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Abstract

Content such as novels and audio/video are increasingly published as serialized chapters/episodes on

digital media platforms. As a monetization strategy, these platforms offer a “wait-for-free” (WFF) option

where consumers can consume the next episode in a sequence immediately after paying a per-episode cost

or for free after waiting for a specified wait-period. Despite the growing interest in leveraging time as a

discrimination device for serialized media, there is limited research on how time affects consumption deci-

sions of serialized content. Hence, we pose the following simple but critical question: Can allowing quicker

free consumption increase revenues? While it is easy to see that a shorter wait to access free material will

attract new consumers, a natural concern is that it will also cannibalize paid consumption from existing

consumers. In this paper, we argue that unique characteristics of serialized content – complementarity

in utility from consuming sequential episodes and the diminishing value of complementarity over time –

can actually lead to an increase in paid consumption among existing customers. By leveraging a natural

experiment from a serial fiction platform, we estimate the impact of reducing wait-times on downstream

consumption behaviors using a difference-in-difference framework, while addressing potential selection

issues using a matching-based approach. We find that existing consumers increase paid consumption

by 12% with a reduced wait time. Together with incremental purchases from new consumers who start

consuming the series after the reduction, aggregate paid consumption increases by 19%.

Keywords— serialized media, wait-for-free (WFF), product versioning
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1 Introduction

“In a highly competitive environment – fighting to occupy users’ free time – producers and

distributors of content depend more than ever on the engagement of the services they offer.

The sustained, consistent and recurring consumption of narrative series has demonstrated its

effectiveness above any other format in building up that engagement.”

(Storytel 2018 report, Link)

Serialized media refer to information goods such as books, TV shows, educational courses or podcasts that

consist of multiple episodes, representing independent units of consumption, with a continuous plot under

a single title. Advancements in digital media, such as the emergence of ebook and streaming platforms,

have paved the way for serialization as a popular mode of publication across product types. Partitioning a

unified content into short episodes has become common as it fits consumer trends such as growing media

consumption on mobile devices accompanied by the diminishing attention span of users (Marketing Charts,

2019; Speaking of Psychology, 2023). The largest platform for serialized fiction novels, Wattpad, is reported

to have over 80 million readers; the leading serialized comics platform, Webtoon, boasts over 85 million

users. The video streaming giants Netflix, Amazon Prime Video and Disney+ together serve more than 600

million subscribers.

Many platforms with serialized content across a variety of product domains operate on a freemium model

and offer consumers a “wait-for-free” (WFF) option, such as Webtoon (comics), Radish Fiction (books),

ReelShort (videos) and Real Racing (games). With WFF, consumers make consumption decisions for each

episode: they can access an episode immediately for a fixed price or for free after waiting for a pre-specified

wait-time since accessing the prior episode of the same series. Essentially, the WFF option is a form of

versioning where consumer can choose between two vertically differentiated episodes—one with zero wait

time for a price and another with a non-zero wait time for free. Consumers who have high willingness-to-pay

(WTP) for an episode may pay for immediate consumption, while those with lower WTP may choose free

but delayed consumption.1

We empirically assess the consumption and purchase impact of WFF using data from a major U.S.-based

serialized fiction novel platform that uses the WFF policy. Specifically, we exploit a natural experiment

during the period of our data sample, where the platform changed wait-times for a subset of series (books)

to help identify the causal effects of changes in wait-times on free and paid consumption. Although the
1At first glance, the time based versioning with serialized media has similarities with choices among higher and lower priced

versions of products that are sequentially released (e.g., hard versus soft cover books, movies at theaters versus streaming/DVDs
as modeled in Luan and Sudhir 2022). We characterize the conceptual differences arising from partitioning of the unified content
into serialized content and their implications for consumer behavior and monetization as we motivate our research questions.
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WFF option for serialized media is now widely used, there is limited research that sheds light on how time

affects consumer decisions, specifically the role of serialization. A notable exception is Choi et al. (2022); the

paper studies how WFF impacted free and paid viewing on an online platform for serialized comics. Using

a statistical model, they characterize the number of free and paid views aggregated at the episode level,

finding that the introduction of WFF led to an increase in paid episode views. The paper suggests that

WFF generates incremental demand for paid episode views from the new users to the series, which exceeds

the effect of purchase cannibalization from the existing users through free viewing. We build on this nascent

research area by examining the downstream impact of wait-times on individual consumption and purchase

decisions, and idenitfy new mechanisms at play driving the results.

We draw on the unique features of serialized products to conceptualize the consumer’s decision making

process across episodes over time. Based on the conceptual framework, we develop specific hypotheses

on various consumption dynamics that arise from changing wait-times, including the depth and pace of

consumption and the decision to start a series. We find that due to the characteristics unique to serialized

media, allowing quicker free consumption can actually lead to an increase in paid consumption even among

existing consumers of the series. We empirically validate our conceptual framework and assess the ensuing

impact on aggregate consumption and purchases.

We identify two characteristics unique to serialized media that impact consumption decisions. First,

episodes exhibit directed complementarities: consuming one episode enhances the value of the next, due to

the narrative structure. Each episode in a series strikes a balance between repetition and variation, diluting

the idea of the ending – while adjacent episodes share structural and content similarities, they also introduce

new elements that expand on the earlier episode (Eco, 1990; Kermode, 2000). This interconnectedness, in

conjunction with narrative devices such as cliff-hangers and cutting-off techniques, allows the audience to

slowly build their understanding of and become invested in the storyline that unfolds (Mittell, 2006). Hence,

the consumption of an episode creates a stronger incentive to proceed sequentially in the series (Linkis, 2021).

Second, the value of these complementarities diminishes over the time since the last consumption, aligning

with the notion that the subsequent consumption utility decreases as consumption capital dissipates over

time (Becker and Murphy, 1988; Heather and Vuchinich, 2003). The internal momentum towards the series

gradually decays and consumers forget about the previous episode, which may affect their valuation of

the next episode. This time-sensitive aspect of valuation underscores the importance of timing in release

strategies for serialized media (Zhao et al., 2022; Godinho de Matos et al., 2023) and the phenomenon of

binge consumption (Schweidel and Moe, 2016; Lu et al., 2019, 2023; Godinho de Matos and Ferreira, 2020),

where the desire to maintain continuity leads consumers to consume episodes in close succession.

These properties of serialized media create rich and distinct consumption dynamics, which enable in-
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creased monetization under shorter wait times even among existing consumers of the series. Under shorter

wait-times, the consumer obtains relatively higher complementarity from the waited consumption option,

which may cause her to switch from purchasing to waiting (cannibalization effect). However, the comple-

mentarity properties give rise to positive across-episode spillovers within a consumer that counteract can-

nibalization through two channels. First, the consumer may switch from no consumption (outside option)

or waiting to waiting or purchasing, because both the value of waited consumption for the current episode

and the expected value of consumption for the future episodes are higher. Second, this in turn allows her

to benefit from complementarity on subsequent episodes, inducing her to make purchases at episodes where

her WTP is sufficiently high. In essence, the firm is able to “harvest the acquisition” by retaining consumers

over a broader product set.

To comprehensively assess such multifaceted dynamics, we separate out and evaluate the impact on the

intensive and extensive margins. As concepts commonly used in the economics literature, intensive margin

refers to the magnitude of activity with existing entities (e.g., trade volume, hours of labor), while extensive

margin refers to the breadth of participation (e.g., new trade relationships, individuals entering the labor

market). We adapt these terms to our specific context: the intensive margin measures how much existing

consumers of a series consume or purchase its episodes, and the extensive margin measures how many

new consumers begin the series. This distinction allows us to understand how changes in the WFF policy

differentially affect the existing consumer base versus attracting new consumers, thereby highlighting the

relative contributions of each dimension to aggregate revenue growth.

We use a consumption panel data of over a million users and 20,000 series that covers 15 months from

October 2020 to December 2021, which details how the user consumed an episode (i.e., waited or purchased).

We augment this dataset with series and episode metadata, as well as an in-app currency purchase panel data

to explore consumer heterogeneity based on historical platform spending. During the observation period,

the platform selected 191 series whose wait-times ranged from 3 to 72 hours and reduced them to a range

of 1 to 24 hours. The wait-times pre- and post-reduction as well as the magnitude of reduction vary across

the selected series. The change was implemented without prior announcement and aimed to increase user

engagement by making it easier for readers to consume episodes for free by waiting. We estimate the average

treatment effect of wait-time reduction via a difference-in-differences (DiD) approach, focusing on a 30-day

window around the reduction.

Two empirical challenges remain. First, we have to address the potential selection bias as the series

for which wait-times were reduced were decided by the platform. Second, the reduction was implemented

in a staggered manner; hence a standard two-way fixed effects model can produce biased estimates. We

address selection bias using a panel matching approach (Imai et al., 2021). We compute the likelihood of
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a series receiving treatment (i.e., wait-time reduction) at a given time based on observed pre-treatment

characteristics. By constructing a control group of series whose wait-times remain unchanged but have

comparable probability of being treated, we allow the treatment to be random conditional on observable

characteristics, satisfying conditional ignorability. We then mitigate potential concerns around staggered

adoption by using a stacked DiD approach. The stacked DiD creates event-specific datasets for each of the

treated series and its matched control series. By stacking the datasets based on relative periods around the

reduction timing and saturating the model with cohort specific fixed effects, we circumvent the issues of

biased estimates under staggered treatment adoption (Goodman-Bacon, 2021).

Our empirical analysis proceeds in the following sequence. First, we examine the impact of changing wait-

times on the depth of consumption (intensive margin) by examining the change in total number of episodes

consumed (i.e., waited and purchased) and purchased by the existing consumers of a series. The estimation

results show a 37% increase in episodes consumed per consumer. The key estimate of interest is the impact

on purchases, as the increased consumption would only hurt platform revenues if it came at the expense of

lower purchases. Surprisingly, we find a 12% increase in episodes purchased per consumer, indicating that

the positive effect from across-episode spillovers dominates the negative cannibalization effect. Moreover,

allowing for heterogeneous treatment effects based on historical platform spending reveals an even greater

17% increase for those that are amenable to paying for content.

Second, we investigate the change in consumption pace of the existing consumers in response to reduced

wait-times. Specifically, we analyze the impact on excess wait-time, or how much consumers waited beyond

what was required to read the episode for free. The consumer’s decision to consume the free episode now

versus later depends on the marginal utility of delaying consumption. This utility, in turn, is determined by

how quickly the complementarity value decays over time. We find a 21% decrease in excess wait-time, which

is consistent with a complementarity value that decays over time at a decreasing rate. This consumption

acceleration effect allows the consumers to progress through the series at a faster rate, leading to more

frequent opportunities to purchase subsequent episodes.

