ̃(1−pi)

2
λ̃(1−pi)

And the profit function is given by

πi(pi, ci) = (pi − ci)
ni(pi, ci)

ci

Considering that in all previous cases we have discussed above, it is at least feasible to achieve

zero profit. Therefore, to find the maximum, we focus on the parameter space that leads to non-

negative profit. As such, we focus on the (pi, ci) such that p ≥ c and consider the set X = {(pi, ci) :

0 ≤ pi ≤ 1, ci ≤ pi, ci ≥ 2√
λ̃i(1−pi)

}. The set is non-empty given λ̃ ≥ 27.

Given that the profit function is continuous and the set X is closed and bounded, there exists

(p∗i , c
∗
i ) that maximizes the profit function. And it can be seen that the maximum is non-negative

(e.g. pick any (pi, ci) ∈ X with pi = ci). Therefore, combining all the cases above, the maximum

of the profit function always exists, and thus (p∗, c∗, n∗) exist.

Next, we prove the remaining part of Lemma 2 and Proposition 1 through Proposition 3 nu-

merically. To do this, we need to study the equilibrium price p̃i, equilibrium wage c̃i, equilibrium

number of drivers ñi, and equilibrium access Ãi in a given region i as a function of λ̃i. The key is

that all of the other parameters are equal to 1 and λ̃i is the only parameter changing. Therefore,

for any value that λ̃i assumes, we have a fully numerical problem that can be solved using a soft-

ware such as R. Below, we are providing graphs of these equilibrium quantities as functions of λ̃i.

Fig. 9 provides these results. First, the figure gives the unique optimal price and wage computed

for λ̃i ≥ 27, which shows that Lemma 2 holds. Second, access Ãi is strictly increasing in density.

This means if two regions i, j are such that λ̃i > λ̃j , then region j will have a lower access to

rides in the equilibrium. This completes the proof of Proposition 1. Additionally, as shown in the

figure, optimal price p̃i and optimal wage c̃i both strictly decrease in density λ̃i. This means if two

regions i, j are such that λ̃i > λ̃j , then region j will have a higher price and a higher wage in the

equilibrium. Also margin p̃i − c̃i is strictly increasing in density. This means if two regions i, j are
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such that λ̃i > λ̃j , then region j will have a lower margin in the equilibrium. These shows that

Proposition 3 holds.

Figure 9: Numerical results that are necessary to prove Lemma A6

(a) Response of wage to density (b) Response of price to density

(c) Response of access to density
(d) Response of margin (price less wage) to den-
sity

(e) Response of log access to log density

As for Proposition 2, statement 1 follows directly from the second half of Proposition 1. To
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prove statement 2, first note that the second part of this statement (i.e., λ̃i > λ̃j ⇒
Aj(n

∗′
j )

Ai(n∗
′
i )

< 1)

is implied by the first half of Proposition 1, which we have already proved. We, hence, will only

prove:

λ̃i > λ̃j ⇒
Aj(n

∗
j )

Ai(n∗i )
<
Aj(n

∗′
j )

Ai(n∗
′
i )

In order to prove this statement, we first state and prove a lemma. Recall, again, that given

the optimization problems in different regions are separate from each other, the equilibrium access

Ai(n
∗
i ) is only a function of λ̃i, pi, ci rather than those at other regions. Therefore, the notation

i may be suppressed. In the proofs of some of the last statements we have even suppressed the

notation on n∗ and denote the equilibrium access in region i simply by A. In our next lemma,

we will keep suppressing those notations. We also note that access has been an implicit function

of model parameters, in particular λ̃i. In the proof of this lemma, we make the exposition of the

dependence of equilibrium access A on parameter λ̃i explicit by denoting the equilibrium access

as A(λ̃i). In other words, A(λ̃i) is the equilibrium access in a region with demand λ̃i when the

platform has set the optimal wage c∗ and price p∗ given density λ̃i and drivers respond accordingly.

Lemma A7. Define function B(τ) as

B(τ) ≡ log(A(eτ ))

The second statement of Proposition 2 holds if B is a strictly convcave function whenever defined.

Proof of Lemma A7. First notice that B is defined whenever A > 0 which is whenever τ is

larger than some cutoff.

Next, take two regions i, j with λ̃i > λ̃j . Set τi = log(λ̃i) and τj = log(λ̃j). Also set β = log(γ)

where γ is the scalar larger than one in the statement of the proposition. By strict concavity of B,

we have:

B(τi + β)−B(τi) < B(τj + β)−B(τj)

This implies:

log[A(eτi+β)]− log[A(eτi)] < log[A(eτj+β)]− log[A(eτj )]

⇒ log[
A(eτi+β)

A(eτi)
] < log[

A(eτj+β)

A(eτj )
]

⇒ A(γλ̃i)

A(λ̃i)
<
A(γλ̃j)

A(λ̃j)

⇒ A(λ̃j)

A(λ̃i)
<
A(γλ̃j)

A(γλ̃i)

46



which is exactly the statement we needed to prove. This completes the proof of the lemma. �

Therefore, to prove the second statement of Proposition 2 the only thing we need to prove is

strict concavity of the function B. This can be seen from the last panel in Fig. 9 which shows that

log of access is concave in log of density.

Finally, statement 3 of Proposition 2 is straightforward and left to the reader (the key would

be to note that as the market gets sufficiently large, pickup times in all regions become negligible;

hence the pricing problem in all regions boils down to that in a model without economies of density,

giving all regions the same price, wage, and access to rides).

