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Abstract
This article develops a method to automatically discover and quantify human-interpretable visual characteristics directly from

product image data. The method is generative and can create new visual designs spanning the space of visual characteristics.

It builds on disentanglement methods in deep learning using variational autoencoders, which aim to discover underlying statisti-

cally independent and interpretable visual characteristics of an object. The impossibility theorem in the deep learning literature

indicates that supervision with ground truth characteristics would be required to obtain unique disentangled representations.

However, these are typically unknown in real-world applications, and are in fact exactly the characteristics that need to be dis-

covered. Extant machine learning methods are unsuitable since they require ground truth labels for each visual characteristic. In

contrast, this method postulates the use of readily available product characteristics (such as brand and price) as proxy supervi-

sory signals to enable disentanglement. This method discovers and quantifies human-interpretable and statistically independent

characteristics without any specific domain knowledge on the product category. It is applied to a dataset of watches to automat-

ically discover interpretable visual product characteristics, obtain consumer preferences over visual designs, and generate new

ideal point designs targeted to specific consumer segments.
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Visual product characteristics, including shape, size, and color,
are known to be a significant driver of consumer purchases
across a wide range of product categories, including automo-
biles, apparel, furniture, consumer technology products, and
even houses (Bloch 1995; Heitmann et al. 2020; Simonson
and Schmitt 1997). A recent study by Bloomberg evaluated
the economic impact of visual design elements of watches
based on the prices paid (Hoffman 2024). Manufacturers like
Rolex create different versions of watches that vary in their
visual design (e.g., color), while retaining the exact same
product specifications on all other characteristics. The study
found that, essentially, a minor change in the bezel color
doubled the price in the secondary market.

These findings speak to the need to include visual design in
quantitative marketing models for accurate forecasts of market
demand, as well as segmentation and targeting for new product
design. Demand has been traditionally modeled in marketing
and economics as being based on underlying product character-
istics (Lancaster 1966), but identifying and quantifying visual
design characteristics remains a significant challenge. In con-
trast, structured product characteristics are readily characterized

and quantified; for example, in the automobile market, charac-
teristics may include horsepower and fuel efficiency; in
housing, square footage and number of bedrooms; and in
apparel, size and material.1

We develop a method with the following aims related to
visual design: (1) identifying (discovering) and quantifying
human-interpretable visual characteristics from product
images, (2) obtaining consumer preferences across a range of
generated visual designs (visual conjoint), and (3) generating
novel “ideal point” visual designs targeted to specific consumer
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segments. Our method of obtaining interpretable visual charac-
teristics can then be used in quantifying consumer preferences,
demand responses, and firms’ strategic choices in the visual
domain. Discovery and quantification of visual characteristics
is a first step in enabling these analyses. Practitioners can also
use our method to generate visual designs for prototyping, visu-
ally differentiate their products from market offerings, and gen-
erate new visual designs targeted to consumer segments.

Articulating why a product looks appealing and what aspects
contribute to such appeal is challenging for consumers, practi-
tioners, and researchers alike (Berlyne 1971). Methods for mod-
eling the visual characteristics of products require significant
product knowledge, expertise, and judgment. The expert must
manually identify and define which visual characteristics ade-
quately represent a product’s visual form (Bloch 1995). Even
after defining visual characteristics in this manner, the question
remains of how to quantify these characteristics. To our knowl-
edge, there is no extant research in marketing that automatically
characterizes and quantifies different aspects of visual design in
a human-interpretable manner.2

Generative Design for Visual Conjoint
We demonstrate how to use these quantified visual character-
istics in an application of visual conjoint analysis. The gener-
ative aspect of our method is critically important in obtaining
consumer preferences across visual characteristics, since it
enables us to automatically generate images in which the
visual design varies separately along each of the discovered
characteristics. We obtain consumer preferences over these
discovered visual characteristics using a hierarchical
Bayesian (HB) model, accounting for consumer heterogeneity
over observed demographic and psychographic variables. We
then show how our method can be used to automatically gen-
erate novel and targeted product designs for consumer seg-
ments. Specifically, we identify two segments of consumers,
and obtain segment-level “ideal points” using their estimated
preferences over the disentangled visual characteristics. We
then use the generative capability of the method to generate
novel designs corresponding to each segment’s most preferred
watch design. We qualitatively show that these “ideal point”
visual designs are differentiated, and quantitatively show
that they draw choice share away from existing product
offerings.

Methodological Basis
We build on the disentanglement stream of literature in repre-
sentation learning, an area of deep learning, with our primary
goal of obtaining interpretable representations from image

data. According to Locatello et al. (2019), “the key idea
behind this [disentanglement learning] model is that the high-
dimensional data [e.g., raw images] can be explained by the
substantially lower dimensional and semantically meaningful
[to humans] latent variables.” (The brackets indicate our addi-
tions for clarity.)

Disentanglement learning is a form of representation learn-
ing (Bengio, Courville, and Vincent 2013), and commonly
builds on variational autoencoders (VAEs) (Kingma and
Welling 2014). VAEs consist of an encoder neural net and
decoder neural net, both of which are parameterized by
highly nonlinear deep neural networks. The encoder neural
net takes high-dimensional unstructured data (images) as
input and outputs a latent low-dimensional vector of distribu-
tions (embedding of visual characteristics). The VAE uses var-
iational inference, an approximate Bayesian approach, resulting
in each of the latent (visual) characteristics represented as distri-
butions rather than point estimates. In contrast to (typical) deter-
ministic neural networks such as autoencoders, this stochastic
approach helps model uncertainty over visual characteristics
via a smooth, continuous, compact, and flexible latent embed-
ding distribution. This modeling is important to obtain a consis-
tent (and interpretable) representation to estimate consumer
preferences, as well as smooth and controllable generation of
novel visual designs through sampling of different points in
the distribution. The decoder neural net takes as input the low-
dimensional vector and attempts to reconstruct the original data
as output. The idea underlying representation learning is that
the “true” dimension of images in the data belonging to a cate-
gory (e.g., a set of images of watches) is much lower than the
dimensionality of the raw images.3

Disentanglement aims to identify a multidimensional latent
representation in the image data, where each dimension maps
one-to-one with a human-interpretable characteristic (Bengio,
Courville, and Vincent 2013; Locatello et al. 2019). With a dis-
entangled representation, a change in one latent dimension
would result in a change to only one human-interpretable
visual characteristic, whereas with an entangled representation,
a change in the level across one discovered latent dimension
would impact multiple human-interpretable characteristics.
Figure 1 illustrates the difference between disentangled and
entangled representations.

Disentanglement learning using only images with
unsupervised learning has significant limitations, due to a
well-known result called the impossibility theorem (Locatello
et al. 2019). Recent research recommends using supervised
learning with “ground truth” visual characteristics for each
data point (i.e., product image) as a supervisory signal

2 Our focus here is not on discovering outlier characteristics that are particularly
surprising to humans, especially experts. Rather, it is to identify and quantify
aspects directly from visual product images and show their use in generative
design, all in an automated manner.

3 Images are high-dimensional data since even a modest-sized image of 1,000×
1,000 pixels exists in a 1,000,000-dimensional space. Random images typically
cannot be reduced in dimension, but images that belong to a category can typ-
ically be represented in much lower dimension. Suppose we know that each of
the images represents a black circle on a white background; each image can then
be completely represented by the location of the center (x, y) and radius r of the
circle, essentially making the data three-dimensional.
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(Locatello et al. 2020).4 However, in our case, and in many
practical marketing and business applications, these “ground
truth” visual characteristics are unknown and exactly what we
seek to learn. Our research thus aims to extend recent
machine learning developments in disentanglement methods.

Contribution
The goal of our method is to automatically identify and obtain
a disentangled representation of interpretable visual character-
istics to generate counterfactual visual designs targeted to con-
sumer preferences. Our method works even in the presence of
correlation between these visual characteristics in the original
data. Current machine learning approaches use ground truth
signals separately for each visual characteristic, which are
assumed to completely and accurately capture the true under-
lying data-generating process for images. However, the critical
challenge is that ground truth is not available in typical appli-
cations, and designers expend lots of effort and resources in
determining the visual characteristics for products. Our meth-
odology aims to overcome this issue by showing that super-
vised disentanglement, with structured product characteristics
as signals (labels), which are readily available in typical mar-
keting datasets, can both address known theoretical limitations
and improve disentanglement performance to obtain human-
interpretable visual characteristics. We evaluate different com-
binations of signals and find that using multiple signals can be
beneficial for disentanglement. We also caution that the choice
of supervisory signal(s) is important, with some choices

leading to worse disentanglement. Finally, we also compare
our method to other approaches for obtaining a low-
dimensional representation in the literature, including stan-
dard encoders and VAEs in Web Appendix A, and find that
none of the compared methods produce human-interpretable
characteristics.

Our approach has a number of practical advantages. First,
the method is designed to work with unstructured image data
that would be practically obtainable in real market settings. It
does not require labeled data on visual characteristics, and it
is designed to leverage typically available structured character-
istics. Second, the analyst does not define the (unknown) visual
characteristics in advance and does not even need to specify the
number of such characteristics that must be discovered. Third,
our method is flexible with regard to image quality, and it
works with low-resolution images (like 128× 128 pixels).
Finally, our approach is not computationally burdensome, and
can be applied in a scalable manner across different product
categories.

Application and Results
We apply our proposed method on two product categories
where visual design is known to be relevant. We use watches
as the primary product category and also test the method
using sneakers as a second, unrelated product category. The dis-
entanglement method on the watch dataset (both images and
structured product characteristics) automatically discovers and
quantifies six interpretable visual characteristics of the
watches. These discovered characteristics correspond to dial
size, dial color, strap color, rim (bezel) color, dial shape, and
knob (crown) size.5 We then evaluate disentanglement perfor-
mance and human interpretability of the automatically discov-
ered and quantified visual characteristics. These visual
characteristics are subsequently used for quantifying consumer
preferences and generating targeted “ideal point” product
designs.

Figure 1. Entangled and Disentangled Visual Characteristics.
Notes: Visual characteristics correspond to dimensions in latent space. Here, the entangled visual characteristic changes both the dial color and strap color as its

value is changed. Disentangled characteristics correspond to two independent characteristics for dial color and strap color, so a change in value corresponds to a

change in only one visual characteristic.

4 Specifically, the prediction problem is to predict the ground truth visual char-
acteristics using the discovered characteristics in the latent representation. For
real-world data, researchers first decide on a set of visual characteristics to
obtain annotations for, and then ask human coders to quantify the “ground
truth” labels corresponding to the chosen set of visual characteristics. For
example, in a dataset of celebrity faces, human annotations were created for a
wide variety of visual characteristics including eyeglasses, shape of face,
wavy hair, mustache, and so forth (Liu et al. 2015). Broadly, this manual
approach requires identifying the visual characteristics (by the researcher),
obtaining annotations from multiple human coders, and reconciling these
noisy measures to create “ground truth” labels.

5 The visual depiction and description of the parts of a watch are available at
https://bespokeunit.com/watches/watch-parts-guide/.
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Evaluation
We evaluate our disentanglement method relative to benchmark
alternatives in four different ways. First, we use a metric called
unsupervised disentanglement ranking (UDR) from the
machine learning literature (Duan et al. 2020). We compare
the UDR of supervised and unsupervised disentanglement,
and find that across product categories, having access to these
supervisory signals based on product characteristics improves
disentanglement. Second, we examine human interpretability
of the discovered visual characteristics by surveying users
from the United States using Prolific. We generate visual
designs of watches by varying one dimension of the latent rep-
resentation at a time, corresponding to one visual characteristic.
When respondents are asked to determine whether these
changes are human-interpretable and what the change repre-
sents, we find that on average, 86% of respondents agree on
the corresponding visual characteristic, indicating that disentan-
glement helps lead to human-interpretable visual characteris-
tics. Third, we examine whether the quantified level of the
visual characteristic is human-interpretable, and find that
human respondents and our disentanglement algorithm highly
agree (85%). Fourth, we obtain consumer preferences over
visual characteristics using visual conjoint analysis by sepa-
rately varying each visual characteristic. We then use these esti-
mated preferences to predict consumer choices between pairs of
watch designs on a holdout sample. We find that our method’s
representation with only six visual characteristics obtains higher
predictive accuracy than representations learned from more
complex machine learning models, such as pretrained deep
neural nets that have been trained on millions of images.
Fifth, we generate new “ideal point” product designs for two
consumer segments defined using estimated preferences. We
show these new products align with segment visual preferences
and steal choice share from existing products. Finally, we test
the generality of the approach by using the same model archi-
tecture in a separate and completely unrelated product category
of sneakers. We find that a supervised approach achieves signif-
icantly higher disentanglement performance (UDR) than the
unsupervised approach. However, a different combination of
supervisory signals proves to be better in the sneakers
application.

Literature Review
Visual design is instrumental in shaping consumer preferences,
perceptions of value, and experiences across a range of catego-
ries. As noted in Bloch, Brunel, and Arnold (2003, p. 551),
“vegetable peelers, wireless phones, car-washing buckets, and
lawn tractors are all being designed with attention to the aes-
thetic value of their appearance.” Brands follow a process of
incorporating visual design including identifying and selecting
visual elements and implementing them to impact consumer
experiences (Simonson and Schmitt 1997). Other research has
found a positive relationship between aesthetic appeal and
usability (Tractinsky, Katz, and Ikar 2000).