Third, we measure the impact of wait-time reduction on the inflow of new consumers into the series

(extensive margin). Since the expected (ex ante) value of consuming a given series increases when the wait

time is lower, more consumers start consuming the series for the first time. Our empirical finding corresponds

to a 28% increase in the number of consumers starting a new series when the wait time is reduced.

Finally, we bring together the individual pieces to examine the net effect of the wait-time reduction due to

the above dynamics. We find that the reduction leads to a 92% and a 19% increase in aggregate consumption

and purchases, respectively. Despite the risk of cannibalization, shorter wait-times actually increase platform

revenues by stimulating paid consumption from existing consumers and attracting new consumers to the
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series. A simple numerical analysis reveals that the increase in intensive margin is responsible for about 40%

of the increase in aggregate purchases, with the rest of the effect attributable to the extensive margin. The

estimated elasticity of consumption and purchases with respect to wait-times is -0.26 and -0.06, respectively.

We then conduct a battery of checks to determine the robustness of the reported results. To examine

whether the estimated impact of wait-time reduction is indeed causal, we conduct formal tests to confirm the

parallel trends and SUTVA assumptions. We also conduct a sensitivity analysis that quantifies how strongly

potential unobserved confounders would need to be associated with both the outcome and the treatment in

order to explain away the estimated treatment effect. Further, to rule out spurious correlations that might

drive our results, we conduct falsification tests using pseudo treatment series and dates. Analyses using

different subsamples of the data and model specifications also show broad agreement with our main results.

The rest of the article is organized as follows. First, we discuss how this research is related to the

literature. Second, we describe institutional details and data. Third, we discuss our conceptual framework

based on the complementarity properties of serialized media. Fourth, we explain the empirical strategy and

the econometric model. Fifth, we present the results and discuss the key findings. Finally, we conclude and

discuss future research directions.

2 Related Literature

The present paper is related to multiple streams of literature. First is the stream on serialized media, and

second is the literature on versioning, and more specifically versioning based on temporal characteristics.

With the proliferation of serialized media content, a growing stream of literature is giving attention to

their monetization strategies. Zhao et al. (2022) investigates the connection between episode release timing

and a set of consumer behaviors such as binge consumption, rationing and platform visits to study the optimal

release schedule. By estimating a model of purchase and consumption of chapters within a book, the authors

find evidence of both within-period binge consumption (i.e., conditional on availability, the consumer will

consume a large number of chapters within a period) and intertemporal binge consumption (i.e., consumption

in the last period begets consumption in the present period). These findings are consistent with our proposed

complementarity properties of serialized media. The authors conclude that a hybrid strategy of simultaneous

and sequential release strategies yield highest platform profits. Similarly, Godinho de Matos et al. (2023)

devise an analytical model of consumer search and consumption on a TV show streaming platform, and

conduct a field experiment to show that a sequential release schedule leads to higher platform usage.

There is also a steam that focuses on consumption behaviors of serialized media. Zhang et al. (2022) pro-

vides evidence of time-inconsistent preferences, where consumers intentionally choose to overpay for content
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in order to curb future consumption (strategic self-control). Several works study the phenomenon of binge

consumption, exploring the implications on downstream behaviors such as responsiveness to advertisements,

series completion and spillovers to other content on the platform (Schweidel and Moe, 2016; Lu et al., 2019,

2023; Godinho de Matos and Ferreira, 2020). These papers focus on providing empirical evidence of binge

consumption and abstract away from the mechanism that drives binge consumption. We add to this stream

of literature by shedding light on the role of serialization that affect consumption decisions.

Wait-for-Free is a specific versioning strategy used for serialized media. However, there is limited research

about this topic given its relative novelty. The paper closest to ours is Choi et al. (2022), where they study

the impact of introducing WFF to serialized comics that were previously pay-only. The authors find that the

introduction resulted in higher paid episode views and mentions that the platform faces an implicit trade-off

in revenues between cannibalization and incremental purchases from new users. Our work complements the

study by exploiting an exogenous variation in wait-times to separately assess the impact on consumption

depth, pace and the decision to start a series. Importantly, we draw on the foundational characteristics of

serialization to hypothesize and empirically validate that lowering wait-times can actually lead to greater

monetization even in the absence of purchases from new users. Another related study is Choi et al. (2023).

Using data from a comics platform that allows early episode access for a fee, the authors find that greater

availability of free episodes lead to habit formation, which in turn increases consumers’ WTP for early access

through payments. However, the WFF policy in their setting is similar to the static sequential release (Luan

and Sudhir, 2022), and the model is focused on the purchase decision of the first non-free episode.

Our paper contributes to the well-established literature on versioning. Versioning is a widely studied price

discrimination strategy where the firm offers vertically differentiated products at different prices such that

consumers with heterogeneous preferences self-select in to the version-price pair that is targeted to them.

Building on the theoretical works on product differentiation (Mussa and Rosen, 1978; Deneckere and McAfee,

1996), Shapiro and Varian (1998) and Varian (2000) laid the groundwork for versioning information goods,

pointing out the economic feasibility of manipulating product quality at negligible marginal production costs.

A set of studies investigate the economic viability of versioning information goods with an emphasis on

freemium strategy (Kumar, 2014). Shi et al. (2019) shows that in the absence of such diffusion dynamics, the

freemium model can be optimal when the two products provide asymmetric network externalities. Existing

empirical research probes into the impact of introducing the free version on demand for the premium version

(Gu et al., 2018; Li et al., 2019; Deng et al., 2022), when firms should charge for content (Lambrecht and

Misra, 2017), and how much should be provided for free (Lee et al., 2019). In many of these cases, the

key determinant of the firm’s decision is the trade-off between consumer acquisition and cannibalization: an

attractive free offering expands the consumer base, but does so at the cost of lower purchase per consumer.
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Our study enriches this dynamic by focusing on the unique complementarity properties of serialized media,

which surprisingly dominates the negative cannibalization effect and encourages higher paid consumption

per consumer when the free option is made more attractive.

Moreover, there is limited research that exploits changes in version quality to empirically investigate the

causal effects, because product quality is difficult to quantify and a discrete change in version quality are

uncommon. An exception is Li et al. (2019), who exogenously vary the resolution of free e-book samples. The

authors distinguish between “sample quality” and “functional equivalence,” where the former is the degree to

which the free sample reveals the quality of the premium product (e.g., textual content, image resolution)

and the latter is the degree to which the utility derived from the premium product can be obtained from

the free product (e.g., limited usage time, hardcover vs. softcover). By varying sample quality, the authors

show that under low functional equivalence, it may be profitable for the firm to provide high quality free

samples as they are poor substitutes. In contrast, we exploit an exogenous change in functional equivalence

– consumers get full access to the exact same episode by waiting but receive lower utility from delayed

consumption. Our results demonstrate that owing to the unique features of serialized media, closing the gap

between the two versions in terms of functional equivalence can increase firm revenues.

Our work also relates to the literature on sequential product release using a different kind of temporal

versioning strategy. Firms often start with limited distribution through their primary channel and after some

time open a secondary channel for mass distribution that sells at a lower margin (e.g., theater vs. DVDs,

hardcover vs. softcover). If the inter-release timing is too short, forward-looking consumers might hold off on

their purchases through the first channel, and if too long, consumers gradually lose interest (buzz decay) and

decide to exit the market by the time the second channel opens (Calzada and Valletti, 2012; August et al.,

2015; Luan and Sudhir, 2022). Serialized media is different due to the complementarities across temporal

consumption, which is not present in the above studies.

3 Institutional Setting and Data

The serialized fiction market consists of three types of participants: authors, readers and the two-sided

platform. Independent authors publish their series that are comprised of multiple episodes on the platform,

and the readers access each episode through a mobile application following various payment schemes. The

market has seen rapid growth globally, with notable platforms such as Wattpad and Kindle Vella.

We leverage data from a leading U.S.-based serial fiction platform specializing in the romance genre that

hosts over 20,000 series and has over a million active users. The platform generates revenues through users’

episode purchases. Specifically, each series belongs to one of three categories depending on the monetization
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type: free, premium and wait-for-free (WFF). Free series allow immediate access to all episodes at no cost.

Premium series follow a pay-per-episode model where first several episodes are free, and users must pay using

an in-app currency (“Coins”) to “unlock” each subsequent episode. The only difference between WFF and

premium series is that WFF series allow users to unlock an episode for free once a pre-specified wait-time has

elapsed after the last episode of the same series was unlocked. Like premium series, readers may alternatively

pay to unlock the episode immediately. Coins can be bought with real money, and each episode costs 3 Coins

regardless of wait-times, roughly equivalent to 50 cents. Users can earn Coins through other ways such as

referrals, watching ads or giveaway events hosted by the platform, but those make up a negligible portion.

The wait-time varies across series, ranging from 1 to 72 hours, and the same wait-time applies to all

episodes and readers within a series. If the consumer becomes eligible to unlock an episode after the wait-

time has elapsed, she must actively unlock an episode to “reset the clock” for the next free episode. Take

for example a series that requires a 3-hour wait-time. A user may consume the entire series for free as long

as she is willing to wait at least three hours between each episode (e.g., a consumer returning in 12 hours

will still only have a single free episode available rather than four). Hence, the frequency of visits matters,

and one cannot “wait-and-binge,” a behavior often observed for series with static release schedules. Also,

note that there is no incentive for a user to purchase now to read later (i.e., stockpile), since the episode will

eventually become free. To be clear, although firms have previously discriminated using time in contexts such

as hardcover versus softcover books, the application to serialized media, where there are complementarities

across episodes, has not been previously observed. Moreover, the release timing in WFF is personalized

based on the user’s consumption of the previous episode and is applied separately for each episode.

Figure 1 illustrates the distribution of series and consumption across the three sales types. Although

WFF series constitute a third of all series on the platform, more than 85% of episode consumption in our

dataset is generated by the WFF series. Given this pattern and our research objective, we focus only on the

WFF series within the data.

Figure 1: Distribution of series and episodes consumed across categories
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Figure 2 illustrates the user experience on the app. The user can scroll through series available on the

platform, and once she clicks on a series, additional relevant information is displayed, such as wait-time,

genre and a short description. The example below is a contemporary romance series that requires a 3-hour

wait-time and offers the first five episodes for free. The hourglass icon and “3 Coins” indicate that beginning

with the sixth episode, the user may either wait 3 hours or pay 3 Coins to unlock. A typical episode on the

platform is around 1,500 words, and the vast majority of the readers finish an episode within 15 minutes.