This finishes the proof of Lemma A6 and, hence, the proofs for all lemma/propositions of the

theory model with supply-side EOD (i.e. Lemma 2 and Proposition 1 through Proposition 3).�

E.2 Proofs of the theory model with demand-side EOD

This appendix proves Proposition 4, which states that an equivalence of Lemma 2 and Proposition 1

through Proposition 3 holds under the theory model with demand-side EOD. The proof strategy

is largely similar to that for the model with supply-side EOD, as discussed in Appendix E.1. We

prove the propositions in a unified framework, where the propositions can be reduced to a numerical

problem. Specifically, Lemma A8 presents similar statements to Lemma A1 through Lemma A3

and shows the sets of primitives that leads to equivalent equilibrium. Lemma A9 and Lemma A10

resemble Lemma A4 and Lemma A5 and states that the proposition can be reduced to a numerical

problem, where the proposition holds if it holds for a specific set of primitives. Finally, Lemma A11

shows that the proposition does hold for the set of primitives.

Lemma A8. Assume γ ∈ R is a strictly positive number. Then the following statements hold: is

equivalent to any of the following statements:

1. Under primitives (λ̄, t, c̄, α, β), vectors p∗, c∗ and n∗ constitute an equilibrium if and only if

under primitives (λ̄′, t′, c̄′, α′, β′) = (γλ̄, γt, c̄, α, β), vectors p∗
′

= p∗, c∗
′

= c∗ and n∗
′

= γn∗

constitute an equilibrium. Additionally, access to rides in all regions are equal under these

two equilibria: ∀i : A∗
′
i = A∗i .

2. Under primitives (λ̄, t, c̄, α, β), vectors p∗, c∗ and n∗ constitute an equilibrium if and only if

under primitives (λ̄′, t′, c̄′, α′, β′) = ( 1
γ λ̄, t, c̄,

1
γα, β), vectors p∗

′
= γp∗, c∗

′
= γc∗ and n∗

′
= n∗

constitute an equilibrium. Additionally, access to rides in all regions are equal under these

two equilibria: ∀i : A∗
′
i = A∗i .

3. Under primitives (λ̄, t, c̄, α, β), vectors p∗, c∗ and n∗ constitute an equilibrium if and only

if under primitives (λ̄, 1
γ t, c̄, α, γβ), vectors p∗

′
= p∗, c∗

′
= c∗ and n∗

′
= n∗ constitute an

equilibrium. Additionally, access to rides in all regions are equal under these two equilibria:

∀i : A∗
′
i = A∗i .

4. Under primitives (λ̄, t, c̄, α, β), vectors p∗, c∗ and n∗ constitute an equilibrium if and only

if under primitives (γλ̄, t, γc̄, α, β), vectors p∗
′

= p∗, c∗
′

= c∗ and n∗
′

= n∗ constitute an
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equilibrium. Additionally, access to rides in all regions are equal under these two equilibria:

∀i : A∗
′
i = A∗i .

Proof. As the proofs of the statements are very similar, we prove the first statement and skip

the rest.

Under the model with demand-side EOD, we denote the equilibrium number of drivers in region

i under primitives (λ̄, t, c̄, α, β) and platform strategy (p, c) by:

n∗i (p, c|λ̄, t, c̄, α, β)

Similarly, we denote the platform profit of region i by:

πi(p, c|λ̄, t, c̄, α, β)

Note that the equilibrium number of drivers in each region is given by

n

λ̄(1− αp)(1− β t
n)

=
c

c̄

Solving the equation, we get two solutions:

n∗ =
1∓

√
1− 4βt

c
c̄
λ̄(1−αp)

2
c
c̄
λ̄(1−αp)

The equilibrium number of drivers n∗ takes real value if and only if 4βt ≤ c
c̄ λ̄(1− αp). Now we

show that the region cannot get a positive number of drivers if 4βti >
ci
c̄ λ̄i(1− αpi).

The hourly wage for the rider is

ci
ni

λ̄i(1−αpi)(1−
βti
ni

)

=
ciλ̄i(1− αpi)(1− βti

ni
)

ni
<

4βti(1− βti
ni

)

ni
c̄ =

4βtini − 4β2t2i
n2
i

c̄

Given (ni − 2βti)
2 ≥ 0, we have

4βtini−4β2t2i
n2
i

< 1. So when ci
c̄ λ̄i(1 − αpi) < 4βti, the hourly

wage for working on the ride sharing platform is lower than c̄. Therefore, the region cannot get a

positive number of drivers.

Note that only the larger solution (i.e., the one with the + sign) is an equilibrium because at the

lower solution, further driver entry will lead to lower overall wait time, increasing driver revenue.

As such, we have:

n∗ =
1 +

√
1− 4βt

c
c̄
λ̄(1−αp)

2
c
c̄
λ̄(1−αp)

(19)

We now turn to the proof of the lemma, starting with a claim:
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Claim 2. For any given (p, c) where region i attracts no drivers under (λ̄, t, c̄, α), we have:

πi(p, c|γ2λ̄, t, γc̄, α) = γπi(p, c|λ̄, t, c̄, α).

Proof of Claim 2. To see this, note that under (γλ̄, γt, α, β, c̄), from eq. (19), region i will attract

no drivers –hence will generate zero profit– if any only if:

4βt >
c

c̄
λ̄(1− αp)

The corresponding condition under (γλ̄, γt, α, β, c̄) will be:

4βγt >
c

c̄
γλ̄(1− αp)

The above two conditions are equivalent. This finishes the proof of the claim. �

Now let us assume p and c are such that region i does get a positive number of drivers. There,

the number of drivers present in i under (λ̄, t, c̄, α, β) will be uniquely give by:

n∗i (p, c|λ̄, t, c̄, α, β) =
1 +

√
1− 4βt

c
c̄
λ̄(1−αp)

2
c
c̄
λ̄(1−αp)

The same quantity under (γλ̄, γt, c̄, α, β) will be uniquely give by:

n∗i (p, c|γλ̄, γt, c̄, α, β) =
1 +

√
1− 4βt

c
c̄
λ̄(1−αp)

2
c
c̄
γλ̄(1−αp)

= γ
1 +

√
1− 4βt

c
c̄
λ̄(1−αp)

2
c
c̄
λ̄(1−αp)

= γn∗i (p, c|λ̄, t, c̄, α, β)

Also note that the equilibrium driver wait time Wi in region i under (λ̄, t, c̄, α, β) has to be
ci
c̄ in order to equate driver revenues in the region with the reservation value. Similarly, under

(γλ̄, γt, c̄, α, β), the driver wait time in region i will be ci
c̄ .