While important, it is currently challenging to characterize
and study visual design from a quantitative perspective. As
Orsborn, Cagan, and Boatwright (2009, p. 1) summarize, “pos-
sibly even more challenging, user feedback requires objective
measurement and quantification of aesthetics and aesthetic pref-
erence.” These authors use seven researcher-defined visual
design characteristics for automobiles and then quantify these
characteristics using distances between components in the auto-
mobile’s physical design specifications. Likewise, Landwehr,
Labroo, and Herrmann (2011) and Kang et al. (2019) both
morph the visual style of automobiles by identifying feature
points representing key design components, while Liu et al.
(2017) also use this approach to study the impact of product
appearance on demand. Recently, Dew, Ansari, and Toubia
(2022) and Burnap, Hauser, and Timoshenko (2023) use genera-
tive deep models for visual morphing over visual characteristics
of logos and automobiles, respectively; however, the approaches
used in both works still require definition and quantification over
interpretable visual characteristics for use by logo or automobile
designers. Broadly, current approaches require human experts
to both identify and quantify visual characteristics.

In conceptual contrast, there is a rich literature on methods
that aim at automatic, but not interpretable, summarization of
data, such as multidimensional scaling and principal component
analysis. These methods have been extensively used in market-
ing (DeSarbo, Ramaswamy, and Cohen 1995). We refer readers
to Web Appendix B for a detailed overview of connections with
existing marketing methods.

The machine learning subfield of representation learning has
extended these ideas by positing that the data-generating process
for real-world high-dimensional data arises from low-dimensional
factors. According to Bengio, Courville, and Vincent (2013,
p. 1798), representation learning means “learning representations
of the data that make it easier to extract useful information when
building classifiers or other predictors.” The literature has
focused on the properties and the value of different representations
for different feature extraction and prediction applications.
Representation learning has found success in a wide variety of
applications such as natural language processing (Liu, Lin, and
Sun 2020), speech recognition (Conneau et al. 2020), and causal
learning (Schölkopf et al. 2021). However, the representations
are typically not interpretable and involve entangled combinations
of multiple ground truth characteristics (factors of variation).

Our proposed approach builds on a stream of literature in
representation learning known as disentangled representation
learning, which aims to separate distinct informative factors
of variation in the data. Disentanglement methods typically
build on deep generative models such as VAEs (Kingma and
Welling 2014) and generative adversarial networks
(Goodfellow et al. 2020). An example of disentanglement
with simple geometric shapes is provided in Web Appendix C.

Methodology
Our disentanglement approach aims at both automatic and inter-
pretable discovery, and quantification of visual characteristics.
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The methodology developed here builds on a VAE designed for
disentanglement representation learning. Disentanglement
decomposes complex data into independent, interpretable
factors to better capture the true underlying relationships.6

The method is illustrated in the schematic depicted in
Figure 2, and contains an encoder and decoder neural net.
The encoder encodes visual data to discover a low-
dimensional latent space of visual characteristics that are
independent and human-interpretable. The discovered visual
characteristics are then decoded to reconstruct visual repre-
sentation of the input images using the generative model.
The supervised version of the model also predicts a supervi-
sory signal (e.g., brand) from the discovered visual character-
istics. The model minimizes the weighted sum of five
different types of losses: reconstruction loss, mutual informa-
tion loss, total correlation loss, dimension-wise Kullback–
Leibler (KL) loss, and supervised loss. Note that the supervi-
sory signal can be just one product characteristic or a combi-
nation of product characteristics. In Table 1 we detail the
notation used here.

Model: Supervised Variational Autoencoder with
Disentanglement Losses
We first describe a VAE, the backbone model of our approach,
and its extension with disentanglement constraints and supervi-
sion. We denote the observed dataset D= {(x1, y1), …, (xN,
yN)} where the ith observation is a high-dimensional product
image xi and its corresponding vector of data that can be used
as supervisory signals, denoted yi.

The VAE uses a two-step data-generating process p(x, z)
(Kingma and Welling 2014). The first step samples the visual
discovered characteristics denoted by zi ∈ RJ, where J is the
number of characteristics to be discovered (or the size of the
latent space). In the second step, the original product image xi
is reconstructed as x̂i using the conditional distribution pθ(x|
z). The distribution pθ is specified as a multivariate Gaussian
distribution whose probabilities are formed by nonlinear trans-
formation of the characteristics, z, using a neural network with
parameters θ. We add a supervised signal yi that is predicted
from the conditional distribution pw(y|z), which is a function
formed by nonlinear transformation, with parameters w, of
latent (visual) characteristics z.

In practice, neural networks are estimated using optimization
methods that result in point estimates of model parameters
(Bengio, Courville, and Vincent 2013); in other words, they
do not model uncertainty of the conditional distributions
described previously. Modeling the distribution of the visual
characteristics z directly enables the characterization of distri-
butional uncertainty over the space of possible neural networks
(Blei, Kucukelbir, and McAuliffe 2017). The disentanglement
approach uses the distributional aspect of modeling visual char-
acteristics by setting distribution-level penalizations to encour-
age disentanglement (Chen et al. 2018; Kingma and Welling
2014). Importantly, for this article, the modeling of distribu-
tions is critical to smooth generation of novel counterfactual
images, since we are not restricted only to points that are
observed in the data.

The VAE specifically builds on the variational Bayesian
inference literature to incorporate neural networks within an
approximate Bayesian framework (Blei, Kucukelbir, and
McAuliffe 2017). In short, while the neural networks parame-
terizing the distributions of interest are estimated using point
estimates of their parameters (θ, ϕ, w), we learn full distribu-
tions over the visual characteristics z. We refer to pθ(x|z) as
the decoder neural net, qϕ(z|x) as the encoder neural net, and
pw(y|z) as the supervised neural net. Given that the “true”
unknown posterior p(z|x) is intractable, the variational
Bayesian framework approximates this posterior by maximiz-
ing its lower bound, rather than the likelihood of the posterior
(and thus the data-generating process) itself (Blei, Kucukelbir,
and McAuliffe 2017). We adopt the conventional VAE assump-
tion by parametrizing this approximate posterior with a multi-
variate Gaussian with diagonal covariance matrix specified as
log qϕ(z|x)= log N (z; μ, σ2I), where μ and σ are the mean
and the standard deviation of the approximate posterior
(Kingma and Welling 2014).

We simultaneously train the encoder neural net, the decoder
neural net, and the supervised neural net by minimizing a var-
iational bound of the negative log-likelihood. In practice, this
is specified as a loss minimization problem to find point esti-
mates of the neural network parameters (θ, ϕ, w), while infer-
ring a full distribution over the discovered characteristics,
zi ∈ RJ. The parameter space of the deep neural networks in
our intended applications are typically in the range of hundreds
of thousands to hundreds of millions depending on architectural
choices (e.g., our specific architecture has 1,216,390
parameters).

The overall loss is composed of several loss terms corre-
sponding to a VAE extended with supervision and disentangle-
ment terms. We detail these losses starting with the loss of the
original VAE in Equation 1, and refer readers to Kingma and
Welling (2014) for its detailed derivation. The reconstruction
loss captures the differences between the reconstructed
images generated by the decoder and the original inputs.
Minimizing only this term would obtain a deep net that is
able to generate images that match the input with high fidelity.
The regularizer term ensures that the aggregate distribution of
the latent variables does not deviate too much from the prior.

6 Burgess et al. (2018, p. 1) describe this in more detail: “A disentangled repre-
sentation can be defined as one where single latent units are sensitive to changes
in single generative factors, while being relatively invariant to changes in other
factors (Bengio, Courville, and Vincent 2013). For example, a model trained on
a dataset of 3D objects might learn independent latent units sensitive to single
independent data generative factors, such as object identity, position, scale,
lighting or colour, similar to an inverse graphics model (Kulkarni et al.
2015). A disentangled representation is therefore factorised and often interpret-
able, whereby different independent latent units learn to encode different inde-
pendent ground-truth generative factors of variation in the data.”
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Figure 2. Schematic of Proposed Disentanglement Approach.
Notes: In Panel A, the encoder neural net maps an input image into low-dimensional visual characteristics, which are then used both by the decoder neural net to

reconstruct the original image and by the supervised neural net to predict a supervisory signal corresponding to the image. In Panel B, the levels of discovered

characteristics are varied to visualize the semantic meaning encoded by single disentangled visual characteristic of a trained model. In each row the level of a single

visual characteristic is varied while the other characteristics are fixed. The resulting effect on the reconstruction is visualized. Note that (1) we show three

discovered visual characteristics here for illustration purposes, and (2) this figure only shows disentanglement, not its subsequent use in visual conjoint and

generative visual design.

Table 1. Table of Notation for Disentanglement Model.

Symbol Category Meaning

x Input data Product image

y Input data Supervisory signal(s)

x̂ Output data Reconstructed image

ŷ Output data Predicted supervisory signal(s)

z Latent space Visual characteristic vector

zinf Subset of latent space Informative visual characteristic vector

Z(i) Latent space Set of latent characteristics for model i

p(z) Model Prior distribution

pθ(x|z) Decoder neural net Conditional probability of generating image data given latent space

qϕ(z|x) Encoder neural net Conditional probability of latent space given image data

pw(y|z) Supervisory neural net Conditional probability of supervisory signal given latent space

θ Weights of neural net Decoder’s parameters

ϕ Weights of neural net Encoder’s parameters

w Weights of neural net Supervisory net’s parameters

Eqϕ(z|x)[logpθ(x|z)] Loss function Reconstruction loss

Iq(z, x) Loss function Mutual information loss

KL q(z)||∏J
j=1

q(zj)

[ ]
Loss function Total correlation loss

∑J
j=1 KL[q(zj)||p(zj)] Loss function Dimension KL divergence loss

P(ŷ(z), y) Loss function Supervised loss

L(θ, ϕ, w; x, z) Loss function Total loss

J Hyperparameter Dimensionality of latent space

α Hyperparameter Weight on mutual information loss

β Hyperparameter Weight on total correlation loss

γ Hyperparameter Weight on dimension KL divergence loss

δ Hyperparameter Weight on supervised loss
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This ensures that the latent space becomes structured and shares
the properties of the prior distribution, such as compactness,
smoothness, and continuity.

L(θ, ϕ, w; x, z)︸��������︷︷��������︸
Total Loss

= −Eqϕ(z|x)[logpθ(x|z)]︸�����������︷︷�����������︸
Reconstruction Loss

+KL[qϕ(z|x)||p(z)]︸���������︷︷���������︸
Regularizer Term

.

(1)

To learn disentangled representations, the β-VAE model
(Higgins et al. 2017) extends Equation 1 by imposing a
heavier penalty on the regularizer term using an adjustable
hyperparameter β> 1. The idea is that disentangled representa-
tions are likely to be less complex and lower dimensional than
entangled representations that also demonstrate statistical inde-
pendence. The regularizer, which penalizes information capac-
ity of the latent variables, therefore promotes disentanglement
(Burgess et al. 2018).

Higgins et al. (2017) derive the β-VAE loss function as a
constrained optimization problem. Specifically, the goal is to
minimize the reconstruction inaccuracy subject to the inferred
visual characteristics being matched to a prior isotropic unit
Gaussian distribution. This can be seen in Equation 2, where
ϵ specifies the strength of the applied constraint:

min
θ,ϕ

−Eqϕ(z|x)[logpθ(x|z)] subject to KL[qϕ(z|x)||p(z)] < ϵ.

(2)

We can rewrite Equation 2 as a Lagrangian under the Karush–
Kuhn–Tucker conditions (Karush 1939), where the Karush–
Kuhn–Tucker multiplier β is a regularization coefficient. This
coefficient β is used as a hyperparameter to flexibly promote
disentanglement, resulting in the β-VAE formulation in
Equation 3:

min
θ,ϕ

−Eqϕ(z|x)[logpθ(x|z)]+ β KL[qϕ(z|x)||p(z)]. (3)

Intuitively, β-VAE uses the hyperparameter β to sacrifice recon-
struction accuracy in order to learn more disentangled represen-
tations. This framework is adapted and further extended by
decomposing the regularizer term in Equation 1 into three
terms (Chen et al. 2018; Hoffman and Johnson 2016; Kim
and Mnih 2018). These three terms enable us to directly and
separately control disentanglement constraints of the model as
follows in Equation 4:

KL[qϕ(z|x)||p(z)]︸���������︷︷���������︸
Regularizer Term
of Total Loss

= Iq(z, x)︸��︷︷��︸
Mutual

Information
Loss

+KL q(z)||
∏J
j=1

q(zj)

[ ]
︸�����������︷︷�����������︸

Total Correlation
Loss

+
∑J

j = 1

KL[q(zj)||p(zj)]︸�����������︷︷�����������︸
Dimension-Wise

KL Divergence Loss

. (4)

Finally, we add a supervised loss term to enforce the discovered
characteristics to help predict the supervisory signal(s) y in

Equation 5. This enables us to study whether using typical
structured data (e.g., “brand”) with a supervised model helps
improve disentanglement, and to compare supervised versus
unsupervised disentanglement.

L(θ, ϕ, w); x, z)︸��������︷︷��������︸
Total Loss

=−Eqϕ(z|x)[log pθ(x|z)]︸�����������︷︷�����������︸
Reconstruction

Loss

+ α Iq(z, x)︸��︷︷��︸
Mutual

Information
Loss

+ β KL q(z)||
∏J
j = 1

q(zj)

[ ]
︸�����������︷︷�����������︸

Total Correlation
Loss

+ γ
∑J

j = 1

KL[q(zj)||p(zj)]︸�����������︷︷�����������︸
Dimension-Wise

KL Divergence Loss

+δP(̂y(z), y)︸����︷︷����︸
Supervised

Loss

.