Figure 2: App user interface

We leverage multiple datasets that cover user consumption as well as series and episode metadata. The

consumption panel data covers 15 months from October 1, 2020 to December 31, 2021 and details when and

how (waited or purchased) the user consumed the episode. Series metadata include title, genre, author, sales

type, date of first publication and the required wait-time. Episode metadata include series ID, sequence in

the series, episode publication date and word count. The dataset also contains information on promotional

activities where the platform offered coupons for specific series that can be used to unlock an episode,

including the promotion dates and how many coupons were used. Finally, we have access to Coin purchase

panel data from January 1, 2019 to October 30, 2022, which we leverage to explore heterogeneity across

users based on historical spending. Our expansive dataset comprised of precise access timing and method

over an extended time window presents a unique opportunity to delve into the consumption dynamics.

To isolate the effect of wait-time reduction on the existing user base of the platform, we filter the panel

data to the users that joined the platform before October 1, 2020, the beginning of our consumption panel

data. This ensures that there are no compositional changes to the platform population that might otherwise

introduce a form of selection bias. This also means that our analysis results are conservative estimates that

exclude the contribution from users that join the platform at a later date. Moreover, to reduce noise from

tail end series that are rarely read, we filter for series with at least 1,000 episode accesses over the entire

observation period. Our resulting dataset covers 1,940 WFF series and 308,681 users. The basic summary
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statistics about user consumption are provided in Table 1. The median series contains 44 episodes, and the

median user has read two series and 57 episodes during the observation period. The median number of days

that a user spends on a series is five. In general, as is common in media markets, the data is skewed to the

right (with many heavy users) as the mean is usually much larger than the median, which we address in the

analysis through log-transformation.

Mean SD 25% 50% 75%

Episodes per series 79.1 163.2 31.0 44.0 83.0
Series consumed per user 12.2 39.6 1.0 2.0 6.0
Episodes consumed per user 457.5 1487.9 10.0 57.0 267.0
Episodes waited per user 312.8 1233.7 2.0 18.0 141.0
Episodes purchased per user 132.4 392.3 1.0 16.0 87.0
Days spent per user per series 37.2 78.1 0.0 5.0 29.0

Table 1: Summary statistics on user consumption

We next provide a set of descriptive statistics around the series. The left panel of Figure 3 illustrates

the distribution of series by the size of their reader base, with the x-axis indicating unique reader count

(log-transformed) and the y-axis indicating the number of series. The log-normal histogram shows a heavy

concentration of readers on the most popular series. The right panel of the figure illustrates the distribution

of users by their total spending on the platform to purchase Coins. The most notable pattern is that there is

a segment of users that do not spend any money on the platform (i.e., “non-spenders”) that make up 53% of

the user base. These users do not make any direct contributions to platform revenues and mostly resort to

free consumption. We note that although the non-spenders do not purchase Coins, they may still purchase

episodes using Coins earned through alternative methods mentioned above (e.g., referrals, ads, giveaway

events). The remaining 47% of the user base show a log-normal distribution, indicating a long tail of heavy

spenders. One could speculate that wait-times might affect consumers differently based on inclination to

spend money, and the platform’s primary concern is on the consumption decisions of the spenders who

directly contribute to revenues, which calls for the need to examine heterogeneity in the effect of wait-time

changes across consumers based on historical spending in the empirical analysis.

Next, we explore how consuming an episode impacts the likelihood of the consuming the next episode

in the series. Sampling the consumption panel data for 10,000 randomly selected users, we find that 99%

of the episodes are read along with the immediately preceding episode, and 90% of the episodes are read in

sequential order. A logistic regression reveals that reading an episode significantly increases the likelihood

of reading the next episode (p < 0.001). In other words, the vast majority of readers read episodes in the

specified order and read an episode only if they have read the preceding one.

We conclude this section by exploring consumption patterns across reading sessions. For each user, we
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Figure 3: Distribution of readers across series and purchase propensity

define a session as one where the interval between successive episode viewings is greater than 30 minutes.

Following the practice from Schweidel and Moe (2016), we show in Table 2 the proportion of reading sessions

by the number of episodes and unique series consumed during the session. Given that 60% of reading sessions

consist of a single episode, we can infer that users visit the platform throughout the day mostly to access

the waited episode and occasionally purchase another. Moreover, the table also suggests patterns of binge

consumption: 40% of reading sessions involve two or more episodes, and irrespective of session length, at

least 25% of sessions involved reading episodes from a single series. These patterns lend empirical support

to the notion of directed complementarity that diminishes over time.

Session Length % Sessions Mean 25% 75%
(episodes)

1 58.6 1.0 1 1
2 16.2 1.5 1 2
3 7.9 1.8 1 3
4 4.6 2.0 1 3
5 2.9 2.2 1 3
6 2.0 2.3 1 3
7 1.5 2.4 1 3
8 1.1 2.4 1 3
9 0.9 2.5 1 3
10+ 4.3 2.7 1 3

Table 2: Unique series read, conditional on the number of episodes consumed in the session

4 Conceptual Framework

In this section, we propose a conceptual framework that forms our expectations around the impact of

changing wait-times on consumption and purchase behaviors before embarking on the empirical analysis.

As mentioned earlier, our conceptual framework leverages two unique properties of serialized media. First,
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episodes in a series share structural and content similarities that in tandem with literary devices such as

cliffhangers give rise to directed complementarities. Second, the complementarity value decays over the

consumption interval as consumption capital dissipates in time.

Consider a consumer making consumption decisions for episode e in a series with wait-time T hours.

In each period t, the consumer may choose among actions a ∈ {consume,wait, exit} for the episode. The

consumer’s action yields episode flow utility, ua
e , defined as follows:

ua
e(t, τ, T ) =


ve + C(t, τ)− P (t, τ, T ) + ϵat if a = consume

ϵat if a ∈ {wait, exit}
(1)

where ve is the baseline valuation for episode e, C(t, τ) is the complementarity value for the episode at period

t from having consumed the previous episode in period τ , P (t, τ, T ) is the episode price at period t given τ

and wait-time T , and ϵat is an exogenous period-specific Type I extreme value shock. Her complementarity

value for the episode decays over the time since consuming the previous episode (i.e., C is a decreasing

function in t − τ). With the WFF option, she may consume the episode by paying before the wait-time

elapses or for free T hours after consuming the previous episode (i.e., P = p if t− τ < T ; P = 0 if t− τ ≥ T ).

The consumer considers each episode in order and can only consume if she has consumed the previous

episode.2 If she consumes episode e in period t, she proceeds to consider purchasing episode e + 1 in the

same period; if she waits, she considers the same decision for episode e in the next period t+ 1; if she exits,

she no longer considers any subsequent episodes.

We further make the following assumptions. First, the consumer’s baseline valuation for the next episode

ve+1 is only realized after consuming episode e, but she knows the distribution from which it is drawn.

This reflects the realistic scenario where the consumer may have expectations about episode quality based

on genre or plot, but is uncertain until she experiences the content of the preceding episode.3 Second, the

consumer is rational and forward looking, and thus accounts for the fact that consuming episode e allows

her to proceed to episode e+ 1. Third, consumption is concurrent with purchase, since there is no incentive

for the consumer to stockpile (i.e., purchase now to consume later), as noted in Section 3.

Given the above setup, the consumer consumes episode e in period t after evaluating utilities based on

expectations over the utility across all periods. Actions consume and wait allow the consumer to proceed

to the next episode, and hence, provide inclusive value, or the expected maximum utility from her optimal

decisions made onwards. Action exit does not provide inclusive value as the consumer does not consume any
2Data patterns in Section 3 show that consumers typically read an episode only if they have read the preceding episode.
3While our model allows ve to vary across episodes, one may simply assume ve is fixed across episodes.
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more episodes. Formally, the consumer chooses an action by solving the following value function:

Ve(t, τ, T ) = max{U consume
e (t, τ, T ), Uwait

e (t, τ, T ), Uexit
e (t, τ, T )} (2)

where U consume
e (t, τ, T ) = uconsume

e (t, τ, T ) + Ve+1(t, t, T )

Uwait
e (t, τ, T ) = uwait

e (t, τ, T ) + βVe(t+ 1, τ, T ) (3)

Uexit
e (t, τ, T ) = uexit

e (t, τ, T ) (4)

We illustrate the potential implications of reducing wait-times by simulating the consumption decisions

for episodes in a series with three episodes, e ∈ {0, 1, 2}, under wait-times T = 2 and T = 1. The wait-time

ticks down conditional on consuming the previous episode, so we begin with her consumption decision for

episode 1. For simplicity, we simulate decisions over five periods and assume that if the consumer has not

consumed an episode over three periods, she no longer considers the episode (i.e., churns from the series).

Functional form and parameter assumptions used for the simulation are presented in Table 3. Since we

consider a finite sequence of episodes, the inclusive values can be easily computed via backward induction.

Assumption

Baseline valuation ve ∼ N (0, 1)

Complementarity value Ce(t, τ) = 7 · e−2(t−τ)

Initial price p = 7
Period specific shock ϵt ∼ Gumbel(0, 1)
Discount factor β = 0.9

Table 3: Functional form and parameter assumptions for the simulation

Table 4 shows the decision matrix of 1,000 simulations. The values indicate the number of consumers for

an action pair in each wait-time regime, reflecting the impact solely due to the wait-time reduction. The left

table shows the decisions for episode 1. First, a consumer that paid under T = 2 may now choose to consume

for free under T = 1 (64). She now gains a higher flow utility from free consumption, thereby reducing the

likelihood that purchasing yields the highest expected net utility among the actions in any given period.

This represents the cannibalization effect widely documented in the freemium literature (Lee et al., 2019;

Li et al., 2019; Cao et al., 2023). At the same time, a consumer that chose exit (i.e., no consumption) or

free consumption under T = 2 may now choose to consume for free (275) or pay (32), because both the flow

utility and the inclusive value from those actions are greater. We also see consumers switch from pay to exit

(15) due to the shift in consumption timing and the exogenous period specific shocks that follow.