Next, note that for any p, c:

πi(p, c|λ̄, t, c̄, α) = (pi − ci)×
n∗i (p, c|λ̄, t, c̄, α, β)

ci
c̄

Also:

πi(p, c|γλ̄, γt, c̄, α, β) = (pi − ci)×
n∗i (p, c|γλ̄, γt, c̄, α, β)

ci
γc̄

= (pi − ci)×
γn∗i (p, c|λ̄, t, c̄, α, β)

ci
c̄

= γπi(p, c|λ̄, t, c̄, α, β)

Therefore, the profit functions under (λ̄, t, c̄, α, β) and (γλ̄, γt, c̄, α, β) are fully proportional

in each region, which mean they will have the exact same maximizers p∗ and c∗. Given these

maximizers, we will have the number of drivers in each region i under (γλ̄, γt, c̄, α, β) will be given
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by:

n∗
′
i ≡ n∗i (p∗, c∗|γλ̄, γt, c̄, α, β) = γn∗i (p

∗, c∗|λ̄, t, c̄, α, β) ≡ γn∗i

Finally:

A∗
′
i =

n∗
′
i

(
c∗i
c̄ )× γλ̄i

=
γn∗i

(
c∗i
c̄ )× γλ̄i

=
n∗i

(
c∗i
c̄ )× λ̄i

= A∗i

The proof of the first statement of the lemma is now complete. �

The next lemma combines the statements of the previous one.

Lemma A9. Under primitives (λ̄, t, c̄, α, β), vectors p∗, c∗, and n∗ constitute an equilibrium if

and only if under primitives (λ̄′, t′, c̄′, α′, β′) = ( 1
αβc̄t λ̄, 1, 1, 1, 1), vectors p∗

′
= αp∗, c∗

′
= αc∗,

n∗
′

= 1
βtn
∗ constitute an equilibrium. Additionally, access to rides in all regions are equal under

these two equilibria: ∀i : A∗
′
i = A∗i .

Proof. Apply part 3 of Lemma Lemma A8 with γ = 1
β , then part 1 of Lemma Lemma A8 with

γ = 1
βt , part 2 of Lemma Lemma A8 with γ = α, and then part 4 of Lemma Lemma A8 with γ = 1

c̄ .

With the previous lemma in hand, as in the proofs for the model with supply-side EOD, we

turn to the two main lemmas that prove Proposition 4.

Lemma A10. Proposition 4 holds under all generic primitives (λ̄, t, c̄, α, β) if it holds under prim-

itives in the form of (λ̃, 1, 1, 1, 1).

Proof of Lemma A10. The proof is very similar to Lemma A5 with the model with supply-

side EOD. Suppose Proposition 4 holds under primitives in the form of (λ̃, 1, 1, 1, 1). That is,

Lemma 2 and Proposition 1 through Proposition 3 hold under the model with demand-side EOD.

We show that, still with the demand-side EOD model, the lemma and the propositions hold for

a general (λ̄, t, c̄, α, β). To this end, choose vector λ̃ such that λ̃ = 1
αβc̄t λ̄. Next, we prove each

lemma/proposition for general primitives. We suppress the regional indices below.

Lemma 2:

Given that Lemma 2 holds under (λ̃, 1, 1, 1, 1), there exists equilibrium (p̃, c̃, ñ) under (λ̃, 1, 1, 1, 1).

By Lemma A9, there also exists equilibrium (p∗, c∗, n∗) under (λ̄, t, c̄, α, β), which is given by

p∗ = 1
α p̃, c

∗ = 1
α c̃ and n∗ = (βt)ñ. Then for n∗ > 0, we have ñi > 0. Then p∗ and c∗ are

unique if n∗ > 0 because ñi > 0 and (p̃, c̃) are unique.

Proposition 1:

First we show the first half of the proposition that speaks to n∗i 6= 0 6= n∗j holds for the generic

primitives. By assumption, this statement holds under (λ̃, 1, 1, 1, 1). By the construction of λ̃, it is

immediate that:

λ̃i > λ̃j ⇔
λ̄i
ti
>
λ̄j
tj

Also by Lemma A9, we know that equilibrium access to rides in each region i is the same under

(λ̃, 1, 1, 1) and (λ̄, t, c̄, α). It immediately follows that the first half of the statement holds under

(λ̄, t, c̄, α, β).
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For the second half of the proposition that speaks to the regions without supply, by assumption,

we know there is a µ such that:

∀i :
λ̃i
1
< µ⇔ ñi = 0

By construction, we know λ̃i < µ is equivalent to λ̄i
ti
< αβc̄µ. Also, Lemma A8, ñi = 0 is

equivalent to 1
βti
n∗i = 0⇔ n∗i = 0. Therefore, we have:

∀i :
λ̄i
ti
< αβc̄µ⇔ n∗i = 0

This finishes the proof of Proposition 1 under the generic primitives in the model setting with

demand-side EOD.