(5)

The total loss consists of five terms weighted using hyperpara-
meters (α, β, γ, δ). Adjusting these hyperparameters impacts the
relative weight of each loss term and directly affects disentan-
glement performance. We next detail the intuition for these
loss terms.7

Reconstruction loss. Penalizing the reconstruction loss encour-
ages the reconstructed output x̂(z) to be as close as possible
to the input data x. This ensures that the discovered character-
istics possess the necessary information to be able to reconstruct
the product image with high fidelity. We use L1 loss (absolute
error loss) because unlike L2 loss (squared error loss), it is more
robust to outliers. Moreover, L1 loss introduces sparsity and
thus allows the model to focus on fewer important characteris-
tics for reconstruction.

Mutual information loss. Mutual information loss, Iq(z, x) =
Eq(x,z) log

q(x, z)
q(x)q(z)

( )
, is the mutual information between the dis-

covered visual characteristic z and the product image x. From
an information-theoretic perspective (Achille and Soatto
2018), penalizing this term reduces the amount of information
about x stored in z. The information needs to be sufficient to
reconstruct the data while avoiding storing nuisance informa-
tion, minimizing copying of the input data. A low α would
result in z storing nuisance information, whereas a high α
could result in the loss of sufficient information needed for
reconstruction.

7 Note that adjusting these hyperparameters also leads to different models as
special cases. In the original VAE, α= β= γ= 1 and δ= 0. In the β-VAE, α=
β= γ > 1 and δ= 0, meaning that a heavier penalty is imposed on all three
terms of the decomposed regularizer term in Equation 4. Finally, in β-Total
Correlation VAE, α= γ= 1, β> 1, and δ= 0, and thus there is a heavier
penalty only on the total correlation loss term. In our proposed supervised
approach, we impose α= γ= 1 and find levels of the hyperparameter set Ω=
{β, δ}. We compare it with an unsupervised approach in which we impose α
= γ= 1 and δ= 0 and find the levels of the hyperparameter set Ω= {β}.
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Total correlation loss. The total correlation loss, KL q(z)||∏J
j=1

q(zj)

[ ]
,

represents a measure of dependence of multiple random variables
in information theory (Watanabe 1960). If the discovered latent
variables z are independent, then the KL divergence is zero.
More generally, a high penalty for the total correlation term
forces the model to find statistically independent visual character-
istics. A high β results in a more disentangled representation but
with potentially worse reconstruction quality (and other loss terms).

Dimension-wise KL loss. The dimension-wise KL loss term,∑J
j=1

KL[q(zj)||p(zj)], penalizes the objective to push q(zj)

closer to the prior p(zj), encouraging the distribution of each
latent dimension to not deviate from the prior (e.g., Gaussian)
of each dimension. A high weight on this term reduces the
number of discovered visual characteristics and sets a higher
bar for allowing an additional informative dimension. It ensures
that each learned representations in the latent space has the
desired properties of the prior distribution, such as compactness,
smoothness, and continuity (Hoffman and Johnson 2016).

Supervised loss. Penalizing the supervised loss P(ŷ(z), y), where
ŷ(z) ∼ pw(y|z), prioritizes the discovered visual characteristics
z to obtain high accuracy in predicting y. We set the level of
the hyperparameter δ by model selection, and note that δ= 0
for the unsupervised disentanglement approach. Since our
signals are discrete (e.g., brand), we use cross-entropy loss
for the multiclass classification prediction task. Continuous
signals like price are discretized using a quantile split to
obtain discrete classes.

Supervised and Unsupervised Disentanglement
A key issue we examine in this research is whether structured
product characteristics typically found in marketing contexts
(e.g., brand, price) can be used as supervisory signals to
improve disentanglement and our ability to discover human-
interpretable visual characteristics. Locatello et al. (2019), in
a well-known impossibility theorem, show that in the absence
of a supervisory signal, disentangled representations are proba-
bilistically equivalent to (an infinite set of) entangled represen-
tations. This finding implies that it is not possible to obtain a
unique disentangled representation of the visual characteristics
using an unsupervised approach. Locatello et al. (2020) further
experimentally demonstrate that this challenge could be
resolved by using supervision with ground truth visual charac-
teristics, in which lower supervised loss is connected to better
disentanglement performance.

However, their approach of knowing ground truth for each
of the visual characteristics across multiple products cannot
be used for our goal of automatic discovery and quantification
of visual characteristics. The ground truth labels corresponding
to visual characteristics are precisely what we are aiming to

discover. Moreover, we would need a researcher to apply
their judgment and define visual characteristics in advance for
the product category, as well as quantify each of them for the
products in the dataset, implying that the approach would not
be automated. Our method instead posits that structured
product characteristics and price might have information that
correlates with visual characteristics, and using them as super-
visory signals can be helpful in achieving disentanglement.
Therefore, our method has a major advantage in that it does
not require access to ground truth characteristics.

Why might structured characteristics serve as good supervisory
signals?. Typical structured product characteristics commonly
available in marketing data include brand, material, perfor-
mance characteristics, and price. Material more broadly is
known to significantly affect visual appearance and consumer
perceptions (Fleming 2014); for example, being made of
metal (like silver) provides a certain visual look. Similarly,
brand can have a strong impact on the visual look. Consider,
for instance the distinct look of a Mercedes-Benz car or a
Louis Vuitton handbag. “Brand signature” is often perceptible
in visual design, especially for product categories with conspic-
uous consumption (Simonson and Schmitt 1997) and for luxury
brands (Lee, Hur, and Watkins 2018). Research has shown that
brands have different personalities (Aaker 1997) that can be
expressed through their product-related characteristics,
product category associations, brand name, symbol or logo,
advertising style, price, distribution channel, and user imagery
(Batra, Lehmann, and Singh 1993; Liu, Dzyabura, and Mizik
2020). Consumers also recognize unique visual styles of
brands (Ward et al. 2020). Next, consider the role of price.
Many brands, especially luxury brands, maintain carefully
curated pricing tiers with strong consumer associations, and
in many categories, high-priced products are viewed as
having a “premium look” (Cho, Lee, and Saini 2022).

Evaluating disentanglement performance. To evaluate disentan-
glement performance, we need a metric that is applicable
even when ground truth is not available, and therefore works
for both supervised and unsupervised disentanglement. We
evaluate disentanglement performance using the UDR metric,
which satisfies the preceding requirements. UDR ranges from
0 to 1, with higher values representing more disentangled rep-
resentations. UDR crucially allows for an automated way to
select a model when ground truth is not available (Duan et al.
2020).8

The UDR metric is based on the assumption that representa-
tions obtained frommodels that are more disentangled would be
more similar to each other than those from models that do not

8 Most existing metrics in the machine learning literature, such as the β-VAE
metric (Higgins et al. 2017), the FactorVAE metric (Kim and Mnih 2018),
the mutual information gap (Chen et al. 2018), and the disentanglement, com-
pleteness, and informativeness disentanglement scores (Eastwood and
Williams 2018), require access to the ground truth data-generating process
and are therefore not suitable for our empirical setting.
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disentangle as well. This implies that given a dataset and a
model, the visual characteristics learned using different
random seeds (or different initial conditions) with a disentan-
gled model should be similar, whereas every entangled repre-
sentation is different in its own way and there are several
ways to obtain entangled representations, since the set of entan-
gled representations is large and potentially infinite. We note
that while the model defines all the hyperparameter levels, the
random seed levels only determine the initial levels of the
parameters for the neural net and any sampling within the algo-
rithm (e.g., dataset splitting or batch-level data sampling during
training). If the disentanglement model is discovering the
ground truth representation, then the initial parameters should
not matter as much.

Defining UDR. The UDR metric is defined for a pair of models i
and j using Equation 6. For any pair of models i and j, UDRij is
defined as a pairwise metric.

UDRij

= 1

di + dj

∑
b∈Z(j)

r2b∑
a∈Z(i) R(a, b)

IKL(b)+
∑
a∈Z(i)

r2a∑
b∈Z(j) R(a, b)

IKL(a)

⎡⎣ ⎤⎦ .

(6)

In Equation 6, R(a, b) is the correlation between the visual char-
acteristic a that belongs to model i and the visual characteristic b
that belongs to model j. We show the definition in Equation 7:

R(a, b) = cor(zi(a), zj(b)). (7)

The term ra is the correlation of the visual characteristic in
model j that is most similar to the visual characteristic a in
model i. In other words, ra can be defined using Equation 8:

ra = max
b∈Z(j)

corR(a, b). (8)

The right-hand side of Equation 6 has two terms inside the

square bracket. The first term,
r2b∑

a∈Z(i)
R(a, b)

, represents the ratio

of the (squared) correlation of the visual characteristic a in
model i that is most similar to visual characteristic b in model
j, to the sum of the correlations across all the visual character-
istics in model i. The squaring ensures that corner solutions or
one-to-one mappings lead to higher UDR values, which is con-
sistent with the idea of disentanglement. This term will be
higher if there is a one-to-one mapping between one visual
characteristic in model i and another in model j, and the charac-
teristics are statistically uncorrelated. The first term is then
added across all the informative visual characteristics b of
model j, which are represented by IKL(b) using a threshold for
KL divergence between the characteristic’s posterior and the
prior. The second term represents the counterpart by consider-
ing one visual characteristic a that belongs to model i and
then going through the corresponding process described previ-
ously. Finally, we sum across all the informative visual charac-
teristics a of model i, that is, IKL(a).

We normalize the preceding sum by the total number of
informative visual characteristics from model i and model j,
denoted (da+ db). This is done to ensure that just having
more informative characteristics does not mechanically lead
to a higher UDR. Therefore, UDRij can be considered the
average correspondence in informative visual characteristics
between two models i and j, and with a perfect and complete
one-to-one correspondence, we will have UDRij= 1. We calcu-
late the final UDR score for a particular hyperparameter config-
uration by averaging the UDR across all pairs of random seeds.

What does UDR capture? UDR captures the idea of similarity of
two visual representations, which in turn consist of multiple
visual characteristics. A pair of visual characteristics a and b
from models i and j respectively, denoted zi,a and zj,b, would
be scored as highly similar if they are axis-aligned with each
other (i.e., correlate) up to permutation and sign inverse. By
permutation, we mean that the same ground truth factor ck
may be encoded by different visual characteristics within the
two models zi,a and zj,b where a≠ b. By sign inverse, we
mean that the two models may learn to encode the levels of
the generative factor in the opposite order to each other, zi,a=
−zj,b. Models that are identical except for sign inverse and per-
mutation are isomorphic and equivalent from a representation
learning viewpoint.

We additionally note that the UDR metric in Equation 6 is
flexible enough to account for subsetting, that is, nonoverlap-
ping subsets of visual characteristics that another model has
learned. While we did not observe this case in our empirical
results, we found that changing the supervisory signal led to
the discovery of different subsets of visual characteristics (see
Web Appendix D). We note that differing hyperparameter set-
tings resulted in models with different numbers of latent dimen-
sions to be “switched off.”

Operationalizing UDR. For each trained model, that is, with
Nseed= 10 random seeds, each of the representations obtained
is compared pairwise with the others. Thus, we perform

κ = Nseed

2

( )
= 45 pairwise comparisons with all other

models trained with the same hyperparameters (β, δ), and the
same vector of supervisory signals but with different seed
levels. From these pairwise comparisons, we obtain UDRij,
where i and j index the two models. UDR is then averaged
across all combinations of i and j.

We next select informative visual characteristics and ignore
uninformative visual characteristics. To implement this, we
obtain the KL[qϕ(z|x)||p(z)] for each visual characteristic and
then select characteristics with KL divergence above a thresh-
old. Variation across an uninformative characteristic would
produce little to zero visual change in the image. Rolinek,
Zietlow, and Martius (2019) show that during training,
models based on VAEs enter a polarized regime such that
some latent variables (in our case, visual characteristics)
switch off by being reduced to the prior qϕ(zj)= p(zj). This is
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due to the choice of a diagonal posterior. Typically, the dimen-
sionality of the latent space is set higher than the expected true
set of visual characteristics. This results in some of the charac-
teristics being “switched off” or being very close to the prior
distribution. These switched-off characteristics are referred to
as uninformative characteristics. Duan et al. (2020) show that
models with some uninformative characteristics tend to disen-
tangle better and their unstructured (visual) characteristics are
easier to semantically interpret.

Model Training, Selection, and Evaluation
Both the supervised and unsupervised disentanglement
approaches require model training (i.e., learning model param-
eters), model selection (i.e., choosing hyperparameters), and
model evaluation (i.e., UDR disentanglement performance).
However supervised and unsupervised approaches require dif-
ferent model training and selection steps, while the same eval-
uation step can we used, so we can compare them appropriately.

Model training and selection. We divide the dataset into (1) a
training dataset for learning disentangled representations, (2)
a validation dataset for model selection, and (3) a test dataset
in the ratio 90:5:5. To avoid data leakage, we ensure that
each product is present in only one of the preceding subsets.
Figure 3 provides a schematic diagram for the model training
and selection for the supervised and the unsupervised
approaches. The training process takes in the unstructured
data (watch images) as input, and uses a subset of structured
watch characteristics (e.g., brand) as the supervisory signal
for the model.

We fix the hyperparameters based on suggestions in the lit-
erature (Chen et al. 2018; Locatello et al. 2020). The number of
latent codes J represents the number of characteristics that our
model aims to find. A very low J might miss important charac-
teristics, whereas a high value of J might lead to more uninfor-
mative characteristics. We choose J= 20 to balance these
considerations, based on our empirical setting. We find that
higher values of J do not result in any meaningful change in
the discovered visual characteristics. We need to tune other
hyperparameters, including learning rate, batch size, and
number of training steps or epochs.9

To select the model with appropriate hyperparameters, we
sweep over levels of hyperparameters corresponding to β

(weight on the total correlation loss term) and δ (weight on
the prediction loss term).10 In the unsupervised approach, δ=
0 by definition.11 Finally, we retrain the model on the entire
training dataset with the selected hyperparameters, and then
use the trained model to extract discovered visual characteris-
tics on the test dataset. For model evaluation, we compare all
models using the UDR metric.