The right table shows the impact for episode 2. Again, we see purchase cannibalization (40). Moreover,

if the consumer did not consume episode 1, she would not consume episode 2, as seen in the higher total exit
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counts in episode 2 compared to episode 1. On the flip side, those that switched from exit to consumption

in episode 1 can now consider episode 2 with the benefit of complementarities. If the realized valuation is

sufficiently high, she chooses to purchase (95). Again, we see consumers switching in the below-diagonal

due to the shifts in consumption timing. The impact on the intensive margins of a given series is the sum

of changes changes across all episodes in the series. Note that this does not include the positive impact of

incremental purchases from new consumers (i.e., expansion of extensive margins).

Decision Matrix for Episode 1

2hr/1hr Exit Pay Free Total

Exit 258 32 275 565
45% 6% 49% 100%

Pay 15 285 64 364
4% 78% 18% 100%

Free - - 71 71
- - 100% 100%

Total 273 317 410 1000

Decision Matrix for Episode 2

2hr/1hr Exit Pay Free Total

Exit 547 95 161 803
68% 12% 20% 100%

Pay 24 103 40 167
14% 62% 24% 100%

Free 3 6 21 30
10% 20% 70% 100%

Total 574 204 222 1000

Table 4: Decision matrices for episodes 1 and 2 under 1-hour and 2-hour wait-times

The change in the intensive margin from reduced wait-time is thus the net impact of the negative can-

nibalization effect and the positive across-episode spillovers arising from complementarities. We expect to

find an increase in overall consumption, but whether paid consumption will increase remains an empirical

question, as it is ex ante unclear which of the two effects would dominate. Importantly, note that in the

absence of the complementarity properties, purchases should always decrease. In this case, the consumer’s

WTP for an episode would vary over time only depending on the exogenous shock, and there is a lower

chance that her WTP is greater than the price in any period before the episode becomes free.

Next, the diminishing complementarity value also has implications on the consumption pace of the

existing consumers. Specifically, the impact of wait-time reduction on how quickly consumers consume

waited episodes would differ based on the rate of complementarity decay over time. Consider a consumer

deciding when to consume a free episode after the wait-time has elapsed. Under wait-time T = 2, her decision

to consume now in period t = 2 versus deferring to period t = 3 hinges on the expected change in utility

between these periods. Similarly, with a halved wait-time of T = 1, the decision depends on the expected

change in utility between periods t = 1 and t = 2.

If complementarity diminishes in a linear fashion over time, there should be no change in how much

consumers wait in excess for a free episode (i.e., excess wait-time), because the marginal utility between the

successive periods is the same under both wait-time regimes. If the complementarity value diminishes at a

decreasing (increasing) rate, the excess wait-time should decrease (increase), as deferring consumption has
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a larger (smaller) negative impact under shorter wait-times. The convex trajectory of the complementarity

value aligns with the extensive literature on forgetting, which shows that consumer recall exhibits a rapid

initial decline right after an event, followed by a slow decay (Clarke, 1976; Mahajan and Muller, 1986).

Conversely, the concave trajectory may be justified by a gradual information overload over time (Klingberg,

2009). As the consumer engages in more outside content after consuming an episode, the cognitive effort

required to reconnect with the series increases, and hence the perceived value of re-engaging may decline

more steeply. There is no inherent reason to believe that complementarities in serialized media would exhibit

any specific trajectory, making this an empirical question. The pace of free consumption is critical to the

platform, as it induces the consumer to make consumption decisions on the following episodes.

Finally, the expansion of the consumer base from increased value of the free option is well-understood

from the freemium literature. For serialized media, a consumer decides to start a series (i.e., consume the

first episode) if the aggregate expected utility from its episodes outweighs the cost. It is clear from the above

setup that the aggregate expected utility is higher under wait-time T = 1 due to higher flow utility and

inclusive value. Hence, we expect growth along the extensive margin.

5 Empirical Approach and Model

In this section, we discuss our empirical strategy to identify the causal effect of wait-time reduction on

consumption and purchase decisions. An ideal experiment would randomly assign readers to different wait-

times for a given series and compare outcomes between experimental designs. However, our setting features

the same wait-time for all readers of a series. Hence we leverage exogenous changes in wait-times implemented

by the platform. Specifically, the platform reduced wait-times for a set of series in varying degrees in a

staggered manner within our observation period. For example, users that had to wait 24 hours would now

be able to access a free episode every hour after the reduction. While the overt reason for the policy change

was to increase overall reader engagement, the series chosen for change, the revised wait-times and the timing

of the changes were not based on any systematically identified criteria. Importantly, the platform made no

prior announcements about the changes; hence the changes can be treated as unanticipated from the readers’

perspective. Similar instances can be found on many platforms where they unexpectedly implemented

changes to the WFF policy such as raising the price of purchased episodes, extending the wait-time for free

episodes, or making the waited episode accessible only for a limited duration (Webtoon 2022; Tapas 2022).
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Model-Free Evidence

We identified 191 series that had wait-times reduced in the dataset, which we call treated series. The rest

of the 1,749 series did not have any changes to wait-times, which we call non-treated series. Figure 4 shows

the distribution of the WFF series before and after treatment. As the wait-times were reduced, we see an

increase in the proportion of series with 1-hour wait-times post-treatment and a corresponding decrease in

the proportion of series with longer wait-times. A detailed breakdown of wait-times pre- and post-treatment

is presented in Table 5: the diagonal and off-diagonal represent the number of non-treated and treated series,

respectively. Figure 5 provides additional information about the policy change, including the distribution of

treated series by adoption timing (left panel) and magnitude of reduction in hours (right panel).

Figure 4: Distribution of series by required wait-time before and after treatment

pre/post 1 2 3 4 5 6 7 8 10 12 24 48 72 All

1 1304 - - - - - - - - - - - - 1304
2 - 40 - - - - - - - - - - - 40
3 12 - 20 - - - - - - - - - - 32
4 6 - - 38 - - - - - - - - - 44
5 1 - - - 4 - - - - - - - - 5
6 6 - - - - 7 - - - - - - - 13
7 1 - - - - - 1 - - - - - - 2
8 1 - - - - - - 6 - - - - - 7
10 1 - - - - - - - 1 - - - - 2
12 45 - 3 1 - - - - - 139 - - - 188
24 62 - 21 - - - - 2 - 8 165 - - 258
48 16 - - - - - - - - 1 3 23 - 43
72 1 - - - - - - - - - - - 1 2
All 1456 40 44 39 4 7 1 8 1 148 168 23 1 1940

Table 5: Number of series by wait-time (in hours) for pre- and post- change

We provide model-free evidence illustrating the impact of wait-time reduction on consumption patterns

of existing and new consumers to the series. The left panel of Figure 6 compares the number of episodes

purchased by an existing consumer of the series before and after the reduction for ten randomly selected

treated series. The plots indicate a noticeable increase in paid consumption under reduced wait-times.
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Figure 5: Distribution of treated series by treatment timing and reduction magnitude

The middle panel shows the excess wait-time (i.e., time (hrs) the existing consumers waited to access the

free episode in excess of what is required) for the same set of series. The downward sloping lines suggest

that consumers have lower excess wait time; in other words, they consume at a faster pace. The right panel

displays the number of unique consumers for the same set of series. The positive slopes indicate an expanding

consumer base under shorter wait-times, potentially generating incremental revenues for the platform. For

all three measures, a paired t-test across the entire set of treated series demonstrates that the values before

and after the reduction are significantly different (p < 0.001).

Figure 6: Comparison of episodes purchased (left), excess wait-time (middle) and the number of unique
consumers (right) for ten randomly selected treated series before and after the reduction

We next visualize how retention across episodes in a given treated series changes upon the wait-time

reduction. Figure 7 illustrates the average proportion of consumers that consume the first episode either

before or after the reduction that proceed to consume subsequent episodes of the treated series. The plots

overall indicate high churn especially in the early episodes, and less than 40% of the readers remain by the
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50th episode. Importantly, we see a noticeable increase in retention under reduced wait-times.4

Figure 7: Average retention across episodes

Together, Figures 6 and 7 lend empirical support to our conceptual arguments about serialized content:

as the consumer waits less for free access, she receives a higher complementarity value, and is more likely to

decide to consume the episode rather than churn, which in turn allows her to benefit from complementarity

with the next episode. Such an increase in retention may result in increased purchases despite the higher

incentives to wait for free. We next proceed to construct a robust causal model that considers the impact of

wait-time reduction on consumption while controlling for a host of observable and unobservable features.

Empirical Challenges

To identify the effect of shortening the wait-time on individual consumption and aggregate demand, we

focus our analysis on a 30-day window around the reduction. The assumption is that any changes within

this brief time period can be attributed only to the wait-time reduction, controlling for a comprehensive set

of features. By comparing the treated series to an appropriately constructed set of control series with no

wait-time changes, we can estimate the effect using a difference-in-difference (DiD) framework.

As mentioned earlier, our empirical context poses two main challenges for such a DiD analysis. The

first concerns selection into treatment. Although the platform indicated that they did not use specific

selection criteria for wait time reduction, the treated and non-treated series could still be systematically

different, potentially leading to biased results if we did a naive comparison of treated and non-treated series.

Importantly, we cannot even be certain of the direction of bias. For example, if the treated series had

previously been more widely read, then the estimated treatment effect will be downward biased, as the
4Note that there are two potential explanations for such increase: each consumer may be progressing further in the episode

(increase in intensive margins), or the population of readers starting the series may be different before and after the reduction.
We later isolate the impact on the intensive margins by focusing the analysis on the existing consumers of the series.
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wait-time reduction has no effect on users that have already read the series. If the platform selects longer

series for reducing wait times, then the estimate would be upward biased.

The second challenge is that we have unbalanced panel data with variation in treatment timing. Since se-

ries are published on or removed from the platform at different times, the observed time window varies across

series (only 6% of the series are removed during the observation period). The missing observations can lead

to differences in pre-treatment trends, making the parallel trends assumption difficult to assess and justify.

Moreover, recent econometrics literature has shown that variation in treatment timing can lead to biased av-

erage treatment effect (ATE) estimates in a two-way fixed effects (TWFE) model, especially in the presence

of heterogeneous treatment effects (Borusyak and Jaravel, 2018; de Chaisemartin and D’Haultfœuille, 2020;

Goodman-Bacon, 2021; Sun and Abraham, 2021). Specifically, the “forbidden comparison” of later treated

units to already treated units may assign negative weights to certain sample treatment effects, making the

estimated ATE markedly different from the rest of the sample treatment effects.