The logic for the proof that Proposition 2 and Proposition 3 hold under generic case if they

hold for (λ̃, 1, 1, 1, 1) is identical to that in the proof of Lemma A5. As such, we skip the rest of

the proof.

The proof of Lemma A10 is now complete. �

The last step in proving Proposition 4 is to show that it does indeed hold under (λ̃, 1, 1, 1, 1). As

the proof of Lemma A6 for the model with supply-side EOD, this last step is done fully numerically.

The following lemma takes on this task.

Lemma A11. Proposition 4 holds if (λ̄, t, c̄, α, β) takes the specific form of (λ̃, 1, 1, 1, 1).

Proof of Lemma A10. We start by proving the second part of Proposition 1 in the context of

model with demand-side EOD, and then move to all others.

Second half of Proposition 1. Here, we are looking for conditions on potential demand λ̄i such

that the platform can get a positive number of drivers into region i without sustaining any loss.

Note that from eq. (19), we know the region can get a positive number of drivers if:

ci
c̄
λ̄i(1− αpi) > 4βti

Plugging in c̄ = ti = α = β = 1 and λ̄i = λ̃i, this turns into:

ciλ̃i(1− pi) ≥ 4

Or, equivalently,

λ̃i ≥
4

ci(1− pi)

Then the minimum requirement for λ̃i depends on the maximum possible value for ci(1 − pi)
subject to the constraint that pi ≥ ci. This happens when pi = ci. There fore, the region will get

a positive number of drivers if and only if

λ̃i ≥
4

maxci ci(1− ci)
= 16
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This proves the second part of Proposition 1 for the model with demand-side EOD.

The proof of the existence of the equilibrium in Lemma 2 is also analogous to the proof in the

model with supply-side EOD. So we skip the details here. Now, we prove Lemma 2, Proposition 1

and Proposition 3 numerically with the model with demand-side EOD. To do this, we need to study

the equilibrium price p̃i, equilibrium wage c̃i, equilibrium number of drivers ñi, and equilibrium

access Ãi in a given region i as a function of λ̃i. Similar to the proof of Lemma A6, the key is that

all of the other parameters are equal to 1 and λ̃i is the only parameter changing. Therefore, for

any value that λ̃i assumes, we have a fully numerical problem that can be solved using a software

such as R. Fig. 10 provides graphs of these equilibrium quantities as functions of λ̃i.

As shown in the figure, unique optimal price and wage are computed for λ̃i ≥ 16, which shows

that Lemma 2 holds. Second, access Ãi is strictly increasing in density. This means if two regions

i, j are such that λ̃i > λ̃j , then region j will have a lower access to rides in the equilibrium. This,

together with the proof of the second half of Proposition 1 given above, completes the proof of

Proposition 1. Additionally, optimal wage c̃i strictly decreases in density λ̃i, while optimal price p̃i

remains constant. This means if two regions i, j are such that λ̃i > λ̃j , then region j will have a

higher wage in the equilibrium. Also margin p̃i − c̃i is strictly increasing in density. This means if

two regions i, j are such that λ̃i > λ̃j , then region j will have a lower margin in the equilibrium.

These shows that Proposition 3 holds with an exception that the optimal price p̃i does not change

with λ̃i.
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Figure 10: Numerical results that are necessary to prove Lemma A11.

(a) Response of wage to density (b) Response of price to density

(c) Response of access to density
(d) Response of margin (price less wage) to
density

(e) Response of log access to log density

Before showing that Proposition 2 holds with the model with demand-side EOD, we first for-

malize the result of constant optimal price under (λ̃, 1, 1, 1, 1) in the lemma below and provide the

proof of it.

Lemma A12. Under the theory model with demand-side EOD, for any generic primitives (λ̄, t, c̄, α, β),

if the region i has a positive number of drivers under optimal price and wage, then the optimal price

for the region is 1
2α .

Proof of Lemma A12. From eq. (19), given the primitives (λ̄, t, c̄, α, β) and (p, c), the equilibrium
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number of drivers for a region can be written as

n(p, c|λ̄, t, c̄, α, β) =
k +

√
k2 − 4βtk

2
, where k =

c

c̄
λ̄(1− αp)

To maximize the profit, the problem that the platform solves is the following:

(c∗, p∗) = arg max
c,p

π(c, p) := (p− c)× n∗(p, c)

c

Take the first-order conditions:

∂π

∂p
=

n∗

c/c̄
+ (p− c) 1

c/c̄

∂n∗

∂p
= 0 (20)

∂π

∂c
= − n

∗

c/c̄
+ (p− c)

∂n∗

∂c c/c̄− n
∗ 1
c̄

(c/c̄)2
= 0 (21)

From eq. (20), we have

n− (p− c)∂n
∗

∂k

c

c̄
λ̄α = 0 (22)

From eq. (21), we have

−n∗c+ (p− c)(∂n
∗

∂c
c− n∗) = 0

− n∗p+ (p− c)∂n
∗

∂k

c

c̄
λ̄(1− αp) = 0 (23)

Adding (1− αp) times eq. (22) and α times eq. (23), we have

(1− αp)n∗ − αpn∗ = 0

p =
1

2α

This finished the proof of the lemma. �

Next we prove that Proposition 2 holds under the model with demand-side EOD. Similar to the

model with supply-side EOD, statement 1 follows directly from the second half of Proposition 1.

As for statement 2, the second part of this statement (i.e., λ̃i > λ̃j ⇒
Aj(n

∗′
j )

Ai(n∗
′
i )

< 1) is implied

by Proposition 1. Then applying Lemma A7, the first part of statement 2 on the role of market

thickness holds if B(τ) = log(A(eτ )) is a strictly concave function. And this is shown in the last

plot of Fig. 10.