Model architecture. We modify the architecture used in Burgess
et al. (2018) in order to use images with a resolution of 128×
128 pixels as well as to incorporate a supervised neural net.
We use convolutional neural nets (CNNs) to construct the
encoder neural net, where we stack a sequence of CNN layers
to learn high-level concepts for images. Finally, we introduce
two fully connected layers to first flatten the output of the
sequence of CNN layers and then reduce the number of dimen-
sions to learn J visual characteristics. The decoder neural net is
the transpose of the encoder neural net, and is designed to
reconstruct the image from the J-dimensional latent visual char-
acteristics. Finally, we add fully connected layers to the discov-
ered visual characteristics to create the supervised neural net
that predicts the signals (structured product characteristics).
Further details of the architecture are provided in Web
Appendix E.

Generating new visual designs. We exploit the generative nature
of the disentanglement learning model to controllably generate
images. We feed the decoder of the disentanglement model a
latent vector z, where each dimension of z corresponds to a
visual characteristic. Recall that if the model achieves disentan-
glement, then z should be human-interpretable. More specifi-
cally, each element of the vector z = (z1, z2, . . . , zJinf )
corresponds to a specific visual characteristic (e.g., dial
color). Note that Jinf corresponds to the number of informative
visual characteristics discovered by the model. Thus, when we
choose values of the vector z, the model is able to generate a
visual design. We can thus controllably generate a wide range
of visual designs corresponding to any specified vector z.
Since the decoder can take input at any point in the latent
space, the model can generate novel visual designs not
present in the original product image data. We show how
these generated visual designs can be used for conducting
visual conjoint analysis.

Empirical Application
We use our disentanglement method with an application to a
dataset of watches. This dataset satisfies several desiderata
detailed subsequently. First, we would like a product category
where visual and design aspects captured in the images are

9 The considerations for tuning hyperparameters detailed subsequently are
common to all deep learning models. A very low learning rate can lead the
model to get stuck on local minima or converge very slowly, and a very high
learning rate can lead the model to overshoot the minima. A low batch size
increases the time required to train the model till convergence, while a large
batch size significantly degrades the quality of the model so that it is not gener-
alizable beyond the training dataset. Training for a low number of epochs may
result in the model not converging, whereas training for a very high number of
epochs may result in the model overfitting on the train dataset. Specifically, we
set the number of random seeds used as 1 to 10, the batch size as 64, and the
number of epochs as 100, and we use the Adam optimizer with learning rate
5× 10−4 and parameters b1= .9 and b2= .999.

10 For each β and δ level, following Locatello et al. (2020), we select the hyper-
parameter setting corresponding to the lowest 10-fold cross-validated super-
vised loss for supervised model selection.
11 We use UDR for unsupervised model selection.

10 Journal of Marketing Research 0(0)

https://journals.sagepub.com/doi/suppl/10.1177/00222437241276736
https://journals.sagepub.com/doi/suppl/10.1177/00222437241276736


likely to play an important role in consumer valuation and
choice behavior (Kotler and Rath 1984). Second, we would
like a market with a large number of products in order to
train the deep learning algorithm. Third, as with typical market-
ing data, we need to have a set of structured characteristics
appropriately matched with the images. Finally, for our valida-
tion exercise, human respondents need to be familiar with the
product category in order to evaluate the interpretability of
the discovered visual characteristics.

Data
Our dataset includes 6,187 watches corresponding to 2,963
unique brand models auctioned in the years 2010–2020. The
watch dataset is particularly appropriate for the reasons stated
previously. For each auctioned watch in the dataset, we have
its image, structured product characteristics, and the hammer
price (in thousand inflation-adjusted year 2000 dollars) paid
at the auction. Structured characteristics include the brand of
the watch, model of the watch, year of manufacture (which
we refer to as “circa”), type of movement associated with the
watch, dimensions of the watch, and materials used in the
watch. Figure 4 shows a sample of watch images in our dataset.

A total of 199 unique brands are present in the data.
Audemars Piguet, Cartier, Patek Philippe, and Rolex are the
four brands with the largest share of observations, while the
remaining brands are coded as “Other.” Circa is coded as
pre-1950, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s, and
2010s. Movement of a watch is classified as either mechanical,
automatic, or quartz. Dimensions of the watch refer to the watch
diameter in case of a circular dial or the length of the longest
edge in case of a rectangular dial (in millimeters). Material is

coded as gold, steel, a combination of gold and steel, or other
materials. Summary statistics of the data are provided in Web
Appendix F.

Results
Discovered visual characteristics. Figure 5 illustrates the output of
the disentanglement model with supervisory signals Brand+
Circa+Movement, showing discovered visual characteristics
corresponding to the signals with the highest UDR. Each row
of the figure demonstrates how the watch design changes
based on changes in levels of one specific discovered visual
characteristic, while keeping all the other characteristics fixed.
We show only six visual characteristics as the others were
found to be uninformative. By uninformative, we mean that tra-
versing along those dimensions leads to no visual changes, and
the posterior distribution of the discovered latent variable is
almost identical to pure Gaussian noise. From ex post human
inspection (by researchers), we observe six distinct visual char-
acteristics that are independent as well as human-interpretable.
These are dial color, strap color, dial size, knob (crown) size,
dial shape, and rim (bezel) color.

Figure 6 shows the density plot of these discovered visual
characteristics. All visual characteristics are initially modeled
by a standard normal prior distribution. In the training
process, each visual characteristic is encoded in the representa-
tion as a continuous distribution. If the algorithm finds a lot of
variation along the visual characteristic in the image data, then
we would observe the variance of that characteristic to increase.
In contrast, if the algorithm finds little variation on some visual
characteristic (e.g., if all watches have circular dials), the poste-
rior distribution for this dimension would have a low variance.

Figure 3. Model Training, Selection, and Evaluation.
Notes: We train N different hyperparameter (Ω) levels for both supervised and unsupervised approaches. For supervised approaches, we choose the

hyperparameter level that minimize the supervised loss P(ŷ(z), y) on the validation dataset. For the unsupervised approach, we choose the hyperparameter level

that maximizes the UDR. We evaluate different sets of visual characteristics learned by various approaches using the UDR metric.
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Figure 4. Sample of Watches.

Figure 5. Discovered Visual Characteristics.
Notes: The figure shows latent traversals along a focal watch, used to visualize the semantic meaning encoded by single visual characteristic learned by a trained

model. In each row, the quantitative level of a single characteristic is varied, keeping the other characteristics fixed. The resulting reconstruction is visualized.

Discovered visual characteristics are learned by supervising the characteristics to predict brand, circa, and movement simultaneously.

Figure 6. Density of Discovered Visual Characteristics (from the Brand+Circa+Movement Signal).
Notes: The distributions of the visual characteristics corresponding to dial size, rim (bezel) color, dial shape, and knob (crown) size are close to a standard normal

distribution. However, the distributions of dial color and strap color are not similar to any standard distribution.
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It is important to note that we do not artificially constrain the
scale of the visual characteristics; we allow the model to dis-
cover it from the data. Summary statistics of the visual charac-
teristics are provided in Web Appendix G.

The sign (negative or positive) is arbitrary. For example,
with dial size, negative might imply large dials, whereas posi-
tive might imply smaller dials. The sign might also be reversed,
and both representations would be equally valid (in fact, iso-
morphic). As the literature on disentanglement has pointed
out, representations with different permutations (of latent
dimensions) and signs are equivalent (Duan et al. 2020).
Thus, the numbers corresponding to the latent dimension do
represent “size” in the image in a monotonic sense. Thus,
knowing the latent visual characteristic can permit the model
to generate a product image with a specific size, or the inverse.

Finally, we show that the discovered visual characteristics
are not highly correlated (Table 2), consistent with the goal of
maintaining statistical independence across the latent dimen-
sions. In contrast, an autoencoder is not able to find any disen-
tangled visual characteristic, and a plain-vanilla VAE finds
entangled visual characteristics. Refer to Web Appendix A
for these results.

Evaluating models with UDR. The model evaluation step com-
pares the set of supervised models and the unsupervised
model to evaluate the model with the best disentanglement, or
the highest UDRmetric. The results of the comparison of differ-
ent supervisory signals for disentanglement learning are
detailed in Web Appendix H.

We find that including a combination of signals (i.e., Brand
+Circa+Movement) was substantially better (UDR= .414)
than the unsupervised approach (UDR= .131). We also note
that additional supervision might not always help, because the
classification problem of predicting a combination of all
signals correctly can become more challenging. We show the
discovered visual characteristics from the unsupervised as
well as supervised approaches in Web Appendix A. We find
that supervision using structured product characteristics can
help even in the absence of ground truth on visual characteris-
tics. However, the specific combinations of signal(s) that would
work better are likely to depend to a significant degree on the

details of the empirical setting, including the product category
and potentially even the resolution of the product images.

Effectiveness of Supervisory Signals in Disentanglement
We next aim to develop an understanding of why some signals
might be good for supervision. Consider what is required for a
signal to work well for disentanglement. Let us start with why
ground truth works, when the data images have been generated
perfectly from different values of this ground truth factor. The
supervised loss term in the objective uses the visual image to
predict the signal, when only a single visual dimension is
varied in the data-generating (image-generating) process. The
objective is to minimize prediction loss (e.g., mean squared
error). If we use ground truth on a specific visual characteristic
(e.g., dial color), the disentanglement algorithm is incentivized
to find that visual characteristic as a discovered latent dimen-
sion, since doing so would allow it to reduce the supervised
loss, all else being equal.

A similar logic holds when we have a “good signal” that is
correlated with the ground truth. The presence of the supervi-
sory signal incentivizes the algorithm to find the specific
latent dimension corresponding to the visual characteristic.
By penalizing total correlation, the algorithm is unlikely to
entangle it with other factors since there is an incentive to
find orthogonal (or statistically uncorrelated) latent dimensions.
A higher-quality (or stronger) signal would improve the incen-
tive to find the visual characteristic that predicts the signal as a
separate dimension, and also improve disentanglement by the
preceding logic (Khemakhem et al. 2020).

With ground truth, there is a one-to-one mapping between
each ground truth signal and a specific latent dimension or dis-
covered visual characteristic. However, with imperfect signals,
there is a many-to-many mapping between these signals and the
true visual characteristics. Thus, while the preceding logic
holds, there are some additional trade-offs. For instance, if
one supervisory signal impacts multiple true visual characteris-
tics, then the algorithm would have to trade off the improve-
ments in predictive accuracy across multiple dimensions. If
there are multiple such signals that are predictive of one
visual characteristic, the model would also have to weigh
improvements across each of them in terms of predictive
accuracy.

Broadly speaking, signals that are more strongly correlated
with the visual look of the product would prove to be better
signals. Signals that are more likely to strongly predict one of
the visual characteristics are likely to perform well, even if
they do not predict all of the visual characteristics. In contrast,
signals that weakly predict multiple visual characteristics are
less likely to work well. Also, a set of signals would work
better when they encode different information, that is, when
each signal in the set is strongly correlated with one separate
dimension of visual characteristics but not with other dimen-
sions. Beyond this broad logic, it is an empirical question as
to which signals work better. For some product categories,
brand—for instance—might work well if brand influences the

Table 2. Correlations Between Visual Characteristics.

Dial
Size

Dial
Color

Strap
Color

Rim
(Bezel)
Color

Dial
Shape

Knob
(Crown)
Size

Dial size 1.00 .17 −.09 .04 .02 .00

Dial color .17 1.00 .06 .01 .03 .01

Strap color −.09 .06 1.00 .10 .03 −.06
Rim (bezel)

color

.04 .01 .10 1.00 .07 .04

Dial shape .02 .03 .03 .07 1.00 .01

Knob (crown)

size

.00 .01 −.06 .04 .01 1.00
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look. However, in other categories, where a brand might
include several different products without a common look,
then brand might not be a good signal.

To evaluate whether a signal is effective, we quantify the
degree to which the representation obtained separates out the
visual characteristics when conditioned by different values of
the signal. To implement this concept, we first select the
most disentangled representation using UDR across all possi-
ble supervisory signal combinations. We then compare the dis-
tribution of these visual characteristics across different values
of the signal, operationalized by the Jensen–Shannon (JS)
distance.12

Let zinf be the set of informative latent variables. Denote the
set of values taken by a supervisory signal i as
yi ∈ Yi = {1, 2, . . . , Yi}. For example, signal i= 1 is brand,
and the values it can take include Patek Philippe, Rolex,
Cartier, and so forth. Signal i= 2, for example, is price, with
values High and Low. We define the signal effectiveness Si
of a supervisory signal i as

Si =
1

2Jinf |Yi|(|Yi| − 1)

×
∑
k∈zinf

∑
l∈Yi

∑
m∈Yi:m≠l

JS(p(zk|yi = l), p(zk|yi =m)).
(9)

The intuition is that better or more informative signals will gen-
erate more separation in latent visual characteristics. Consistent
with this intuition, we find that brand obtains a signal effective-
ness of .24, whereas price has a lower signal effectiveness of
.13. This implies that the difference in the distribution of
visual characteristics across watches corresponding to different
brands is greater than the difference in the distribution of visual
characteristics across low and high prices.