We address these challenges by using panel-matching approach (Imai et al., 2021) and a stacked DiD

model (Cengiz et al., 2019; Deshpande and Li, 2019; Baker et al., 2022; Deng et al., 2022). We first match each

treated series to a matched control set that consists of non-treated series that are fully observed around the

treatment timing and have similar propensity scores, or the probability of receiving treatment conditional

on pre-treatment covariate histories. Hence, treatment assignment is independent of potential outcomes

conditional on observed covariates, thereby approximating a randomized experimental design.

We then estimate the treatment effect using the stacked DiD method, which focuses on a fixed time

window around the treatment event for each treated series, effectively creating a series of “mini” DiD analyses

centered on the point of treatment adoption. This approach stacks these fixed time windows to form a

consolidated dataset, within which the treatment effect is estimated using a DiD model that incorporates

group specific fixed effects. By doing so, the stacked DiD model ensures that the estimation of treatment

effects is grounded in a comparison of treated and control units within narrowly defined temporal contexts,

thereby restoring the validity of the parallel trends assumption and reducing the risk of biased estimates

arising from heterogeneous treatment effects over time. This refinement allows for a more precise estimation

of the treatment effect, accounting for the nuanced dynamics of staggered treatment adoption. We provide

additional details on how we address the empirical challenges in the following section.

5.1 Constructing a Matched Control Set via Panel Matching

In order to address the potential systematic differences between the treated and the non-treated series, we

create a control group for each treated series by matching it with non-treated series that have similar proba-
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bility of being treated. By making treatment independent of observed potential confounders (i.e., conditional

independence assumption: Y (0), Y (1)) ⊥⊥ T |X), we can draw causal conclusions about the impact of reduced

wait-time by comparing the two groups. However, most existing applications with matching assume a cross

sectional dataset using static features measured at a point in time (Hansen, 2004; Abadie and Imbens, 2011;

Diamond and Sekhon, 2013). When applications use panel data, they compute the average of time-varying

covariates over a static time-frame (Datta et al., 2018; Narang and Shankar, 2019; Deng et al., 2022) to fit

the cross-sectional matching framework. However, this can miss out on important time-varying factors such

as demand trends leading up to treatment that affect selection into treatment.

In our setting, some of the potential demand-related confounders (e.g., number of episodes waited and

purchased) are time-varying, and the variation in treatment timing makes it difficult to define a single pre-

treatment period for the non-treated series. Moreover, matching on the average of time-varying covariates

might match series whose covariates are similar on average, but exhibit very different temporal trajectories.

For example, a series that is gaining traction among readers and one that is becoming increasingly unpopular

prior to treatment will clearly experience different effects from reduction in wait-time. We therefore adapt

the propensity score matching procedure for time-series cross-section data (panel-matching) developed in

Imai et al. (2021) to address the issue of time varying factors.

Furthermore, since we have an unbalanced panel data with staggered treatment adoption, we must

match each treated series to non-treated series that are observed in the same time window. As an illustrative

example, Figure 8 is a treatment variation heatmap from a random sample of series. Each row represents

a series, and each column represents a week from our dataset. The red (blue) areas represent treated (non-

treated) series-week observations, and white areas indicate no observation (i.e., weeks when the series was

not on the platform). We want to match each treated series to non-treated series that are fully observed

(blue areas) around the treatment timing and are comparable in covariate values leading up to treatment.

Figure 8: Treatment Variation Plot
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Constructing the Matched Control Set We now describe the matching procedure in detail. Let us

denote a treated series s that receives treatment for the first time in period t as observation (s, t). For

each treated observation (s, t), we construct the matched set of never-treated units that are fully observed

from time t − L to t − 1.5 Figure 9 illustrates an example of how matched sets are created when L = 2,

indicated by the color of the boxes around the observations. In this example, treated series s = 0 is matched

to non-treated series s ∈ {3, 4} over weeks t ∈ {0, 1} (blue box). Note that these non-treated series are fully

observed in the two weeks prior to the treatment timing of series s = 0. Series s ∈ {1, 2, 5} are not included

in the matched set because they are either eventually treated or are not fully observed. Similarly, series

s = 1 is matched to series s ∈ {4, 5} (red box), and series s = 2 is matched to series s ∈ {3, 4, 5} (green

box). In our case, we set L = 4, which assumes that adjusting for covariate trends up to previous four weeks

removes most of the possible confounding. Formally, the matched set for observation (s, t) is defined as

Mst = {s′ : s′ ̸= s, Ds′t′ = 0 ∀ t′ = t, t− 1, . . . , t− L} (5)

where Dst is an indicator equal to 1 if series s is treated at time t and 0 if not.

Figure 9: Illustrative example of constructing the matched control set. The color of the boxes indicate the
treated and matched control units included in the same set. For example, treated series s = 0 is matched to
non-treated series s ∈ {3, 4} over weeks t ∈ {0, 1} (blue box).

Refining the Matched Sets The previous matched sets only account for treatment and observation

history. Next, we refine the matched sets based on propensity scores, the conditional probability of treatment

assignment given observed pre-treatment covariates (Rosenbaum and Rubin, 1983). The propensity score is

computed using a logistic regression based on a set of observed covariate histories prior to treatment that

can reasonably discriminate the treated and non-treated series:

est({Vs,t−l}Ll=1) = Pr(Dst = 1|Vs,t−1, ..., Vs,t−L) =
1

1 + exp(−
∑L

l=1 β
T
l Vs,t−l)

(6)

5Imai et al. (2021) allows the matched set to include not-yet treated units, but we only allow for never-treated units for a
more robust comparison.
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where Vs,t is a matrix of observed static and time-varying covariates for series s in week t. The covariates

used in the logistic regression include weekly count of waited/purchased episodes, series length, weeks since

the series was first published and the required wait-time. The use of endogenous pre-treatment variables (i.e.,

waited and purchased episodes) to compute propensity score is consistent with the existing research that

utilize covariates such as lagged outcomes, consumer spending and income (Heckman et al., 1998; Dehejia

and Wahba, 2002). These covariates serve as critical proxies for latent variables that might influence both

the selection into treatment and the post-treatment outcomes of interest. By incorporating these variables,

we are able to indirectly adjust for unobservable confounders and satisfy the parallel trends assumption.

Given the fitted model, we compute the estimated propensity score êst for all treated series and their

matched sets. Among the series in the matched set whose propensity score distance to the treated unit is less

than a defined caliper (C = 0.1), we select up to N series (or all units if fewer than N satisfy the criterion)

with replacement. Because the treatment timing varies across the treated series, potential concerns about

over-reliance on specific control units from matching with replacement are mitigated. Formally, the refined

matched set for the treated observation (s, t) is given by

M∗
st = {s′ : s′ ∈ Mst, |êst − ês′t| < C, |êst − ês′t| ≤ (|êst − ês′′t|)(N)} (7)

where (|êst − ês′′t|)(N) is the N th order statistic of the propensity score distance to the treated unit among

the units in the original matched set.

Covariate Balance Diagnostics The number of matches N is chosen such that the best covariate balance

between the treated series and their matched counterpart is achieved. Figure 10 compares the covariate

balance across N ∈ {1, . . . 10} (x-axis) based on p-values of the t-test (left y-axis) and Kullback–Leibler

divergence (right y-axis). The blue line indicates the number of covariates for which the p-value is greater

than 0.01. The plot shows good balance for N ≤ 7, beyond which the matched series become increasingly

different from the treated series in terms of covariate means. The green dotted line indicates KL divergence of

the propensity scores. KLD closer to zero indicate greater similarity between two distributions; the balance

across the two groups are stable across N .

Matching a treated unit to a single or multiple control units are both widely used in practice, each

approach with its own precision-bias tradeoff. One-to-one matching typically yields less bias because each

treated unit is matched with its closest counterpart, but it results less precision from fewer matches. On

the other hand, 1:N matching can enhance precision by utilizing more data (i.e., more comparisons), but

may introduce bias if the matched units are not as similar to the treated unit, or if certain controls are
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Figure 10: Assessment of match quality by the number of matches

overutilized. To balance obtaining a sufficiently large sample against the risk of overfitting, we proceed with

N = 5, beyond which some treated series start to lack additional eligible matches within the caliper. we

mitigate potential bias concerns by setting the difference in propensity scores of matched units to be less

than a caliper of C = 0.1. Additionally, we conduct robustness checks to ensure that the results remain

consistent for N ∈ {1, . . . 10}.

Table 6 evaluates the balance of the covariates and propensity score distribution before and after matching

at N = 5. The results show that the treated series and their matched control series are not significantly

different in key variables based on p-values of the t-test with the exception of wait-times. We note that

while it is challenging to achieve perfect balance in wait-times given the concentration of series with 1-hour

wait-times, the matching process markedly reduces the gap compared to before matching. Figure 11 is a

density plot of propensity scores before and after matching. Before matching, we see a greater density of

control units with low probability of treatment as expected. After matching, treated and control groups are

indistinguishable in terms of their treatment propensities, indicating a strong match.

Treated Control (Before Matching) Control (After Matching)

Mean Mean p-value Mean p-value

Propensity Score 0.697 0.307 0.000 0.696 0.918
log(T1 waited + 1) 5.304 4.989 0.231 5.075 0.123
log(T2 waited + 1) 5.263 5.003 0.577 5.043 0.150
log(T3 waited + 1) 5.252 5.000 0.605 5.038 0.162
log(T4 waited + 1) 5.217 4.987 0.702 4.959 0.093
log(T1 purchased + 1) 4.595 4.006 0.000 4.499 0.524
log(T2 purchased + 1) 4.654 4.020 0.000 4.604 0.728
log(T3 purchased + 1) 4.508 4.015 0.000 4.440 0.666
log(T4 purchased + 1) 4.456 4.020 0.000 4.386 0.658
log(No. Episodes) 4.038 4.035 0.217 4.004 0.576
log(Weeks since published) 4.253 3.785 0.000 4.148 0.122
Wait-time (Standardized) 0.954 -0.012 0.000 1.547 0.000

Table 6: Covariate balance across treated and matched control series before and after matching
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Figure 11: Propensity score distribution before and after matching

5.2 Econometric Model

We now turn to the econometric model. To control for unobservable time-trends, we estimate the treatment

effect in a DiD framework controlling for a set of fixed effects and covariates. To obtain an unbiased measure

of ATE, we must address the issue of variation in treatment timing. When treatment effects vary across both

time and units, the TWFE estimand of ATE may correspond to a non-convex weighted average of individual

treatment effects. Hence, we utilize a stacked difference-in-difference model, which has been suggested and

widely used in the marketing and economics literature as a way to analyze data from a staggered treatment

adoption design (Cengiz et al., 2019; Deshpande and Li, 2019; Baker et al., 2022; Deng et al., 2022).