To see statement 3, from Lemma A12, we have p∗ = 1
2 . Then the equilibrium number of drivers

of region i is given by
ni

λ̃i(1− 1
2)(1− 1

ni
)

= ci

n∗i =
ciλ̃i

2 +

√
c2i λ̃

2
i

4 − 2ciλ̃i

2
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As λ̃i gets larger, n∗i gets larger. Also note that λ̃i and n∗i have the same order. So for any

given ci, the equilibrium number of rides ri = ni
ni
λ̃i

+
ti
ni

approaches infinity as the market gets larger.

Therefore, the optimal wage approaches 0. The access ratio of any region approaches to 1.

This finishes the proof of Proposition 4. �

E.3 Proof of Proposition 5

First suppose n∗ is not a driver equilibrium in the version of the problem with no inter-region

rides. This, by definition, means that either a small number δ0 of new drivers can join one of the

regions i from outside and strictly improve their payoffs, of a small δ0 can relocate from i to i′

or to the outside option and have a strictly positive improvement. In that case, one can find the

corresponding small perturbation in ρ that would in a given amount of time, change n∗ in a way

that would increase the payoff in those regions. Similarly, if we assume (n∗, ρ∗) with (for a ρ∗ that

guarantees stability) is not an equilibrium of the version of the problem with cross-region rides,

one can use the small profitable perturbation in ρ∗ and use them to construct changes in n∗ that

yield strictly improved payoffs in some regions in the original version. This finishes the proof of

the proposition. �

F Proofs of Propositions in the Empirical Sections

This appendix supplies proofs relevant in the empirical sections. Appendix F.1 gives the proof of

Proposition 6. Appendix F.2 formalizes the statement of the identification results for the model

with supply-side EOD, followed by the proof of it. Appendix F.3 formalizes the identification results

for the model with demand-side EOD.

F.1 Proof of Proposition 6

This section gives the proof of the Proposition 6 that states the relationship between access ratio

and relative outflow. The proof is straightforward and follows directly from the assumptions.

Proof of Proposition 6. Let (n, ρ) be the steady-state driver allocation.

Ai(n)

Aj(n)
=
ri/λ̄i
rj/λ̄j

=
rij/λ̄ij

rji/λ̄ji
=
rij
rji

The second equality holds because
rij
λ̄ij

= ri
λ̄i

and
rji
λ̄ji

=
rj
λ̄j

. The third equality holds because

λ̄ij = λ̄ji. �

F.2 Proof of identification of the model with supply-side EOD

This appendix gives a formal statement of the condition of the identification of the parameters in

the empirical model with supply-side EOD, followed by the proof. The condition relies on specific

data patterns, which are satisfied in the data used for analysis.
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First, following the discussion of the identification in the main text, recall that each λ̄id can be

written as an explicit function of D, a and α as in eq. (9). Therefore, the identification problem

reduces to identify α and a from the RO moments. We consider the relative outflow across regions

for a single day d. For notational brevity, we drop the day subscript d. The relative outflow derived

from the model can be written as

ROmodelij =
Ai
Aj

=
ri/λ̄i
rj/λ̄j

=

ni
ci
/λ̄i

nj
cj
/λ̄j

=
(1− αpi)(1− a sic̄

nici
)

(1− αpj)(1− a sj c̄
njcj

)
(24)

where the first equality holds following Proposition 6 and the second equality holds given the

definition of access. The third equality holds given the assumption of driver equilibrium distribution.

The fourth equality is obtained if we substitute λ̄i and λ̄j with a, α and observable data D following

eq. (9).

To uniquely identify the two parameters (α, a), it suffices to match two relative outflows between

the data and the model. Therefore, the identification proof is reduced to showing that there exists

two pairs of regions, (i, j) and (k, l),31 such that the following system of equations has a unique

solution for (a, α), given everything else is data:

ROmodelij =
(1− αpi)(1− a sic̄

nici
)

(1− αpj)(1− a sj c̄
njcj

)
= ROdataij

ROmodelkl =
(1− αpk)(1− a sk c̄

nkck
)

(1− αpl)(1− a slc̄
nlcl

)
= ROdatakl

The proposition below states the condition for the uniqueness of the solution and thus the

identification:

Proposition 7. Under the model with supply-side economies of density, the parameters are uniquely

identified if the following condition holds:

Denote di = sic̄
nici

. There exists two distinct pairs of regions, indexed by (i, j) and (k, l), where

k may overlap with i or l may overlap with j, s.t. (pi− pj)(di− dj) > 0 and (pk − pl)(dk − dl) < 0.

Equivalently, the condition implies that, among the two pairs of regions, one pair has the same

ordering for (pi, pj) and (di, dj), while the other pair has the opposite ordering. The implication

is in line with the intuition of independence between regional price variation and regional density

variation that we show in the main text. We show the formal proof below.

Proof of Proposition 7. We show the proof of the uniqueness of the solution in the following

steps:

Step 0: Note that given the actual demand, λi = λ̄i(1 − αpi) is positive for any region i, the

parameter α satisfies α < mini∈I{ 1
pi
}. Also, given that, in equilibrium, the idle time can be

31Note that k or l may overlap with i or j. So we may need only three regions.
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expressed as n
λi

= ci
c̄ −

asi
ni

, the positive idle time implies that a < mini∈I{ cinic̄si
}. We denote

di = sic̄
nuci

. Then we have a < mini∈I{ 1
di
}.

Step 1: Given that the condition, without loss of generality, we assume that pi < pj , di < dj ,

pk < pl, and dk > dl.