Price could well be an effective signal in other empirical set-
tings. In our case of luxury watches, the price has some unique
properties that might reduce its effectiveness.13 In other empir-
ical settings without these specific considerations, price could
well serve as one of the better signals. In Web Appendix D
we show results for a separate product category, sneakers, in
which price is a better signal for disentanglement.

Validation of Discovered Visual Characteristics
Wewould like to evaluate whether the visual characteristics dis-
covered by the disentanglement model are human-interpretable,

both qualitatively and quantitatively. We conducted two
surveys to validate that humans (1) identify the distinct charac-
teristics and (2) are consistent with our model in their quantita-
tive evaluation.14 In the first survey, we evaluated the
interpretability of the discovered characteristics from visual
data. We showed respondents an image illustrating different
parts of the watch before the survey to help them understand
the visual elements of the product.15

Next, we generated counterfactual images that vary along
only one visual characteristic. For example, each watch image
(see Figure 7) was generated by fixing all except one focal
visual characteristic, and changing only the level of the focal
visual characteristic. We asked 99 respondents to identify
which part of the watch changed as they scanned the images
from left to right, and how that part was changing. We find
that the average agreement among respondents was 86%,
with a range from 73% to 96%, despite the low image resolu-
tion. In the “Interpretability Survey” column of Table 3, we
report the percentage of respondents in the survey who
agreed with each other on which part of the watch was
changing.

We next examined in a second survey (Figure 8) whether the
quantification of the characteristics automatically determined
by the method was consistent with human interpretation. We
generated several pairs of watch images that differed only
along one visual characteristic. We asked 300 respondents to
select the pair of watches that are more similar, which repre-
sents an ordinal evaluation. We evaluated whether the
responses matched our algorithm’s quantification. We find
that a strong majority (average of 85%) agreed with the algo-
rithm’s quantification scale for the visual characteristics, as
detailed in the “Quantification Survey” column of Table 3.

In addition to comparing the supervised and unsupervised dis-
entanglement models using UDR, we compare the interpretability
of the visual characteristics produced by them. Table A1 in Web
Appendix A shows that supervised disentanglement models
produce more human-interpretable visual characteristics.

Robustness
We examine the robustness of the model and findings as
detailed subsequently.

Different product category. We evaluate the disentanglement
performance of our method with an unrelated product category,
sneakers. We obtained data for over 2,000 sneakers from a
fashion e-commerce firm, along with the structured product
characteristics of price and brand. We find that our method,
without any changes in architecture, is able to disentangle

12 The JS distance is a symmetric and smoothed version of the KL divergence. It
measures the similarity between two probability distributions. Given two prob-
ability distributions P and Q, the JS distance is defined as
JS(P, Q) = 1

2 KL(P||M)+ 1
2 KL(Q||M)

( )1
2, where KL(X||Y) is the KL diver-

gence of X from Y, and M = 1
2 (P+ Q). Note that JS distance is always

bounded between 0 and
�����
log2

√
.

13 First, luxury watches are expensive products, and no low-cost watches were
included in our dataset. Second, hammer prices are based on auction outcomes
and hence can be driven by a small number of bidders. These buyers may not be
price sensitive, and hence price might not be an informative signal. Third, the
same model of a watch can be auctioned multiple times, leading to variation
in prices within the model, and therefore a noisier price signal.

14 We chose respondents based in the United States who were fluent in English.
For both surveys, we employed an attention check.
15 We obtained an image showing the parts of the watch from https://
bespokeunit.com/watches/watch-parts-guide/. This image was shown in all
survey screens.
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three human-interpretable visual characteristics: upper color,
sole color, and topline shape. These results are in Web
Appendix D. We find that for sneakers, price serves as a rela-
tively good supervisory signal for disentanglement.

Alternative approach. We evaluate an alternative approach of
using SHAP-learned features as an input to the disentanglement
model (Lundberg and Lee 2017). The idea behind SHAP
(SHapley Additive exPlanations) is to determine the pixels in
the image that are most influential in the classification of a
data point. We find that the SHAP-based approach produces a
smaller number of visual characteristics than our existing
approach of feeding the raw image data to the disentanglement
learning model. These results are in Web Appendix I.

Visual Conjoint Analysis to Generate “Ideal
Point” Products
Next, we develop and implement conjoint analysis to obtain
consumer preferences over six disentangled visual characteris-
tics. We then generate novel “ideal point” visual designs for dif-
ferent segments. Table 4 provides a seven-step summary.

Conjoint Survey Design
We developed a choice-based conjoint (CBC) survey to elicit
consumer preferences over a set of generated watches.

Generated watch designs were created by sampling three
levels—low, medium, and high—of the posterior distributions
of the six discovered visual characteristics, resulting in 36=
729 visual designs.16

We obtained CBC survey responses from 400 individuals
through the Prolific platform, filtered to obtain a set of 253
respondents.17 Each respondent evaluated 15 pairs of
watches. The data include binary responses for 15 CBC ques-
tions, as well as respondents’ covariates, namely, demographics
and psychographics.

The conjoint survey was designed with seven survey
stages. The conjoint survey stages are summarized along
with their purpose in Web Appendix J. Each CBC question
consisted of a binary choice between two watch designs as
shown in Figure 9. The CBC design ensured all unique
product designs were enumerated, while also sampling
pairs of product images that spanned the visual attribute

Figure 7. Survey Question to Validate Interpretability.

Table 3. Human Interpretation of Visual Characteristics and

Quantification.

Visual
Characteristic

Interpretability
Survey

Quantification
Survey

Dial size 76% 83%

Dial color 80% 92%

Strap color 88% 92%

Rim (bezel) color 79% 88%

Dial shape 87% 68%

Knob (crown) size 70% 85%

16 Our method is flexible enough to accommodate and characterize nonlinear
and nonmonotonic consumer preferences in visual characteristics. However,
there are two requirements in order for such discovery to be feasible. First,
the functional form in the consumer utility model must be specified to be able
to discover these nonlinear preferences. If the functional form is specified as
linear, then the results obtained would be a linear approximation of the true
utility specification. Second, we need to have a sufficient number of levels
for each visual characteristic to be able to discover the nonlinearity. If we
only have two levels, for instance, it would be impossible to identify nonlinear
preferences even with a flexible utility model. Thus, a minimum of three levels
for visual characteristics are required along with a corresponding utility speci-
fication for nonlinear preferences. Adding more levels helps to better approxi-
mate the utility functions over visual characteristics, but the flip side is that
the number of conjoint respondents increases greatly. The practitioner thus
faces a trade-off between flexibility in characterizing consumer preferences
and the practical feasibility of conjoint implementation.
17 Respondents were filtered post hoc for a number of reasons based on the data
analysis requirements: (1) they did not pass the instructional manipulation check
(attention check) (Oppenheimer, Meyvis, and Davidenko 2009), (2) they gave
inconsistent responses to repeated questions, (3) they did not wear a watch,
or (4) they answered “Prefer not to say” for any of the demographic questions.
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space for statistical efficiency, that is, D-optimality
(McCullough 2002).

Conjoint Model Specification, Estimation, and Evaluation
Model specification. We specify in Table 5 a three-level HB
model (Lenk et al. 1996) to estimate and infer individual-level
preferences elicited from the conjoint survey over the six dis-
covered visual characteristics denoted z (dial color, dial
shape, strap color, dial size, knob [crown] size, and rim

[bezel] color). We additionally include seven respondent
covariates denoted r (constant intercept, gender—male,
gender—female, age, income, education, and aesthetic
importance).18

Note that in Table 5, LKJ(η) is a Cholesky factorization of
the correlation matrix Ωβ of the individual partworth preference
vector over visual characteristics (Lewandowski, Kurowicka,
and Joe 2009). D(·) denotes a diagonal matrix, ri are consumer
covariates, uji is the utility customer i gets from watch design j,
and ϵij is a Gumbel random variable. The Bernoulli probability
parameter ψi(j, j′) is specified by the logit function, and {j, j′}i
denotes the set of all pairwise choice comparisons for watches
j, j′ ∈ J that customer i chose over in the conjoint survey. Note
that σ2Θ, ΛΘ, η are researcher-defined hyperparameters chosen
via model selection using prediction accuracy on the validation
data split as the evaluation metric.

We tested a variety of parametric HB model specifications
including Gaussian mixture priors before settling on a variant
of the conventional HB model specification, namely, a unimo-
dal population-level prior, β, over individual-level partworth
coefficient vectors, βi. The mean of the consumer preference
partworth vector was accordingly modeled as the inner
product between respondents’ covariates and an upper-level
model parameter matrix, Θ, plus an intercept term.19 We spec-
ified the full covariance matrix over the visual attributes, with
the prior drawn from a Cholesky factorization of the covariance
matrix to impose positive semi-definiteness for numerical
stability during sampling (Lewandowski, Kurowicka, and Joe
2009). We estimated this hierarchical model using MCMC

Figure 8. Survey Question to Validate Quantification.

Table 4. Steps in Visual Conjoint Analysis and Generative “Ideal
Point” Design.

Step Description

1 Conduct a visual conjoint analysis to elicit consumer choices

over 729 generated visual designs across six visual

characteristics.

2 Estimate consumers’ visual preferences using a three-tiered HB
model trained on conjoint analysis data.

3 Segment consumers into two segments using the estimated

consumer preference relationship between consumer

covariates (demographics) and visual characteristic.

4 Define the “existing market” as the top 10 products by utility in
the overall set of 729 existing products used in the conjoint

survey.

5 Define segment-level “ideal points” in visual characteristics

space for the two segments. The “ideal point” for each
segment is defined as the norm-scaled average preference

vector of the segment.a

6 Generate new “ideal point” designs corresponding to the

preceding visual characteristics.

7 Evaluate model predictions of consumer preference for

generated “ideal point” designs by inferring how choice

shares change for each segment in the counterfactual market

of “existing+ ideal point” products.

Notes: We scale the norm to bound it given our conventional inner-product

utility specification (more is better); in our case, we scale it by the average

Euclidean norm of the top 10 products in the existing market.

18 These covariates were selected from the full set of covariates for model par-
simony via initial correlation analysis. Gender covariates were one-hot encoded,
while the remaining four covariates were recoded as real values normalized in
the range [−1, 1].
19 We include the intercept implicitly by appending a vector of ones to the con-
sumer covariates matrix Z and expanding the dimensionality of Θ by one.
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sampling based on observed consumer choices and demograph-
ics. For details, see Web Appendix J.

Table 6 shows population-averaged preference parameters β
as well as the heterogeneity across individuals.20 For robust-
ness, we compared the mean of these posteriors to a homoge-
neous logit model and found qualitatively similar results,
noting that the magnitudes are different due to modeling hetero-
geneity as well as the (implicit) assumption of the scale param-
eter being unity in logit estimation (Hauser, Eggers, and Selove
2019).

Figure 10, Panel A, shows the correlation matrix of con-
sumer preferences as a heatmap (i.e., normalized mean and
standard deviation) over the six visual characteristics. We find

that the strongest correlation (.87) in consumer preferences is
between strap color and rim color. Thus, dark strap color and
dark rim color are preferred together. The second highest corre-
lation (.74) is between dial size and dial color. This implies that
consumers prefer larger dial size with dark dial color. Similarly,
the third highest correlation (−.73) is between dial shape and
dial color.

We next analyze the relationship between respondents’
covariates and their preferences over visual characteristics.
Figure 10, Panel B, shows a heatmap of the estimate of Θ.
We can then see how demographic variables like gender cor-
relate with visual characteristics like strap color. For
example, respondents who indicated they are male, on
average, preferred watches with a dark dial color, dark
strap color, and large dial size; respondents who indicated
they are female, on average, preferred watches with a light
dial color and small dial size; and respondents who indicated
appearance is important for them preferred a dark strap
color.

Figure 9. Example CBC Question in Conjoint Survey.

Table 5. Mathematical Representation of HB Conjoint Model for

Visual Characteristics.

Model Element
Mathematical
Representation

Impact of consumer characteristics

on preferences

vec(Θ) ∼ N (μθ, Λθ)

Correlation of preferences over

visual characteristics

Ωβ ∼ LKJ(η)

Preference parameters βi ∼ N (ΘTri, D(σβ)ΩβD(σβ))
Utility function u

j
i = βTi zj + ϵij

Probability of choice j
ψi(j, j

′) = exp(u
j
i)

exp(u
j
i)+ exp(u

j′
i )

Table 6. Population-Level Posterior Distributions of Visual

Preference Parameters β.

Visual
Characteristic

Mean
Preference

Heterogeneity Interval
(95%)

Dial color .40 [.22, .56]

Dial shape .003 [−.17, .16]
Strap color −1.6 [−1.8, −1.3]
Dial size .41 [−.13, .66]
Knob (crown) size −.30 [−.46, −.14]
Rim (bezel) color −.57 [−.72, −.39]

20 Note that these are the estimated distributions of preference coefficients, not
distributions of visual product characteristics.
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Model evaluation. We compare the predictive accuracy of our
representation used along with the HB model against several
benchmarks, and evaluated the models on hit rates for respon-
dents’ binary choices among watch visual designs. The first
benchmark was a homogeneous logit model without respondent
covariate variables. The second benchmark was a pretrained
deep learning model that included covariate variables to
model respondent heterogeneity. We chose the ResNet50 archi-
tecture (He et al. 2016) after pretesting a variety of pretrained
network architectures (e.g., DenseNets, Visual Geometry
Group) and their performance on the prediction accuracy
metric.21 Transfer learning to our conjoint choice task was
achieved by “freezing” parameters in the “bottom” layers of
the neural network, removing the “top” classification layer,
and adding new layers on top to train for conjoint choice predic-
tion. These new layers consisted of two nonlinear layers of size
64 before input into a final logit layer for classification. Last, we
benchmarked three nonlinear machine learning models as well
as an HB model with pairwise interaction terms in an effort to
assess how interactions between the visual characteristics influ-
ence consumer choice.