We start by constructing event-specific datasets of equal length for each of the 191 treated series. The

dataset includes the outcome and control variables of the treated series and its five matched control series,

which we denote as a series group (or cohort) consistent with the notation from Deng et al. (2022). Note

that although a non-treated series may appear in multiple series groups, the corresponding data will vary

depending on the reduction timing of respective series groups. We then stack these datasets together and

estimate a TWFE DiD regression with group specific series and period fixed effects, which controls for self-

selection on unobserved time-invariant factors. Gardner (2022) shows that this approach estimates a convex

weighted average of the individual treatment effects under parallel trends and no anticipation.

The stacked DiD model takes the following form:

Ysgp = βDD(afterp × treateds) +Xsgpγ + δsg + νgp + ϵsgp (8)

where s denotes series, g denotes series group, p denotes period, and Ysgp denotes the main dependent

variable measured for series s of series group g in period p. treateds is a binary treatment indicator for series

s, and afterp is a post-treatment dummy for period p. The main coefficient of interest is βDD, the average
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treatment effect of wait-time reduction. Xsgp is a matrix of observable control covariates; δsg is a fixed

effect specific to series s in series group g that captures time-invariant unobservable characteristics (referred

to as Group-Series FE ); νgp is a fixed effect specific to group g in period p, which captures unobservable

time trends (referred to as Group-Period FE ). By including group specific fixed effects, the model essentially

estimates the DiD from each series group and then applies variance weighting to aggregate the treatment

effects (Baker et al., 2022). Finally, ϵsgp is the error term, which are clustered at the series level.

6 Empirical Analysis and Results

The empirical analysis proceeds in four steps. First, we examine the effect of wait-time reduction on the

intensive margin, or the consumption depth of the existing consumers of the series. This enables us to test

for the existence of positive across-episode spillover and empirically measure the impact net of the negative

cannibalization effect. Second, we examine the change in the consumption pace of the existing consumers

in response to the reduction. The results would inform us about the shape of the complementarity decay.

Third, we examine the effect on the extensive margin, or the decision to start a series by measuring the inflow

of consumers who consume the series for the first time. Finally, we measure the overall effect of reduction

on aggregate consumption and revenues, complemented with a battery of robustness checks.

6.1 Intensive Margin: Depth of Series Consumption

Conditional on starting a series, how far does a consumer progress and how many episodes does she purchase

along the way? For serialized media, the complementarity from having consumed the previous episode is

likely to represent a significant portion of her valuation for the episode. Hence, if a consumer decides not

to consume an episode, the platform loses out on the sales of not only that episode, but also all potential

sales on subsequent episodes. Our conceptual framework illustrates how reducing wait-times may serve as a

solution to increase purchases from the existing consumers, despite the risk of cannibalization.

We begin by sampling consumers that consume episodes both within 15 days before and after treatment

for each treated and control series. We measure the impact of wait-time reduction on the total number of

episodes consumed (i.e., waited and purchased) and separately for episodes purchased by running the stacked

DiD regression from Equation 8 with the two-period consumer panel data. The outcome variables are log-

transformed to address the skewed distribution of the data. The model controls for observable characteristics

that may affect consumption, including series length, days since first and last episode publication and the

presence of promotions. In addition to the group-series and group-period fixed effects, we also include

individual fixed effects based on pre-treatment spending behavior. Specifically, we categorize the consumers
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into two types based on whether they had ever purchased Coins on the platform prior to the earliest treatment

date. The stacked dataset consists of 13,405 spenders (44%) and 16,742 non-spenders (56%).

Estimation results are presented in column (1) of Table 7. The negative and significant coefficient on

non-spender suggests that consumers inclined to spend money on the platform consume more episodes. The

treatment effect is the coefficient of after × treated. We find that the reduction of wait-times lead to a

significant increase in episodes consumed, meaning consumers on average progress further in the series. The

direction of the result is expected as shorter wait-times encourage consumers to consume episodes who might

have otherwise chosen not to. To assess the magnitude of the treatment effect, denote the consumption count

before and after the reduction as N0 and N1, respectively. Using the estimated coefficient β̂, we can compute

N1 = eβ̂(N0+1) and the percentage change in the dependent variable as (N1−N0)/N0. The estimate 0.289

in column (1) suggests that if the episodes consumed per consumer for a series before the reduction is at the

mean of 9.1, it would increase to 12.5, a 37% increase.

Next, we estimate the impact of wait-time reduction on the total number of episodes purchased by a

consumer for a given series. Increased consumption would only be detrimental to revenues if it resulted in

fewer purchases. It is important to note that when across-episode complementarities are absent, purchases

should always decrease, since the reduced wait-times would only yield a cannibalization effect. The results

are presented in column (3) of Table 7, and we detail a few observations here. First, the coefficient on

non-spender is again negative and significant, meaning consumers who are inclined to spend money on the

platform purchase more episodes.6 Second and more importantly, the estimated coefficient of after × treated

is positive and significant at 0.073, indicating a 12% increase in paid consumption per consumer. This result

shows that allowing quicker free consumption leads to greater depth in consumption and purchases, thus

monetizing the same consumer to a greater extent.

In columns (2) and (4), we explore heterogeneity in treatment effect by allowing the effect to vary based

on pre-treatment spending behavior. As seen in Figure 3, there is a segment of consumers unwilling to

spend any money on the platform regardless of the wait-time, and hence, we would not expect to find a

strategic shift in their purchase behavior from the wait-time reduction. Moreover, the platform is primarily

concerned with the impact on spenders, because their baseline purchases are significantly higher than that

of the non-spenders as denoted by the negative coefficient on non-spender, and any change in purchases of

the non-spenders would have a minimal affect on revenues. The coefficient on after × treated represent the

impact of wait-time reduction on spenders, and the coefficient on after × treated × non-spender separates

out the incremental effect on the non-spenders. While we find no heterogeneity in the effect on total
6Note that non-spenders have non-zero purchases because there are alternative ways of obtaining Coins other than spending

real money, such as referrals, watching ads or giveaway events hosted by the platform.
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consumption, the effect on episodes purchased is magnified to 0.107, representing a 17% increase relative

to the pre-treatment levels. Meanwhile, the effect on non-spenders is positive but no longer significant,

meaning their purchase behavior does not significantly change, consistent with our expectations. In other

words, while both segments of consumers consume more episodes, it is driven by increased free consumption

for non-spenders, whereas those inclined to spend money on the platform also purchase more.

log(Consumed+1) log(Purchased+1)

(1) (2) (3) (4)

non-spender -0.028*** -0.027*** -0.179*** -0.174***
(0.010) (0.010) (0.023) (0.025)

after × treated 0.289*** 0.295*** 0.073** 0.107***
(0.031) (0.035) (0.029) (0.035)

after × treated × non-spender -0.014 -0.071**
(0.023) (0.032)

log(no. episodes) -0.329 -0.331 -0.882*** -0.890***
(0.341) (0.341) (0.336) (0.336)

log(days since first pub.) -0.982*** -0.982*** 0.302** 0.302**
(0.173) (0.173) (0.126) (0.126)

log(days since last pub.) -0.074*** -0.074*** -0.006 -0.007
(0.023) (0.023) (0.012) (0.012)

1(promotion) -0.044 -0.044 0.074** 0.073**
(0.038) (0.039) (0.034) (0.034)

Group-Series FE Y Y Y Y
Group-Period FE Y Y Y Y
N Obs 405634 405634 405634 405634
N Series Groups 191 191 191 191
R-squared Adj. 0.004 0.004 0.009 0.010
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 7: Treatment effect on consumption and purchases per series per consumer

To assess robustness, in Online Appendix A, we replicate the analysis with a 60-day window around the

reduction. The results are qualitatively unchanged. Further, we estimate the model using the magnitude of

wait-time reduction instead of a treatment indicator. That is, we replace treated with magnitude, computed

as the log difference in wait-times pre- and post-treatment. Under our conceptual framework, the increase

in complementarity value and hence the treatment effect, should be proportional to the magnitude of the

wait-time reduction. Indeed, the estimated coefficients on after × magnitude are positive and significant.

6.2 Pace of Series Consumption

The WFF policy is designed to encourage regular and frequent user engagement by making wait-times

contingent on the timing of the previous episode’s consumption. This ensures that consumers periodically

visit the series to access their free episode and reset the clock for the next one. Our conceptual framework

suggests that the impact of wait-time reduction on consumption pace depends on the trajectory of the
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complementarity value’s decay over time. Specifically, a linear decay would lead to no changes in consumption

pace beyond the mechanical shift from changing wait-times, whereas a decreasing (increasing) rate of decay

would accelerate (decelerate) consumption pace due to differences in the consumer’s marginal utility.

To empirically explore this dynamic, we investigate how wait-times affect excess wait-time. We define

excess wait-time to be the time interval between when an episode becomes free for a consumer and when

she actually consumes it. Low excess wait-time would indicate that the consumer consumed the episode

soon after it became free. As before, we take the set of existing consumers within 15 days before and after

treatment for each series and estimate the stacked DiD regression from Equation 8 with the two-period

consumer panel data. The dependent variable is excess wait-time in hours (log-transformed). The model

controls for observable characteristics that may affect consumption pace, including series length, relative

position of the episode (episode number divided by series length), days since first and last publication and

the presence of promotions. Also included are group-series and group-period fixed effects, as well as individual

fixed effects based on pre-treatment spending behavior.

Table 8 reports the estimates. The coefficient on after × treated in column (1) reports a significant

decrease in excess wait-time. If the excess wait-time before the reduction is at the mean (3.4 hours), it would

decrease to 2.7 hours, a 21% decrease. The heterogeneous treatment effects estimated in column (2) report

that the acceleration effect is even greater for non-spenders. This suggests that non-spenders may have a

higher rate of decay in WTP during earlier periods compared to the spenders, leading them to wait than

purchase. Hence, the marginal utility gain from accelerated consumption is greater. Our findings indicate

that the declining complementarity value exhibits a convex trajectory with respect to time, consistent with

the existing literature on forgetting. To confirm robustness, we use a wider window of 60 days around the

treatment date and the alternative model specification using magnitude of wait-time reduction. In both

cases, treatment effect estimates remain qualitatively unchanged, presented in Online Appendix A.