Step 2: Consider a function f(x; k1, k2) = 1−xk1
1−xk2

, where 0 < x < min{ 1
k1
, 1
k2
}. Then ∂f(x)

x > 0 if

k1 < k2 and ∂f(x)
x < 0 if k1 > k2.

Denote Dij = {pi, pj , di, dj} and Dkl = {pk, pl, dk, dl}. Then we can express ROmodelij and

ROmodelkl as functions of (a, α):

ROmodelij (a, α;Dij) =
(1− αpi)(1− adi)
(1− αpj)(1− adj)

= f(α; pi, pj)f(a; di, dj)

ROmodelkl (a, α;Dkl) =
(1− αpk)(1− adk)
(1− αpl)(1− adl)

= f(α; pk, pl)f(a; dk, dl)

Given α < mini∈I{ 1
pi
}, a < mini∈I{ 1

di
}, pi < pj , di < dj , pk < pl, and dk > dl, we have

∂ROmodelij (a, α;Dij)

∂α
> 0,

∂ROmodelkl (a, α;Dkl)

∂α
> 0

∂ROmodelij (a, α;Dij)

∂a
> 0,

∂ROmodelkl (a, α;Dkl)

∂a
< 0

(25)

Step 3: Suppose there exists a pair of (a, α) that satisfies the system of equations above. That is,

ROmodelij (a, α;Dij) = ROdataij

ROmodelkl (a, α;Dkl) = ROdatakl

We show by contradiction that there does not exist a distinct pair of (a′, α′) that satisfies the

system of equations above, where at least one of a = a′ and α = α′ hold.

We consider the four cases below:

(1) Consider a′ > a and α′ ≥ α. Following the derivatives in eq. (25), we haveROmodelij (a′, α′;Dij) >

ROmodelij (a, α;Dij) = ROdataij . So (a′, α′) cannot be the solution.

(2) Consider a′ > a and α′ < α. Following the derivatives in eq. (25), we haveROmodelkl (a′, α′;Dkl) >

ROmodelkl (a, α;Dkl) = ROdatakl . So (a′, α′) cannot be the solution.

(3) Consider a′ < a and α′ ≥ α. Following the derivatives in eq. (25), we haveROmodelkl (a′, α′;Dkl) <

ROmodelkl (a, α;Dkl) = ROdatakl . So (a′, α′) cannot be the solution.

(4) Consider a′ < a and α′ < α. Following the derivatives in eq. (25), we haveROmodelij (a′, α′;Dij) >

ROmodelij (a, α;Dij) = ROdataij . So (a′, α′) cannot be the solution.

Therefore, there does not exist (a′, α′) that solves the system of equations with at least one

of a = a′ and α = α′ can not hold. �
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Given we observe the pattern in the data with (i, j) and (k, l) being Manhattan and Queens,

Bronx and Manhattan respectively, the parameters in the model with supply-side EOD are identified

in this case.

Two remarks are worth mentioning. First, the proof relies on monotonicity of f(x) given data.

Therefore, it should be considered parametric identification. However, the same identification logic

would essentially carry through for any non-parametric monotonic function. Second, in practice,

we take the average of ROmodelij and ROdataij across days. We do not require over-time variation to

identify a and α.

F.3 Proof of identification of the model with demand-side EOD

Now we turn to the identification results for the model with demand-side EOD. We formalize the

condition of the identification. The statement and the proof of the identification is analogous to

those for the model with supply-side EOD. As such, we skip some of the details.

First, note that each λ̄id can be written as an explicit function of D, a and α as in eq. (16).

Therefore, the identification problem reduces to identify α and β from the RO moments. Similar

to the model with supply-side EOD, We consider the relative outflow across regions for a single

day d. The relative outflow derived from the model can be written as

ROmodelij =
Ai
Aj

=
ri/λ̄i
rj/λ̄j

=

ni
ci
/λ̄i

nj
cj
/λ̄j

=
(1− αpi)(1− β sini )
(1− αpj)(1− β sini )

(26)

where the first equality holds following Proposition 6 and the second equality holds given the

definition of access. The third equality holds given the assumption of driver equilibrium distribution.

The fourth equality is obtained if we substitute λ̄i and λ̄j with a, α and observable data D following

eq. (16).

To uniquely identify the two parameters (α, β), it suffices to match two relative outflows between

the data and the model. Therefore, the identification proof is reduced to showing that there exists

two pairs of regions, (i, j) and (k, l),32 such that the following system of equations has a unique

solution for (α, β), given everything else is data:

ROmodelij =
(1− αpi)(1− β sini )
(1− αpj)(1− β sini )

= ROdataij

ROmodelkl =
(1− αpk)(1− β sknk )

(1− αpl)(1− β slnl )
= ROdatakl

The proposition below states the condition for the uniqueness of the solution and thus the

identification:

Proposition 8. Under the model with demand-side economies of density, the parameters are

uniquely identified if the following condition holds:

32Note that k or l may overlap with i or j. So we may need only three regions.
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Denote di = si
ni

. There exists two distinct pairs of regions, indexed by (i, j) and (k, l), where k

may overlap with i or l may overlap with j, s.t. (pi − pj)(di − dj) > 0 and (pk − pl)(dk − dl) < 0.

The proof is analogous to that of Proposition 7. Thus, we skip the proof. Taking to the data,

the condition is satisfied if we set (i, j) to be Manhattan and Queens and (k, l) to be Bronx and

Queens.

G Empirical and Counterfactual Results for All Models

This appendix presents the complete estimation and counterfactual results for all models specified

in Section 5: supply-side EOD model, demand-side EOD model, and the comprehensive model with
α
β ∈ {10, 1, 0.1}. Table 7 displays the average potential demand density and accesses across days in

each region from each of the models. The demand densities and accesses follow the same ordering

across the models with varying relative strength of supply-side and demand-side EOD.