Table 7 reports out-of-sample hit rates. Out-of-sample
splits were defined by holding out CBC conjoint tasks for
each respondent (stratified splitting), as is conventional in
the conjoint analysis literature (Gustafsson, Herrmann, and
Huber 2013) and in preference learning in the machine learn-
ing literature (Fürnkranz and Hüllermeier 2010). We find that
the homogeneous logit model achieves the lowest prediction
accuracy, a finding that is perhaps unsurprising given that out

of all benchmarked models, this model makes the strongest
(implicit) assumptions on the data and does not account for
heterogeneity. The nonlinear machine learning models
achieved relatively high hit rates, with random forests and
XGBoost outperforming the two neural networks, namely a
feedforward neural net on the visual characteristics and the
ResNet50 pretrained deep learning model on the generated
images.

The HB model with a linear utility specification
achieved the highest prediction accuracy, reflecting the
value of modeling both observed and unobserved consumer

Figure 10. Consumer Preferences.
Notes: Panel A shows cor(βk, βl) for each pair of visual characteristics k and l.

Table 7. Conjoint Model Accuracy.

Model
Out-of-Sample Hit

Rate (SD)

Disentangled embedding+ logit model

(homogeneity)

62.97% (2.90%)

Disentangled embedding+ neural net

(homogeneity)

65.81% (2.22%)

Pretrained deep learning model

embedding (observable heterogeneity)

68.31% (1.54%)

Disentangled embedding+ neural net

(observable heterogeneity)

67.52% (.92%)

Disentangled embedding+ random forest

(observable heterogeneity)

68.77% (.90%)

Disentangled embedding+XGBoost

(observable heterogeneity)

69.10% (.41%)

Disentangled embedding+HB
model (+ unobserved
heterogeneity)

71.61% (1.69%)

Disentangled embedding+HB model with

interactions (+ unobserved

heterogeneity)

70.82% (1.50%)

Notes: In this table, the model in bold has the highest performance, and

“heterogeneity” refers to consumer-level heterogeneity.

21 ResNet50 consists of 50 layers consisting of 48 convolutional layers, each
with batch normalization, rectified linear, and residual connection between
layers. We used pretrained parameters originally estimated on the ImageNet
benchmark dataset.
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heterogeneity.22 The HB multinomial logit (MNL) with
interactions did not obtain a higher accuracy than the HB
MNL model without the (explicit in likelihood) interaction
terms. We believe this is likely due to two reasons. First,
the HB model without interactions models the correlations
in consumer preferences across characteristics, as we are
estimating a full covariance matrix (i.e., not isotropic or
diagonal). Second, we observed lack of convergence,
likely from model overparameterization. Our parameteriza-
tion of the HB MNL model with interactions required us
to model the (explicit) interaction parameters as being
homogeneous (not conditional on covariates). Without this
simplification, the number of parameters would increase
substantially.23 In short, we believe that explicit modeling
of interactions, specifically for this dataset, resulted in a
less parsimonious model than the HB MNL model, resulting
in worse out-of-sample performance. While this finding is in
line with recent marketing research (Smith, Seiler, and
Aggarwal 2023), this suggests that more research into
when conventional methods outperform machine learning
methods is needed.

Generating New “Ideal Point” Product Designs for
Customer Segments
Developing new products and their product positioning is critical to
firms (Rao 2014). “Ideal point” refers to the optimal positioning of
a new product in characteristic space based on preferences, often of
a targeted consumer segment (DeSarbo, Ramaswamy, and Cohen
1995; Lee, Sudhir, and Steckel 2002; Wedel and Kamakura 2000).
Identification of such ideal points has been extensively studied in
marketing research and practice for over 50 years (Hauser and
Urban 1977; Johnson 1971). The general approach involves the fol-
lowing steps: (1) obtain data on a consumer or segment stated or
revealed preferences over a set of existing products that are repre-
sented by product characteristics, (2) estimate a predictive model of
preferences over these characteristics, and (3) identify new points in
product characteristic space corresponding to the position of the
maximally preferred product of the customer or segment.

We build on this work by generating “ideal point” visual
designs, in our case, maximally preferred watch designs for
two chosen customer segments. Recent work in marketing
has likewise used generative modeling to obtain preferred
product designs (Burnap, Hauser, and Timoshenko 2023;
Cheng, Lee, and Tambe 2022; Dew, Ansari, and Toubia
2022). The difference is that our method is based on interpret-
able visual characteristics that were unknown a priori and dis-
covered by our model without human input. Moreover, and

critically for generative design, we can vary any subset of
them separately to create designs that span the space of visual
characteristics. Interpretability is highly desirable and often
required by practitioners for implementing these systems
(Bloch 1995; Norman 2004).

We identify two customer segments to design “ideal point”
products for from customer preferences estimated using the
HB model on the conjoint survey data. Segment 1 corresponds
to “affluent women,” who self-reported that they were female
and made more than $100,000, and Segment 2 corresponds to
“less affluent men,” who self-reported that they were male
and made less than $50,000. The variables and thresholds that
used segmentation were chosen via the HB estimated Θ
matrix connecting customer covariates and visual characteris-
tics, as shown in Figure 10.

We next generate new visual designs for watches corre-
sponding to the “ideal point” product (i.e., optimal visual char-
acteristics) for each segment and plot them in Figure 11. The
“ideal point” refers to a point in the visual characteristic
space corresponding to the maximal expected utility of consum-
ers in a given segment, constrained to lie in a feasible portion of
the visual characteristic space (DeSarbo, Ramaswamy, and
Cohen 1995). “Feasible” must be defined given our (conven-
tional) assumption of utility as an inner product between con-
sumer preferences and (visual) product characteristics (i.e.,
“more is better”). We defined the “ideal point” product zs for
segment s as the segment’s preference coefficients scaled to
the average Euclidean norm ρc of the set of C existing products
in the market.24 Alternative models that instead search the char-
acteristic space via optimization methods could also be used

Figure 11. Generated “Ideal Point” Watches for Two Segments.

22 We note that the conjoint survey design measured consumer responses over
three levels of each of the discovered visual characteristics, which is likely to
favor linear utility models over more nonlinear specifications.
23 Specifically, we would have to model the likelihood using explicit terms for
the six main effects and 15 interaction effects, in addition to their covariance
matrix, which would be of size (6+ 15)× (6+ 15).

24 This norm scaling ρs
ρc

is an assumption required for us to define an “ideal
point,” given that we have assumed the conventional inner-product-based
utility model between consumer preference and product (visual) characteristics.
Without this assumption (or a similar bound), the “ideal point” would be at
infinity (Kaul and Rao 1995). Intuitively, this assumption and our definition
of zs is analogous to “ideal point” methods in that we are finding the location
on a hypersphere in which inverse distance from that point results in
maximum utility for the segment (DeSarbo, Ramaswamy, and Cohen 1995;
Hauser and Simmie 1981).
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(Belloni et al. 2008; Michalek, Feinberg, and Papalambros
2005). The ideal point zs is specified as

zs = ρs
ρc

�β, ρs = ∥�β ∥2 , ρc =
1

C

∑C
j=1

∥ zj ∥2 , (10)

where ∥· ∥2 denotes the Euclidean norm.
Last, we calculate the expected choice share of adding the

ideal point product for each segment to the market. For each
segment, we assume C= 10 such that the segment’s consider-
ation set consists of the top 10 products by utility in the
overall set of existing products (729 existing watches used in

the conjoint survey). Since we have heterogeneity at the
individual-level βi, not every customer will have the same top
10, so we defined the segment’s top 10 as the 10 watches that
appeared most frequently when aggregated across individual
customers. We note that with the given definition of ideal
point, we may not always see the ideal point visual design
having the highest choice share, so it can be viewed as a conser-
vative interpretation.

Figure 12 shows the change in expected choice shares for
each segment’s “ideal point” and the top 10 existing products
for the segment. We find 16.5% choice share for Segment 1’s
ideal point and 18.1% choice share for Segment 2’s ideal

Figure 12. Segment-Level Choice Shares With and Without Ideal Point Product.
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point visual design, indicating that the new ideal point product
did indeed align with segment-level preferences. Thus, the
“ideal point” generated product obtained substantial choice
share from existing products for each segment. We note this
analysis did not elicit (and subsequently estimate) individual
consumer preferences for an outside option, and is therefore
limited to choice shares rather than market shares.

Discussion and Conclusion
Despite the importance of visual characteristics, the automatic
identification and quantification of visual characteristics that
represent visual design (and corresponding consumer response)
has remained an open challenge. This is important as consumers
have preferences over visual design across a wide range of
product characteristics (Bloch 1995). Marketing research has
a long history of studying visual design, but only recently has
had access to representations of visual characteristics that are
realistic (e.g., images) while also being human-interpretable.

Our research develops a methodology to automatically dis-
cover and quantify visual design characteristics using a combi-
nation of unstructured product image data, in conjunction with
structured product characteristics and price. In contrast to
machine learning methods, which require ground truth, we
use structured characteristics to supervise the disentanglement
model to enhance its performance. The discovered characteris-
tics are disentangled, and interpretable by humans. Moreover,
we can generate novel counterfactual designs by varying the
levels of the discovered characteristics one at a time. We use
this flexibility to conduct visual conjoint design and obtain con-
sumer preferences over visual characteristics, which are then
used to generate targeted “ideal point” visual designs.

Our approach has specific limitations worth noting and
addressing in future research. First, it requires structured data
to be matched to corresponding unstructured data; our applica-
tion used watch images matched to structured characteristics,
but other applications may not have structured data as readily
accessible. Second, although the model does not require
human intervention, the data are preprocessed to ensure center-
ing, similar size, background color, and orientation. Third, no
algorithm can guarantee semantic interpretability of discovered
visual characteristics, because that is a uniquely human ability
(Higgins et al. 2021; Locatello et al. 2019). However, we vali-
date our proposed method and find that it performs well quan-
titatively both with disentanglement metrics (UDR) and in
human interpretability. Fourth, the performance of our (basic)
model architecture likely varies with quality and resolution of
images; richer characteristics in higher-resolution images may
necessitate adjustments. Last, though literature heavily suggests
the importance of visual stimuli in conjoint analysis (Dahan and
Srinivasan 2000; Dotson et al. 2019; Sylcott, Orsborn, and
Cagan 2016), future work could provide more direct compari-
sons between visual and traditional text descriptors.

Several questions are worthy of note for future research.
First, it is important to understand the underlying reason why
a particular product characteristic serves as a good supervisory

signal in any specific product category. Second, it would be
useful to understand what combinations of product characteris-
tics typically improve disentanglement the most across product
categories, and the underlying reason. Likewise, developing
neural network architectures with inductive biases for disentan-
glement would be valuable. Third, examining the performance
of this method or similar methods in other modalities like text or
audio would help answer questions around practical usage for
other marketing tasks. Since consumer decision-making is
likely to depend on multiple sources of information and persua-
sion, it would be interesting to examine whether having one
modality helps improve the impact of another; for example,
the presence of text might help disentangle images better.
Fourth, this article raises interesting questions on when a low-
dimensional interpretable representation combined with con-
ventional methods such as the HB model could outperform
complex machine learning methods pretrained on a much
broader set of image data (i.e., millions of images). Finally, it
would be interesting to examine how visual characteristics
may be incorporated into models of demand and supply, so
that we can understand both consumer preferences and firm’s
strategic choices involving visual design.
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A Discovery of Visual Characteristics across Models

We compare the visual characteristics discovered by our disentanglement approach with bench-

mark models like Autoencoders, Variational Autoencoders and Unsupervised Disentanglement.

Comparison among Disentanglement Models: Figure A.1 show the discovered visual charac-

teristics learned by the supervised approaches corresponding to three cases: supervised with high

UDR, supervised with low UDR and the unsupervised approach. We compare the human inter-

pretability of the visual characteristics obtained from the supervised disentanglement approach

with the ones obtained from the unsupervised approach using consumer surveys. In these surveys,

we ask consumers whether they are able to interpret the discovered visual characteristics. From

Table A.1, we can see that on average consumers are better able to interpret the visual characteris-

tics from the supervised approach as compared with the unsupervised approach. Thus, the results

of these survey validate that supervision helps us obtain more disentangled visual characteristics

in addition to just using the UDR metric.1

Table A.1: Human Interpretation of Visual Characteristics

Visual Characteristic Mean [95% CI] % Improvement

Supervised Unsupervised

Dial Color 0.80 [0.70, 0.89] 0.81 [0.72, 0.90] –†

Dial Size 0.76 [0.66, 0.86] 0.78 [0.69, 0.88] –†

Strap Color 0.88 [0.80, 0.96] 0.90 [0.83, 0.97] –†

Rim Color 0.79 [0.69, 0.88] 0.42 [0.30, 0.54] 88.1%
Dial Shape 0.87 [0.79, 0.95] 0.49 [0.37, 0.61] 90.5%
Knob Size 0.70 [0.59, 0.80] 0.56 [0.44, 0.68] 25.0%

Across All 6 Char 0.80 [0.76, 0.84] 0.67 [0.62, 0.71] 21.2%
† The mean interpretability of the visual characteristic in the supervised approach

overlaps with the 95% CI of the interpretability of the unsupervised.