6.3 Extensive Margin: Start of Series Consumption

Next, we investigate the impact of wait-times on the consumer’s decision to consume a series for the first

time. The reduction in wait-time increases the expected utility of the episodes and in turn the aggregate

expected utility of the series. Hence, we expect an expansion in the extensive margin, with a larger stream

of new consumers starting the series who would serve as sources of potential revenue.

To measure the impact on new consumer inflow at the series level, we estimate Equation 8 with a two-

period series panel data during the 15 days before and after the reduction. The dependent variable is the

number of consumers who read an episode of a series for the first time (log-transformed). The control
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log(Excess Wait-time + 1)

(1) (2)

non-spender -0.029*** -0.019*
(0.010) (0.011)

after × treated -0.181*** -0.149***
(0.046) (0.046)

after × treated × non-spender -0.061***
(0.023)

episode position 0.582 0.583
(0.434) (0.434)

log(no. episodes) 2.762*** 2.761***
(1.043) (1.042)

log(days since first pub.) 1.474*** 1.473***
(0.433) (0.433)

log(days since last pub.) -0.210*** -0.209***
(0.057) (0.057)

1(promotion) -0.072 -0.073
(0.082) (0.082)

Group-Series FE Y Y
Group-Period FE Y Y
N Obs 3091134 3091134
N Series Groups 187 187
R-squared Adj. 0.018 0.018
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 8: Treatment effect on excess wait-time

variables include series length, days since first and last publication, and the presence of promotions. As the

analysis is on a series level, we only include group-series and group-period fixed effects.

Results in column (1) of Table 9 demonstrate that the wait-time reduction leads to a significant increase

in new consumers starting a series. At the pre-treatment mean of 96, the wait-time reduction increases the

number of new consumers to 123, a 28% increase. Columns (2) and (3) report regression results separately

for spenders and non-spenders. The treatment effects are positive and significant for both groups – at the

pre-treatment mean, the number of new spenders increase from 47 to 63 (34% increase), and the number of

new non-spenders increase from 49 to 60 (24% increase). The results are robust to a wider time window of

60 days around treatment and the alternative model specification using magnitude of wait-time reduction

(Online Appendix A).

6.4 Aggregate Consumption and Purchases

Findings thus far provide empirical validation of our conceptual framework. The existing consumers of the

series purchase more episodes despite the risk of cannibalization and consume at a faster pace, accelerating

potential purchases for subsequent episodes. Moreover, a greater stream of new consumers begin consuming

the series, also contributing to revenues. However, the central question from the perspective of the firm
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log(New Consumers + 1)

(1) (2) (3)
All Consumers Spenders Non-spenders

after × treated 0.245*** 0.285*** 0.210**
(0.082) (0.084) (0.092)

log(no. episodes) -0.473 -0.204 -0.767
(0.881) (0.914) (0.983)

log(days since first pub.) -0.097 -0.105 -0.098
(0.866) (0.823) (0.946)

log(days since last pub.) -0.161 -0.189 -0.112
(0.145) (0.161) (0.131)

1(promotion) 1.341*** 1.331*** 1.333***
(0.335) (0.385) (0.296)

Group-Series FE Y Y Y
Group-Period FE Y Y Y
N Obs 2292 2292 2292
N Series Groups 191 191 191
R-squared Adj. 0.122 0.127 0.092
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 9: Treatment effect on inflow of new consumers

remains: What is the net effect of the wait-time reduction on aggregate consumption and platform revenues?

To answer this, we analyze the change in aggregate consumption and purchases at the series level over the

15 days before and after the wait-time reduction. We estimate the stacked DiD regression from Equation 8

using a two-period series panel data, where the dependent variables are the total number of episodes consumed

and purchased for a given series (log-transformed). We control for a host of observable characteristics that

may affect aggregate demand, including series length, days since first and last publication, and the presence

of promotions. Again, we include group-series and group-period fixed effects.

The results of our main analysis presented in Table 10 demonstrate a significant positive effect of the wait-

time reduction on aggregate consumption and purchases. Column (1) shows the impact on total consumption.

The coefficient of after × treated suggests that if the episodes consumed before the reduction is at the mean

(2610), holding all else equal, it would increase to 5011, a 92% increase. Given our earlier findings, we also

expect to find an increase in aggregate purchases. The estimated treatment effect in Column (2) is indeed

positive and significant. It suggests that if the purchased episodes before the reduction is at the mean (868),

it would increase to 1033, a 19% increase.

The increase in aggregate purchases reflects both the increase in intensive and extensive margins. We

decompose the total impact into relative contributions from each dimension in a simplified calculation using

the estimated parameters. Since purchases before the reduction are from the existing consumers by definition,

assume this increases by 0.073 under reduced wait-times, the estimated coefficient of after × treated estimated

in Table 7. This suggests that aggregate purchases from the existing consumers would increase to 934,
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representing an 8% increase. The remaining 11% increase is driven by the purchases from the new consumers.

In relative terms, the intensive and extensive margins account for 40% and 60% of the increase in aggregate

purchases, respectively. This highlights the importance to platforms of encouraging consumer progress

through the series to ensure that they fully benefit from episode complementarities. Note that this effect is

specific to serialized products based on the inherent complementarities across episodes.

The results are robust to the wider time window of 60 days and the alternative model specification using

magnitude of reduction (Online Appendix A). Given the log-log specification, the estimated coefficient for

after × magnitude yields the demand elasticity with respect to wait-times. We find that a 1% reduction in

wait-times lead to 0.26% and 0.06% increase in aggregate consumption and purchases, respectively.

(1) (2)
log(Consumed+1) log(Purchased+1)

after × treated 0.652*** 0.174**
(0.051) (0.078)

log(no. episodes) 0.888* 0.784
(0.502) (0.753)

log(days since first pub.) -0.166 -0.649
(0.679) (0.653)

log(days since last pub.) -0.029 -0.060
(0.033) (0.042)

1(promotion) 0.388*** 0.281*
(0.132) (0.150)

Group-Series FE Y Y
Group-Period FE Y Y
N Obs 2292 2292
N Series Groups 191 191
R-squared Adj. 0.185 0.017
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 10: Treatment effect on aggregate consumption and purchases

6.5 Robustness Checks

6.5.1 Identifying Assumptions

Causal identification of the DiD estimate holds under the assumptions of parallel trends, no anticipation,

and the stable unit treatment value assumption (SUTVA). The parallel trends assumption requires that

the treatment and control groups would have followed identical trends without the intervention, and the no

anticipation assumption mandates that prior to treatment, the outcome variable was not influenced by the

impending treatment. If these conditions are met, time-varying unobservables will be absorbed by the trends

in the control group, producing unbiased estimates. In our empirical setting, since the platform reduced the

WFF period for specific series at various times without prior notification, there was no opportunity for users
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to strategically alter their consumption or purchasing behaviors.

To formally test the parallel trends assumption, we follow the approach commonly used in the literature

that exploits the pre-treatment panel data (Angrist and Krueger, 1999; Bronnenberg et al., 2020). We take

the 15-day pre-treatment period and run the analysis from Section 6.4 specifying the period as a single

day. As shown in Table 11, the deviation from the common trend for the treatment series is very small

in magnitude and not statistically significant. We fail to reject the null hypothesis that the trend of the

treated series is not significantly different from the control series, thus providing support of the parallel

trends assumption. The results are robust to the use of a longer pre-treatment window of 30 days.

(1) (2)
log(Consumed+1) log(Purchased+1)

period × treated 0.003 -0.007
(0.005) (0.006)

Other control variables Y Y
Fixed Effects Y Y
N Obs 17190 17190
N Series Groups 191 191
R-squared Adj. 0.019 0.009
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 11: Parallel trends

We also conduct a sensitivity test following Cinelli and Hazlett (2020) and Gibson and Zimmerman (2021)

to assess how much deviation from parallel trends would be required to undermine our conclusions, which rely

on the assumption of parallel trends. Cinelli and Hazlett (2020) reformulate the classical omitted variables

framework to develop a sensitivity analysis that provides, relative to an observed covariate benchmark, how

strongly unobserved confounders would need to be associated with both the outcome and treatment variables

(in terms of partial R2) to explain away the estimated treatment effect. The key advantage of using R2 is

that it is scale-free and does not require distributional assumptions on unobserved confounders as well as

on the treatment assignment mechanism. For the benchmark observed covariate, we do not rely on a single

variable, but rather include all observed covariates from Table 10 to be more conservative. The results

presented in Figure 12 show that even if the unobserved confounders are twice as strong as the collective

explanatory power of the benchmark covariates for treatment and outcome, the effects remain consistent.

SUTVA states that the potential outcomes of each unit are not influenced by the treatment assignment

or outcomes of other units. In our context, there may be potential substitution between series where readers

move away from non-treated series to spend more time reading series with reduced wait-times. There also

may be complementary effects where readers spend more time consuming episodes of the treated series and

in doing so also increase consumption of the untreated series. The platform hosts over 10,000 series on the
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Figure 12: Sensitivity contour plots of treatment effect on aggregate consumption (left) and purchases (right).
Black triangle indicates the baseline treatment effect. Red diamonds indicate the treatment effect assuming
unobserved confounders 1x and 2x as strong as the collective explanatory power of the benchmark covariates.

platform, and the treatment was implemented at various times across only 191 series. Hence, it is unlikely

that a reduction in wait-time had meaningful spillover effects on other series on the platform.

Nonetheless, we adopt two approaches to mitigate the concerns around the potential violation of SUTVA.

Specifically, we show that the results remain robust using (1) a subset of control series with minimal overlap

in reader base between the treated series prior to treatment and (2) an alternative model specification that

explicitly controls for the overlap. The assumption is that if there are any substitution or complementary

spillover effects, they should be greater for the non-treated series who share more readers in common with

the treated series. We define overlapsg as the proportion of readers of series s who have also read an episode

of the treated series in group g during the 15 days prior to treatment (overlapsg = 0 for treated series).