Table 7: Model Outcomes (Corresponding to Table 5 of the paper)

Model Spec. Supply EOD Supply & Demand EOD Demand EOD
a
β ∞ 10 1 0.1 0

Demand Density ( λ̄isi )
Queens 630 627 606 554 540
Bronx 719 716 687 623 607

Brooklyn 939 936 907 835 815
Manhattan 2655 2638 2512 2272 2211

Access ( ri
λ̄i

)

Queens 0.49 0.49 0.51 0.56 0.57
Bronx 0.51 0.52 0.54 0.59 0.61

Brooklyn 0.57 0.57 0.59 0.64 0.66
Manhattan 0.58 0.58 0.61 0.68 0.69

Note: The results presented correspond to averages across days over the data time periods. The
regions are ordered by demand density.

Next, we turn to the counterfactual results. For each figure in Section 6, we provide the

corresponding figure derived from the results of all five models. The implementation details and

figure interpretations are similar to those described in Section 6, and therefore, are omitted here for

brevity. These results demonstrate that our insights remain both qualitatively and quantitatively

consistent, regardless of the source of EOD or the relative strength of supply-side versus demand-

side EOD.
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Figure 11: Platform optimal strategy results for all models (Corresponding to Section 6.1 of the
paper)

(a) Prices and wages under platform optimal strategy with heterogeneous prices and wages

(b) Accesses with homogenenous vs heteregeneous prices and wages.

Figure 12: Access Ratio (relative to Manhattan) as platform size increases (corresponding to Sec-
tion 6.2 of the paper)
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Figure 13: Equalizing accesses results for all models (corresponding to Section 6.3 of the paper).

(a) Optimal prices and the prices that equalize accesses

(b) Optimal wages and the wages that equalize accesses
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H Robustness Check: Incorporating Trip Characteristics

This appendix addresses the potential concern that the price and wage variation in the data adopted

in the main analysis could be mechanically arising from the variation in trip characteristics, such

as time and distance. To this end, we adapt the model to account for both trip time and trip

distance. Appendix H.1 describes how we incorporate the trip characteristics into the empirical

models with supply-side and demand-side EOD. Appendix H.2 presents the corresponding model

estimates and counterfactual results. Our three main insights continue to hold after incorporating

trip characteristics: (1) access is skewed away from less dense regions, (2) the skew is worse for

smaller platforms, and (3) the platform only partially mitigates the skew.

H.1 Incorporating Trip Characteristics

We incorporate trip characteristics into our analysis through a two-step process. First, we calculate

adjusted prices and wages for each region and each day, representing values corresponding to an

“average” trip characterized by the median trip time and median trip distance. Second, we include

a homogeneous trip time across regions and days into the total wait time for the empirical models

with supply-side and demand-side EOD. Treating this additional trip time as exogenous, we proceed

with model estimation and counterfactual analyses.

H.1.1 Adjusted Prices and Wages

In this section, we outline the process for constructing adjusted prices and wages based on trip time

and trip distance. The objective is to standardize prices and wages to reflect those corresponding

to an “average” trip for each region and day. We first compute the median trip time and distance

for each borough i and each day d, denoted as TripT imeid and TripDistanceid. Then we run the

following regressions of price/wage on the trip time and the distance at borough-day level:

pid = βp1TripT imeid + βp2TripDistanceid + εpid

cid = βc1TripT imeid + βc2TripDistanceid + εcid

Next, we take the median trip time and trip distance across all rides across all four boroughs

from March to June 2019, denoted as ˜TripT ime and ˜TripDistance. Then the adjusted prices and

wages can be generated as

p̃id = β̂p1
˜TripT ime+ β̂p2

˜TripDistance+ ε̂pid

c̃id = β̂c1
˜TripT ime+ β̂c2

˜TripDistance+ ε̂cid

where β̂p1 , β̂
p
2 , β̂

c
1 and β̂c2 are the parameter estimates, and ε̂pid and ε̂cid are the residuals obtained from

the regressions. In our data, the median trip time is 14.3 minutes, and the median trip distance is

2.61 miles. Fig. 14 shows how the adjusted prices and wages vary across days and boroughs.
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Figure 14: Variation of adjusted prices and wages across days and boroughs.

We use p̃id and c̃id for calibration instead of pid and cid, which are directly averaged from the

data, while keeping all other data inputs unchanged. As such, variations in trip time and duration

do not carry over to variations in the adjusted price and wage measures.

H.1.2 Incorporating Trip Time to the Empirical Models

Supply-Side EOD Model Let hid denote the trip time for region i on day d. hid ∈ D, i.e. it

belongs to the set of the observable data. With trip time hid, the total wait time is modeled as

Wid(nid) = hid +
nid

λ̄(1− αpid)
+
asi
ni

The parameters to be estimated remain the same as the main model specification in the paper,

namely (a, α, {λ̄id}i∈I,d∈D).
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Demand-Side EOD Model With trip time hid, the total wait time in the demand-side EOD

model is given by

Wid(nid) = hid +
nid

λ̄(1− αpid)(1− β si
nid

)

The parameters to be estimated are (a, β, {λ̄id}i∈I,d∈D).

Implementing Model Estimation and Counterfactual Simulations To estimate the supply-

side and demand-side EOD models with a homogeneous trip time, we utilize the standardized p̃id

and p̃id for an “average” trip as derived in Appendix H.1.1, which replaces the raw average prices

and wages, pid and cid, used in the paper. Accordingly, we set hid = h̃, which represents the median

trip time calculated across all trips within the data time span and across all regions.