We note that although we find supervision helps disentanglement, and that supervision is re-

quired for overcoming the “impossibility theorem” discussed in Locatello et al. (2019), unsuper-

vised disentanglement has a known ability to discover some visual characteristics. This observa-

tion helped spur the drive towards more control over the VAE objective by decomposing it into

1To assess the variability and reliability of our sample estimates, we employed a bootstrap resampling method.
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Figure A.1: Discovered Visual characteristics from Multiple Supervisory Signals

(a) High UDR: ‘Brand’, ‘Circa’ & ‘Movement’ Supervisory Signal
Low Quantified Level High Quantified Level

z1

z2

z3

z4

z5

z6

(b) Low UDR: ‘Circa’ Supervisory Signal
Low Quantified Level High Quantified Level

z1

z2

z3

z4

z5

z6

(c) Unsupervised Approach
Low Quantified Level High Quantified Level

z1

z2

z3

z4

z5

z6

Notes: Latent traversals along a focal watch used to visualise the semantic meaning encoded by single visual
characteristic learnt by a trained model. In each row, the quantitative level of a single characteristic is varied keeping
the other characteristics fixed. The resulting reconstruction is visualized. a: Discovered visual characteristics learned
by supervising the characteristics to predict the brand, circa, and movement simultaneously. b: Discovered visual
characteristics learned by supervising the characteristics to predict the circa simultaneously. c: Discovered visual
characteristics learned by the unsupervised approach.
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terms that explicitly control disentanglement (Chen et al. 2018; Hoffman and Johnson 2016). In

short, several factors may be at play, including (1) the common prior assumption of isotropic Gaus-

sian has no off-diagonal covariance terms, promoting uncorrelatedness of the embedding; and (2)

VAEs pursue PCA direction (locally) (Rolinek, Zietlow, and Martius 2019). Further intuition for

why unsupervised disentanglement can work in practice at all is well-discussed in Mathieu et al.

(2019).

Comparison with Benchmark Models: We obtain the visual characteristics discovered by an an

autoencoder (AE) and a variational autoencoder (VAE) to serve as reference to the disentanglement

model. Figure A.2 gives the output of discovered visual characteristics from an autoencoder and

a variational autoencoder. We show the top six visual characteristics based on the KL divergence

value of the difference between the posterior and the Gaussian prior.

We cannot interpret any of the visual characteristics discovered by the AE. Note that these

characteristics are not uninformative because their KL divergence is not close to 0. We find that

the VAE leads to entanglement. By entangled, we mean that when any one entangled characteristic

is changed while others are fixed, the watch image changes in more than one interpretable visual

characteristic. This is unlike a disentangled model in which there is a one-to-one mapping between

visual characteristics and latent factors of variation.
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Figure A.2: Discovered Visual characteristics from Different Methods

(a) Autoencoder
Low Quantified Level High Quantified Level

z1

z2

z3

z4

z5

z6

(b) Variational Autoencoder
Low Quantified Level High Quantified Level

z1

z2

z3

z4

z5

z6

Notes: Latent traversals along a focal watch used to visualise the semantic meaning encoded by single visual
characteristic learnt by a trained model. In each row, the quantitative level of a single characteristic is varied keeping
the other characteristics fixed. The resulting reconstruction is visualized. a: Discovered visual characteristics learned
by Autoencoder. b: Discovered visual characteristics learned by Variational Autoencoder.
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B Connections with Existing Marketing Methods

We include a high-level comparison of the methods in Table B.1.

Table B.1: Comparison of Methods

Method PCA MDS AE VAE Disentanglement

Dimensionality Reduction Yes Yes Yes Yes Yes
Reconstruction of Existing Examples Yes Yes Yes Yes Yes
Generation of New Examples No No No Yes Yes
Use with Unstructured Data Yes Yes Yes Yes Yes
Interpretability using Unstructured Data No No No No Yes
Stochastic (S) or Deterministic (D) D D D S S
Non-Linear Transformations No No Yes Yes Yes

Several methods used in marketing can be used to compress high-dimensional data

into a lower-dimensional representation as shown in Table B.1. The simplest and per-

haps most well-known is principle component analysis (PCA). PCA assumes that the

data lie on a linear subspace and captures the global linear structure in the data. PCA

has been used in marketing for dimensionality reduction (Liu, Singh, and Srinivasan

2016; Kappe and Stremersch 2016) in order to make solving the models tractable.

Multi-dimensional scaling (MDS) is a method that aims to minimize dissimilarity be-

tween distances in the high-dimensional data and distances in the lower-dimensional

representation. MDS is a general method as “distance” can be nonlinear and even

non-metric; however, conventionally researchers assume Euclidean distances which

makes it equivalent to PCA (Williams 2000). While PCA and MDS have been widely-

used in marketing to reduce data dimensionality for managerial interpretation (Lee and

Bradlow 2011), these methods are not well suited to capturing complex nonlinear re-

lationships in unstructured data (Linting et al. 2007). Consequently, they are likewise

not well suited for our goal of discovering interpretable visual characteristics directly

from unstructured image data.

An autoencoder (AE) (Baldi and Hornik 1989; Rumelhart, Hinton, and Williams 1986)

is a nonlinear method that focuses on reconstructing the original high-dimensional data

6



(typically unstructured data such as images), while compressing the original data into a

lower-dimensional representation. Autoencoders can capture complex nonlinear rela-

tionships, especially those prevalent in visual data, and thus typically outperform linear

methods like PCA in terms of reconstruction accuracy (Mika et al. 1998). An AE is

equivalent to PCA if it is restricted to only linear transformations (Roweis and Ghahra-

mani 1999; Bengio, Courville, and Vincent 2012). While the AE can reconstruct the

original data with medium-to-high fidelity, it cannot generate new out-of-sample data

that it has never seen. Thus, similar to the case of PCA and MDS, we cannot term it

as a generative model.

In contrast, a variational autoencoder (VAE) is a probabilistic generative model that

similarly represents high-dimensional data using lower-dimensional latent variables

(Kingma and Welling 2014). The VAE takes a Bayesian approach by learning the

latent variable distributions using variational inference. While architecturally similar

to the (non-generative) AE, the VAE is able to generate new data that are similar to

the input data by sampling from its probabilistic generative model by conditioning on

the latent variables. Lastly, β-TCVAE (Chen et al. 2018) builds upon VAE by: (a)

promoting statistical independence in the latent space; (b) discourages data copying

by minimizing mutual information between the input data and the latent space; (c)

minimizes the number of truly informative dimensions. The above objectives are often

conflicting, and the model uses hyperparameters that decide the weights associated

with these terms.

Comparison of Generative Methods: The two broad classes of generative models

are based on variational autoencoders (VAEs) (Kingma and Welling 2014) and genera-

tive adversarial networks (GAN) 2 (Goodfellow et al. 2020). Most state-of-the-art dis-

entangled representation learning methods are based on VAEs. VAEs are comprised

of two models – the encoder neural net and the decoder neural net. The encoder neural

net compresses high-dimensional input data to a lower-dimensional latent vector (la-

tent characteristics), followed by inputting the latent vector to the decoder neural net

2In a GAN, two neural networks compete with each other in a zero-sum game to become more accurate.
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which outputs a reconstruction of the original input data. VAEs balance having both

a low reconstruction error between the input and output data (e.g., images, text), as

well as a KL-divergence of the latent space distribution (latent characteristics) from a

researcher-defined prior distribution (e.g., Gaussian). The KL-divergence term acts as

a regularizer on the latent space, such that it has desired structure (smoothness, com-

pactness). VAEs are parameterized in both the encoder neural net and decoder neural

net using neural networks whose parameters are learned jointly.

Table B.2: Comparison between VAE and GAN based methods

# Topic VAE GAN Source

1 Disentanglement Performance High Low (Lee et al. 2020)
2 Quality of generated image Low High (Lee et al. 2020)
3 Training instability Low High (Lee et al. 2020)
4 Local v Global Concepts Global Local (Gabbay, Cohen, and Hoshen 2021)
5 Data requirement Low High (Karras et al. 2020)
6 Ability to work on small or detailed objects No Yes (Locatello et al. 2020)

Notes: 1,2,3 According to Lee et al. (2020): “VAE-based approaches are effec-
tive in learning useful disentangled representations in various tasks, but their
generation quality is generally worse than the state-of-the-arts, which limits its
applicability to the task of realistic synthesis. On the other hand, GAN based
approaches can achieve the high-quality synthesis with a more expressive de-
coder and without explicit likelihood estimation. However, they tend to learn
comparably more entangled representations than the VAE counterparts and are
notoriously difficult to train, even with recent techniques to stabilize the train-
ing.” 4: According to Gabbay, Cohen, and Hoshen (2021): “Such methods that
rely on a pretrained unconditional StyleGAN generator are mostly successful in
manipulating highly-localized visual concepts (e.g. hair color), while the con-
trol of global concepts (e.g. age) seems to be coupled with the face identity.”
5: According to Karras et al. (2020): “Acquiring, processing, and distributing
the 105 — 106 images required to train a modern high-quality, high-resolution
GAN is a costly undertaking. The key problem with small datasets is that the
discriminator overfits to the training examples; its feedback to the generator
becomes meaningless and training starts to diverge.” 6 According to Locatello
et al. (2020): “It is however interesting to notice how the GAN based methods
perform especially well on the data sets SmallNORB and MPI3D where VAE
based approaches struggle with reconstruction as the objects are either too de-
tailed or too small.”

Several methods based on GANs have also been used for disentanglement. InfoGAN

was one of the first scalable unsupervised methods for learning disentangled repre-

sentations (Chen et al. 2016). While GANs are typically less suited relative to VAEs
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for representation learning, as GANs traditionally do not infer a representation3, Info-

GAN explicitly constrains a small subset of the ‘noise’ variables to have high mutual

information with generated data. Several VAE-based methods have proven to be su-

perior (Kim and Mnih 2018; Chen et al. 2018) than InfoGAN. Recent methods based

on StyleGAN (Karras, Laine, and Aila 2019) such as Info-StyleGAN (Nie et al. 2020)

are able to perform disentanglement at a much higher resolution (1024×1024) unlike

the VAE-based methods. However, unlike InfoGAN, Info-StyleGAN suffers from the

need for human labels or pretrained models, which can be expensive to obtain (Voynov

and Babenko 2020).

We choose a VAE-based approach over a GAN-based approach for several reasons.

First, our goal is to propose an easy-to-train method that can be used by researchers

as well as practitioners (Lee et al. 2020). Second, our goal of discovering unique

(visual) characteristics that are human interpretable and independent of each other re-

quires high disentanglement performance, but reconstruction accuracy is not our pri-

mary goal (Lee et al. 2020). GANs suffer from lower disentanglement performance

because they focus on localized concepts but not global concepts of the image (Gab-

bay, Cohen, and Hoshen 2021). On the other hand, discovered characteristics from

VAEs are much more globally distributed as compared with GANs. This allows the

VAE-based methods to discover few important and human interpretable unstructured

(visual) characteristics that can represent the input raw data. Third, one of the benefits

of our approach is that we are able to not just discover disentangled characteristics,

but infer the levels of these characteristics for all datum in the data. This enables use

in downstream marketing tasks that require characteristic levels, for example, visual

conjoint analysis to understand consumer preferences. GANs do not conventionally

infer a representation of the data, and hence do not have this benefit. Finally, VAEs of-

ten require less data to train in comparison with GANs (Karras, Laine, and Aila 2019).

Thus, even though GANs can provide much better reconstruction and work better for

small and detailed objects (Locatello et al. 2020), we choose a VAE-based approach

3Moreover, GANs tend to suffer from training instability. Common failure modes are vanishing gradients, mode collapse, and
failure to converge.
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because of its suitability to our research question.
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C Disentanglement with a Simple Geometric Shape

Consider the dataset of 2D objects dSprites (Higgins et al. 2017). Each image in this data

(see Figure C.1) shows an object of a specific shape, size and color at a specific location in the

image. Across images, we can see different possible combinations of these visual characteristics.

The objective of disentanglement is to separate out these independent factors of variation to obtain

object shape, position, size, and color as the 4 latent dimensions discovered by the disentanglement

model. The advantage of disentanglement is that, even when the dimensionality of the latent space

is increased to a large number, it will only discover these true factors of variation (shape, size,

color and position).

Figure C.1: Sample of dSprites Images
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D Disentanglement in a Different Product Category – Sneakers

Our data includes sneakers sold at a fashion e-commerce firm. For each sneaker in the dataset,

we have its image, brand, and price. Figure D.1 shows a sample of sneaker images in our dataset.

We obtained the dataset of sneakers sold on a fashion e-commerce firm in March 2023. These

shoes were classified as sneakers by the retailer. Overall, our dataset includes 2,227 unique sneaker

models with an average of 2.5 images per sneaker model. The size of the overall dataset includes

5,575 images. We only included the side view of sneakers in order to focus on the variation in the

shape of the sneakers. Finally, we specifically used grayscale images because each sneaker model

with the same shape comes in multiple colors. We preprocessed each image to have the size of

128x128 dimensions to keep the images consistent with the watch category. A total of 247 unique

brands are present in the data. Skechers, Vans, New Balance, adidas and ASICS are the five brands

with the largest share of observations. Table D.1 provides summary statistics of the sneakers.

We use the same deep learning model architecture as well as the same hyperparameters (except

the disentanglement hyperparameters β and δ) as the one used for learning visual characteristics of

watches. We follow the same method for training the model, selecting the hyperparameters β and

δ based on lowest supervised loss on a held-out dataset and then evaluating different supervisory

signals for the sneakers category using Unsupervised Disentanglement Ranking (UDR).