First, we conduct the analysis from Section 6.4 on a subsample dropping all control series with an

overlap greater than 10%. Second, we estimate the treatment effects by explicitly controlling for potential

spillovers between series, motivated by the approach from Clarke (2017) and Jo et al. (2020). By including

an interaction term after × overlap, we run the following regression which ensures that the treatment effect

is isolated from any spillover effects:

Ysgp = βDD(afterp × treateds) + ρ(afterp × overlapsg) +Xsgpγ + δsg + νgp + ϵsgp (9)

where ρ is the spillover effect from the treated to the untreated series. The treatment effect estimates

from both approaches, presented in Table 12 remain qualitatively unchanged. In columns (3) and (4), the

estimated coefficient on after × overlap is not significant, providing empirical support for SUTVA.
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Subsample Analysis Controlling for Potential Spillovers

(1) (2) (3) (4)
log(Consumed+ 1) log(Purchased + 1) log(Consumed+ 1) log(Purchased + 1)

after × treated 0.645*** 0.165** 0.638*** 0.159*
(0.051) (0.078) (0.053) (0.083)

after × overlap -0.363 -0.368
(0.308) (0.690)

Other control variables Y Y Y Y
Fixed Effects Y Y Y Y
N Obs 2078 2078 2292 2292
N Series Groups 189 189 191 191
R-squared Adj. 0.185 0.016 0.185 0.017
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 12: Check for potential violation of SUTVA using reader base overlap

6.5.2 Falsification Tests

We test the possibility that the estimated treatment effects are coincidentally picking up spurious correlations

through falsification tests using pseudo treatment indicators and dates. For pseudo treatment indicators,

we randomly assign a control series as treated for each series group and re-estimate the model without the

actual treated series. Since the pseudo indicator does not reflect the true information of wait-time reduction,

the estimated treatment effects should not be significant (Ghose and Todri-Adamopoulos, 2016; Jo et al.,

2020). For pseudo treatment dates, we adjust the treatment date to be 15 days prior to the actual date of

reduction. Since the modified time frame does not include the actual treatment date, the estimates again

should not be significant. Table 13 shows that the estimated treatment effects are indeed not significant,

indicating that our findings are not a statistical artifact based on the model specification or similar factors.

Pseudo Treatment Indicator Pseudo Treatment Date

(1) (2) (3) (4)
log(Consumed+ 1) log(Purchased + 1) log(Consumed+ 1) log(Purchased + 1)

after × treated -0.022 -0.023 0.004 0.020
(0.037) (0.055) (0.068) (0.098)

Other control variables Y Y Y Y
Fixed Effects Y Y Y Y
N Obs 1910 1910 2278 2278
N Series Groups 191 191 191 191
R-squared Adj. 0.035 0.013 0.050 0.028
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 13: Falsification tests using pseudo treatment indicators and dates
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6.5.3 Alternative Explanations and Model Specifications

Next, we explore whether the estimated treatment effect could arise from the platform strategically timing the

wait-time reduction and promotions. If the platform ran promotions in anticipation of or concurrently with

the reduction, then the estimated treatment effect may be confounded by the promotional effect. Although

we explicitly control for the presence of promotions throughout our analyses, we re-estimate the model by

removing any series (treated or non-treated) that had promotions during the 30-day time frame.

We also check for robustness using a subsample of the treated series with the same post-reduction wait-

time. As shown in Table 5, there is variation in wait-times before and after the reduction among the treated

series. Our main analysis investigates the effect of the reduction irrespective of the starting and ending

points, as our goal is to explore the consumption dynamics that arise due to the properties of serialized

media rather than pinpoint an optimal wait-time. Nevertheless, there may be heterogeneous effects based

on wait-time length that may bias our results. We demonstrate robustness to the model specification using

reduction magnitude, but to further alleviate the concern, we select a subsample of 152 treated series for

which wait-times were reduced to one hour. Results shown in Table 14 remain robust.

Excluding Promotions 1-hr Wait-time Post-treatment

(1) (2) (3) (4)
log(Consumed+ 1) log(Purchased + 1) log(Consumed+ 1) log(Purchased + 1)

after × treated 0.629*** 0.182** 0.731*** 0.202**
(0.052) (0.083) (0.060) (0.091)

Other control variables Y Y Y Y
Fixed Effects Y Y Y Y
N Obs 1970 1970 1824 1824
N Series Groups 176 176 152 152
R-squared Adj. 0.171 0.011 0.215 0.020
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 14: Subsample analysis using series with no promotional activities and 1-hour wait-time post-treatment

7 Conclusion

Digital content platforms today feature serialized media, a mode of publication that has become popular

due to its effectiveness in encouraging consistent and recurring consumption. They leverage time as a

monetization lever, leading to the adoption of “wait-for-free” (WFF). In this research, we delve into the

impact of wait-times on individual consumption decisions and monetization of serialized media. We begin

by highlighting the conceptual characteristics unique to a series, namely the directed complementarities

between episodes that diminish over the consumption interval, and investigate how changes in wait-times
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impact consumption on the intensive margin, extensive margins and pace of consumption.

Using data from a platform serving serialized books, we leverage an exogenous shift in policy where the

platform reduced the wait-times for a set of series. We estimate using a difference-in-difference framework

how the reduction impacted user consumption and purchases. We provide evidence that the positive across-

episode spillovers from complementarity dominate the negative cannibalization effect. In addition, we find

evidence of consumption acceleration and expansion of extensive margins. The net impact is a 92% increase

in aggregate consumption and 19% increase in purchases.

These insights can aid firms with their monetization strategies. The paper goes beyond the traditional

focus on the acquisition-cannibalization trade-off to demonstrate how firms may leverage the complementari-

ties across episodes to boost paid consumption. Our research also underscores the significance of recognizing

consumer heterogeneity. For example, our analysis of the intensive margin shows that a segment of con-

sumers inclined to spend money on the platform respond positively to lenient policies on free consumption,

whereas the segment of non-spenders do not alter their purchase behaviors. This suggests that the platforms

may implement targeted strategies for different consumer groups to encourage greater paid consumption.

We conclude with a discussion of limitations in our analysis. First, our research relies on non-experimental

variation in the data. Although various identification strategies support causality, a randomized field ex-

periment manipulating wait-times across consumers could further solidify our findings. Second, while we

demonstrate the causal effect of changing wait-times, we cannot comment on the optimal wait-time. Third,

given the significance of episode complementarities, employing recent advancements in text analysis to exam-

ine how episode content influences consumption decisions, such as the impact of cliffhangers, suspense levels,

and sentiment, may be a promising direction for future research. Fourth, our focus is on the short-term

effects of wait-time reduction, as long-term effects are more challenging to identify. Future studies should

investigate the long-term impacts of varying wait-times on platform-wide consumption and engagement.
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A Online Appendix

A.1 Robustness checks using 60-day window around treatment

We report estimation results using a wider window of 60 days around the wait-time reduction for intensive

margin (Table 15), consumption pace (Table 16), extensive margin (Table 17) and aggregate demand (Table

18). The results remain qualitatively unchanged.

log(Consumed+1) log(Purchased+1)

(1) (2) (3) (4)

after × treated 0.201*** 0.203*** 0.062** 0.091**
(0.037) (0.039) (0.029) (0.036)

after × treated × non-spender -0.005 -0.059
(0.021) (0.039)

Other control variables Y Y Y Y
Fixed Effects Y Y Y Y
N Obs 462572 462572 462572 462572
N Series Groups 191 191 191 191
R-squared Adj. 0.002 0.002 0.012 0.012
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 15: Treatment effect on consumption and purchases per series per consumer

log(Excess Wait-time + 1)

(1) (2)

after × treated -0.147*** -0.114***
(0.043) (0.043)

after × treated × non-spender -0.067**
(0.026)

Other control variables Y Y
Fixed Effects Y Y
N Obs 5221799 5221799
N Series Groups 189 189
R-squared Adj. 0.020 0.020
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 16: Treatment effect on excess wait-time

log(New Consumers + 1)

(1) (2) (3)
All Consumers Spenders Non-spenders

after × treated 0.286*** 0.278*** 0.300***
(0.078) (0.082) (0.082)

Other control variables Y Y Y
Fixed Effects Y Y Y
N Obs 2276 2276 2276
N Series Groups 191 191 191
R-squared Adj. 0.201 0.203 0.181
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 17: Treatment effect on inflow of new consumers
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(1) (2)
log(Consumed+1) log(Purchased+1)

after × treated 0.573*** 0.129*
(0.061) (0.078)

Other control variables Y Y
Fixed Effects Y Y
N Obs 2276 2276
N Series Groups 191 191
R-squared Adj. 0.153 0.039
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 18: Treatment effect on aggregate consumption and purchases

A.2 Robustness checks using magnitude of wait-time reduction

We report estimation results using the magnitude of wait-time reduction instead of a treatment indicator.

Under our conceptual framework, the increase in complementarity value and hence the treatment effect,

should be proportional to the magnitude of the wait-time reduction. We define magnitude as the log difference

in wait-times pre- and post-treatment and estimate the following model specification:

Ysgp = βDD(afterp ×magnitudes) +Xsgpγ + δsg + νgp + ϵsgp (10)

The results are presented below for intensive margin (Table 19), consumption pace (Table 20), extensive

margin (Table 21) and aggregate demand (Table 22). The results remain qualitatively unchanged.

log(Consumed+1) log(Purchased+1)

(1) (2) (3) (4)

after × magnitude -0.126*** -0.129*** -0.026*** -0.038***
(0.012) (0.014) (0.009) (0.011)

after × magnitude × non-spender 0.006 0.025**
(0.010) (0.012)

Other control variables Y Y Y Y
Fixed Effects Y Y Y Y
N Obs 405634 405634 405634 405634
N Series Groups 191 191 191 191
R-squared Adj. 0.004 0.004 0.009 0.010
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 19: Treatment effect on consumption and purchases per series per consumer
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log(Excess Wait-time + 1)

(1) (2)

after × magnitude 0.062*** 0.052***
(0.015) (0.015)

after × magnitude × non-spender 0.020**
(0.008)

Other control variables Y Y
Fixed Effects Y Y
N Obs 3091134 3091134
N Series Groups 187 187
R-squared Adj. 0.018 0.018
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 20: Treatment effect on excess wait-time

log(New Consumers + 1)

(1) (2) (3)
All Consumers Spenders Non-spenders

after × magnitude -0.095*** -0.112*** -0.084**
(0.032) (0.033) (0.036)

Other control variables Y Y Y
Fixed Effects Y Y Y
N Obs 2292 2292 2292
N Series Groups 191 191 191
R-squared Adj. 0.122 0.126 0.093
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 21: Treatment effect on inflow of new consumers

(1) (2)
log(Consumed+1) log(Purchased+1)

after × magnitude -0.260*** -0.059*
(0.019) (0.031)

Other control variables Y Y
Fixed Effects Y Y
N Obs 2292 2292
N Series Groups 191 191
R-squared Adj. 0.202 0.016
Note: Robust standard errors clustered at series level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 22: Treatment effect on aggregate consumption and purchases
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