Using the model estimates, we conduct the counterfactual analyses under the assumption that

hid = h̃ ∀i, d is fixed and exogenous. Apart from incorporating trip time as part of the total

wait time, all other aspects of the counterfactual analysis implementation remain the same as the

approach outlined in the main paper. We omit the details in this appendix for brevity. Overall, we

show in the following section that our primary insights continue to hold.

H.2 Model Estimation and Counterfactual Results

Table 8 presents the parameter estimates obtained from the model incorporating trip time. The

estimates are of a similar scale in both the supply-side and demand-side EOD models.

Table 8: Model Estimates with Trip Time

Supply-Side EOD Demand-Side EOD

α 0.0312 0.0282
(0.0012) (0.0013)

a 14.95 N/A
(0.53)

β N/A 41.05
(1.35)

λ̄
Bronx 11008 9772
Brooklyn 19544 17361
Manhattan 29087 25806
Queens 15738 13960

Table 9 compares the total number of drivers per hour across boroughs between our main

specification and the model with trip time. Specifically, we sum the estimates of nid across regions

to get the number of drivers per hour for each day: ñd =
∑

i nid, and calculate the average of ñd

across days for each month. The numbers are largely consistent between the two models.

Table 10 compares prices and wages under the optimal heterogeneous prices and wages with

those from the main model specification. On average, with trip time included, the optimal price
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Table 9: Comparison of the Total Number of Drivers per Hour Across Boroughs Between Models

Month Model w/o Trip Time Model with Trip Time

March 11613 11483
April 10507 10485
May 10715 10289
June 10523 10220

decreases by 30% with the supply-side model and 38% with the demand-side model. The average

change in optimal wage is about 9% in supply-side model and 26% in demand-side model.

Table 10: Counterfactual optimal prices and wages

(a) Optimal Price

Supply-Side EOD Demand-Side EOD

No Trip Time With Trip Time No Trip Time With Trip Time

Manhattan 27.15 21.63 36.18 23.20
Brooklyn 28.28 21.77 36.18 22.57
Bronx 28.66 21.87 36.18 22.18
Queens 28.88 21.92 36.18 22.01

(b) Optimal Wage

Supply-Side EOD Demand-Side EOD

No Trip Time With Trip Time No Trip Time With Trip Time

Manhattan 9.01 12.46 6.95 12.15
Brooklyn 13.55 14.14 13.08 13.36
Bronx 15.08 15.02 15.97 14.29
Queens 15.96 15.39 17.38 14.75

Fig. 15 illustrates access across regions under both heterogeneous and homogeneous prices and

wages. The figure reveals that access is skewed toward denser regions. Furthermore, compared to

homogeneous pricing, access levels under heterogeneous pricing are distributed within a narrower

range, indicating that the platform partially mitigates, though does not fully eliminate, disparities

in access.
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Figure 15: Region access under heterogeneous and homogeneous pricing

Fig. 16 illustrates access ratios relative to Manhattan (the densest region) as the platform size

increases. Ratios approaching 1 indicates that access skew is mitigated as the platform grows larger.

Combined with Fig. 15, the results in this section confirm that the three main insights of the paper

remain robust to the inclusion of trip time: access is skewed away from less dense regions, the skew

is worse for smaller platforms, and the platform only partially mitigates the skew.

Figure 16: Access ratios versus Manhattan (the densest region) with different platform sizes.

I Price Trend after 2019

In Section 6.1, our counterfactual analysis of platform optimal pricing predicts that overall the

optimal price is higher than what Uber charged in 2019. One potential explanation could be the

competition between Uber and other ridesharing platforms. Accordingly, it is expected that the

prices increases as the competition is softened when Uber grows larger. This section shows that

our prediction is in line with what Uber has done between 2019 and 2023.33

Table 11 lists the 25th percentile, median and 75th percentile of prices among all the rides

33The magnitude of price increase would be smaller if considering inflation.
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taken in March 2019 and March 2023 respectively. Overall, the price has increased by about since

March 2019. Fig. 17 presents the monthly average price of sampled frequently requested routes

between pairs of taxi zones from the beginning of 2019 to the end of 2023. The trend agrees with

the prediction of the counterfactual.

Table 11: Summary Statistics of Price per Ride in March 2019 and March 2023

Borough 25th percentile Median 75th percentile

March 2019 March 2023 March 2019 March 2023 March 2019 March 2023

Bronx 13.22 17.52 13.56 17.84 13.93 18.30
Brooklyn 16.63 19.95 16.84 20.46 17.38 20.76
Manhattan 19.01 23.29 19.61 24.00 20.26 25.04
Queens 21.54 23.38 21.92 24.03 23.24 24.60

Figure 17: Average price per ride by month from 2019 to 2023 for sampled routes (between pairs
of taxi zones).

J Comparison of Data Range to Rosaia (2023)

This appendix compares the geographical locations we include in our analysis to those included

in Rosaia (2023). Fig. 18 shows the map of regions included in Rosaia (2023). Fig. 19 presents

the variation of net incoming trips across the locations included in our data and that across the

locations included in Rosaia (2023) data. Fig. 20 compares the variation of net outgoing trips
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and Fig. 21 displays the population density. For all three measures, the geographical span of the

data we use encompasses additional sparser regions compared to Rosaia (2023) and thus is more

amenable to capture economies of density.

Figure 18: Taxi Zones included in Rosaia (2023); copied from Rosaia (2020) Figure 1

Figure 19: Total Number of Net Incoming Trips in June 2019 by Taxi Zones
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Figure 20: Total Number of Net Outgoing Trips in June 2019 by Taxi Zones

Figure 21: Population Density by Neighborhood. Note that the neighborhoods are not divided
as the same as the taxi zones, so the areas on the right hand side do not exactly coincide with
Rosaia’s.
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