Figure D.1: Sample of Sneakers

From Table D.2, we show that price serves as the most effective supervisory signal for learn-

ing human-interpretable visual characteristics for sneakers. To understand why price is the most

effective supervisory signal, we calculate the Signal Effectiveness score that relies on the intuition

that better or more informative signals will generate more separation in latent visual characteris-

tics. Consistent with this intuition, in sneakers, the Signal Effectiveness Score for brands is 0.26
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Table D.1: Summary Statistics of Structured characteristics of Sneakers

Statistic Mean SD Min Max

Brand (Skechers) 0.09 0.29 0 1
Brand (Vans) 0.08 0.28 0 1
Brand (New Balance) 0.07 0.26 0 1
Brand (adidas) 0.06 0.24 0 1
Brand (ASICS) 0.05 0.22 0 1
. . .
Brand (Others) 0.14 0.34 0 1
Price (in $s) 112.30 46.45 30.00 650.00

compared with 0.32 for discrete prices.

Table D.2: Comparison of Different Supervisory Approaches

Number of Signals Supervisory Signals UDR

0 Unsupervised 0.126
1 Brand 0.093
1 Price (5 Discrete Classes) 0.267

Figure D.2 gives an output of discovered visual characteristics corresponding to the supervisory

signals ‘price’. In each row of the figure, we show how the sneaker image changes based on

changes in levels of one visual characteristic, while keeping all the other characteristics fixed. We

only show three visual characteristics as rest of the characteristics are found to be uninformative

i.e. the KL divergence of the posterior was not much different from the Gaussian prior. Traversing

along an uninformative characteristic leads to no visual change, and we show one uninformative

characteristic for reference.
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Figure D.2: Discovered Visual Characteristics of Sneakers

Upper Color
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Notes: Latent traversals along a focal sneaker used to visualise the semantic meaning encoded by single visual

characteristic learnt by a trained model. In each row, the quantitative level of a single characteristic is varied keeping
the other characteristics fixed. The resulting reconstruction is visualized. Discovered visual characteristics learned by
supervising the characteristics to predict the price simultaneously.
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E Model Architecture

The model architecture is detailed in Figure E.1. The encoder neural net for the VAEs con-

sisted of 5 convolutional layers, each with 32 channels, 4 × 4 kernels, and a stride of 2. This

was followed by 2 fully connected layers, each of 512 units. The latent distribution consisted of

one fully connected layer of 40 units parameterizing the mean and log standard deviation of 20

Gaussian random variables. The decoder neural net architecture was the transpose of the encoder

neural net but with the output parameterizing Bernoulli distributions over the pixels. Leaky ReLU

activations were used throughout. We used the Adam optimizer with the learning rate 5e-4 and

parameters b1 = 0.9 and b2 = 0.999. We set batch size equal to 64. We train the model for 100

epochs. Portions of our codebase were built on elements sourced from the disentangling-vae open

source project (Dubois et al. 2019).

Figure E.1: Model Architecture
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F Summary Statistics of Structured Characteristics of Auctioned
Watches

Table F.1 provides summary statistics of the auctioned watches.

Table F.1: Summary Statistics of Structured Characteristics of Auctioned Watches

Statistic Mean SD Min Max

Brand (Audemar’s Piguet) 0.06 0.24 0 1
Brand (Cartier) 0.07 0.25 0 1
Brand (Patek Philippe) 0.20 0.40 0 1
Brand (Rolex) 0.18 0.38 0 1
Brand (Others) 0.49 0.50 0 1
Circa (Pre-1950s) 0.05 0.21 0 1
Circa (1950s) 0.05 0.22 0 1
Circa (1960s) 0.07 0.26 0 1
Circa (1970s) 0.10 0.30 0 1
Circa (1980s) 0.08 0.26 0 1
Circa (1990s) 0.19 0.39 0 1
Circa (2000s) 0.33 0.47 0 1
Circa (2010s) 0.14 0.35 0 1
Movement (Automatic) 0.54 0.50 0 1
Movement (Mechanical) 0.36 0.48 0 1
Movement (Quartz) 0.11 0.31 0 1
Watch Dimensions (in mm) 36.21 6.83 9 62
Material (Gold) 0.60 0.49 0 1
Material (Gold and Steel) 0.05 0.22 0 1
Material (Steel) 0.28 0.45 0 1
Material (Others) 0.07 0.25 0 1
Hammer Price (in $000s) 23.25 55.18 1.00 950.20

Notes: The unit of analysis for each auction is a single watch.
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G Summary Statistics of Visual Characteristics of Auctioned
Watches

Table G.1 details the summary statistics of the visual characteristic levels learned.

Table G.1: Summary Statistics of Discovered Visual Characteristics

Visual characteristic Mean SD Min Max

Dial Size −0.32 1.42 −9.86 9.92
Dial Color −0.50 1.52 −3.49 7.20
Strap Color −0.24 1.67 −3.43 4.82
Rim (Bezel) Color −0.26 0.90 −6.26 6.14
Dial Shape 0.24 0.95 −7.48 3.09
Knob (Crown) Size −0.17 0.95 −8.14 10.20
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H Watches: UDR and Hyperparameters for Different Super-
visory Signals

Table H.1 lists the UDR corresponding to each combination of supervisory signals. Table H.2

lists the hyperparameters obtained for each combination of supervisory signals.

Table H.1: Comparison of Different Supervisory Approaches (at Optimal Hyperparameter
Weights for Each Signal)

Number of Signals Supervisory Signals UDR

0 Unsupervised 0.131
1 Brand 0.316
1 Circa 0.111
1 Material 0.130
1 Movement 0.122
1 Price (2 Discrete Classes) 0.122
2 Brand & Circa 0.382
2 Brand & Material 0.349
2 Brand & Movement 0.123
2 Brand & Price 0.120
2 Circa & Material 0.209
2 Circa & Movement 0.338
2 Circa & Price 0.103
2 Material & Movement 0.119
2 Material & Price 0.108
2 Movement & Price 0.140
3 Brand, Circa & Material 0.260
3 Brand, Circa & Movement 0.414
3 Brand, Circa & Price 0.342
3 Brand, Material & Movement 0.206
3 Brand, Material & Price 0.299
3 Brand, Movement & Price 0.273
3 Circa, Material & Movement 0.364
3 Circa, Material & Price 0.230
3 Circa, Movement & Price 0.224
3 Material, Movement & Price 0.080
4 Brand, Circa, Material & Movement 0.242
4 Brand, Circa, Material & Price 0.293
4 Brand, Circa, Movement & Price 0.279
4 Brand, Material, Movement & Price 0.262
4 Circa, Material, Movement & Price 0.322
5 Brand, Circa, Material, Movement & Price 0.321
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Table H.2: Optimal Hyperparameters Obtained by Model Selection Criteria

Approach Signal # Signals β δ

Unsupervised − 0 18 0
Supervised Brand 1 18 50
Supervised Circa 1 4 35
Supervised Material 1 6 25
Supervised Movement 1 4 20
Supervised Price 1 1 16
Supervised Price (with 2 classes) 1 22 45
Supervised Brand and Circa 2 48 5
Supervised Brand and Material 2 50 1
Supervised Brand and Movement 2 6 20
Supervised Brand and Price 2 6 25
Supervised Circa and Material 2 36 1
Supervised Circa and Movement 2 50 5
Supervised Circa and Price 2 4 18
Supervised Material and Movement 2 6 10
Supervised Material and Price 2 4 20
Supervised Movement and Price 2 12 20
Supervised Brand, Circa and Material 3 48 1
Supervised Brand, Circa and Movement 3 50 1
Supervised Brand, Circa and Price 3 50 1
Supervised Brand, Material and Movement 3 40 1
Supervised Brand, Material and Price 3 50 1
Supervised Brand, Movement and Price 3 48 1
Supervised Circa, Material and Movement 3 48 1
Supervised Circa, Material and Price 3 46 1
Supervised Circa, Movement and Price 3 42 1
Supervised Material, Movement and Price 3 1 1
Supervised Brand, Circa, Material and Movement 4 44 1
Supervised Brand, Circa, Material and Price 4 50 1
Supervised Brand, Circa, Movement and Price 4 50 1
Supervised Brand, Material, Movement and Price 4 44 1
Supervised Circa, Material, Movement and Price 4 44 1
Supervised Brand, Circa, Material, Movement and Price 5 44 1
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I Using Shapley Values (SHAP) for Disentanglement

In this section, we use an alternative approach to discover visual characteristics. The idea

behind this approach is to identify select elements (pixels) of each input image that are predictive

of a supervisory signal, and then use those elements as an input to the disentanglement model.

In this approach, we first train a deep learning model to predict the supervisory signal (e,g.

brand) from images. Next, we calculate SHAP values to identify which features of the deep learn-

ing model drive the model’s results (Lundberg and Lee 2017). The SHapley Additive exPlanations

(SHAP) technique utilizes game theory to interpret the results of machine learning models. It con-

nects optimal credit allocation with local explanations using the classic Shapley values from game

theory and their related extensions (Shapley 1997). SHAP values of each feature captures the con-

tribution of each feature to overall model predictions. It is calculated by estimating differences

between models with subsets of the feature space and then averaging across samples.

We calculate SHAP values to rank the features based on their contribution to the model’s out-

put. The higher the SHAP value for a feature, the more significant its contribution. We then sort

the SHAP values in descending order to select the pixels corresponding to the top features using

the SHAP values as a mask. These image subsamples are used as an input to the disentanglement-

based VAE model. Figure I.1 shows a sample of images fed to the disentanglement-based VAE

model using this approach.

Figure I.2 gives example output of discovered visual characteristics from this approach. In

each row of the figure, we show how the watch image changes based on changes in levels of one

selected visual characteristic, while keeping all the other characteristics fixed. We show the top

six visual characteristics based on the KL divergence value of the difference between the posterior

and the Gaussian prior. We can only interpret the first three visual characteristics. The next three

visual characteristics appear to be entangled. By entangled, we mean that when any one entangled

characteristic is kept fixed and other characteristics are changed, the watch image changes in more

than one interpretable way. Note that these characteristics are not uninformative because their KL

divergence is not close to 0.
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Figure I.1: Sample of images from SHAP-based approach

Figure I.2: Discovered Visual Characteristics using SHAP-based approach

Dial Color
LIGHT

Dial Color
DARK

Strap Color
DARK

Strap Color
LIGHT

Dial Size
SMALL

Dial Size
LARGFE

Unknown
UNKNOWN

Unknown
UNKNOWN

Unknown
UNKNOWN

Unknown
UNKNOWN

Unknown
UNKNOWN

Unknown
UNKNOWN

Low Quantified Level High Quantified Level

Notes: Latent traversals along a focal watch used to visualise the semantic meaning encoded by single visual char-
acteristic learnt by a trained model. In each row, the quantitative level of a single characteristic is varied keeping the
other characteristics fixed. The resulting reconstruction is visualized.
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J Conjoint Analysis: Survey Design and Model Estimation

Conjoint Survey Stages The conjoint survey stages are summarized along with their purpose in

Table J.1.

Table J.1: Conjoint Survey Design Elements

Stage Name Purpose

1 Introduction Explain purpose of study and obtain consent.1

2 Category Identification Open-ended questions to determine whether respondents were
able to identify what category (e.g. shoes) a blurry image be-
longed to.2

3 Instructional Manipulation
Check (IMC)

Attention check “trap question” for post-hoc respondent filtering.

4 Choice-Based Conjoint (CBC)
Instructions

Explain upcoming conjoint choice question tasks with instruc-
tions to choose based only on visual style.4

5 “Warm Up” CBC Practice Help respondents understand the range of watch designs before
making real choices.

6 15 CBC questions Elicit respondent choice of preferred watch design
7 Respondent Information Obtain demographic and psychographic variables7

1 Respondents were also instructed to be as “consistent” in their choices as possible, with a monetary incentive
of $2 for consistency (in addition to $3 for completion).

2 Respondents saw a set of 4 blurry images for each of the 3 product categories (automobiles, shoes, and
watches) similar to the generated watch designs from the disentanglement model. They were then asked for
a one word description of the images. We find that greater than 99% of respondents identify the product
category depicted in the images. We also used generated watch designs and find that 97% of respondents
identify the product category as watches.

4 Respondents were instructed to choose between two possible watch designs based only on visual style. No
other information such as price or other product characteristics were provided.

7 Respondents demographic variables (e.g., age, gender, income, education) as well as Likert and psycho-
graphic questions about how important visual appearance was to the respondent were obtained.

Estimation of HB Conjoint Analysis Model We estimated posterior distributions of HB model

parameters {{βi}Ni=1,Θ, µΘ,Λβ} with Markov chain Monte Carlo (MCMC) sampling using the

No-U-Turn (NUTS) sampler (Hoffman, Gelman et al. 2014). Sampling consisted of 1 chain,4 each

with 2,000 draws of which 2,000 were used for sampler tuning. Convergence of MCMC chains

was determined via acceptance criteria of the sampler and its targets (65%), and chain divergences

from trace plots (less than 5% draws diverging). Hyperparameter values for prior distributions

were determined from overlap of prior draws with posterior draws, and by using both in-sample

and out-of-sample hit rates.
4Note that we obtained better prediction accuracy numbers with more chains and across parallel GPUs, but report those with a

single deterministic chain for replicability.
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Our codebase was written in Python using the PyMC library (Patil, Huard, and Fonnesbeck

2010) which leverages the Jax, NumPyro, and Aesara graph compilation libraries to achieve

graphical processing unit (GPU) acceleration. Estimation using 1 RTX8000 takes around 15

minutes, with estimation using multiple GPUs approximately dividing the computational time by

the number of GPUs, but we note this is heavily dependent on GPU system configuration with

CUDA/OpenCL kernel libraries.
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