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Abstract

We develop a method to automatically discover and quantify human-interpretable visual character-

istics directly from product image data. Our method is also generative, and can create new ideal point

visual designs for targeted consumer segments. We build on disentanglement methods in deep learning

using variational autoencoders (VAEs), which aim to discover underlying statistically independent and

interpretable visual characteristics of an object. While the impossibility result in the deep learning

literature shows that supervision with ground truth characteristics is required to obtain unique disen-

tangled representations, these are typically unknown in real world applications, and are in fact exactly

the characteristics we aim to discover. The approach used in machine learning is to label the ground

truth of each visual characteristics, a task that requires human intervention and judgment to both de-

sign and operationalize. Our method in contrast uses readily available product characteristics (such

as brand and price) as proxy supervisory signals to enable disentanglement. We find that our method

discovers and quantifies human interpretable and statistically independent characteristics without any

specific domain knowledge on the product category. The approach is used with a dataset on watches to

automatically discover interpretable visual product characteristics, obtain consumer preferences over

designs, and generate new ideal point visual designs targeted to specific consumer segments.
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INTRODUCTION

Visual product characteristics are known to be a significant driver of consumer purchase across

a wide range of product categories, including automobiles, apparel, furniture, consumer technol-

ogy products and even houses (Simonson and Schmitt 1997; Bloch 1995; Heitmann et al. 2020).

This suggests their inclusion in quantitative marketing models for accurate forecasts of market

demand, as well as segmentation and targeting for new product design. However, while demand

has been traditionally modeled in marketing and economics as being based on underlying product

characteristics (e.g., Lancaster (1966)), identifying and quantifying visual design characteristics

remains a significant challenge. In contrast, structured product characteristics are readily char-

acterized and quantified, e.g. in the automobile market, this may include horsepower and fuel

efficiency; in housing, square footage and number of bedrooms; in apparel, size and material.1

We develop a method with the following aims related to visual design: a) identifying (discover-

ing) and quantifying human interpretable visual characteristics from product images, b) obtaining

consumer preferences across a range of generated visual designs (visual conjoint), and c) gen-

erating novel “ideal point” visual designs targeted to specific consumer segments. Our method

of obtaining interpretable visual characteristics could then be used in quantifying consumer pref-

erences, demand responses, and firms’ strategic choices in the visual domain. Discovery and

quantification of visual characteristics is a first step in enabling these analyses. Practitioners can

also use our method to generate visual designs for prototyping, visually differentiate their products

from market offerings, and generate new visual designs targeted to consumer segments.

Articulating why a product looks appealing and what aspects contribute to such appeal is chal-

lenging for consumers, practitioners, and researchers alike (Berlyne 1973). Methods for mod-

eling the visual characteristics of products require significant product knowledge, expertise and

judgment. The expert must manually identify and define which visual characteristics adequately

represent a product’s visual form (Bloch 1995). Even after defining visual characteristics in this

1We use the terminology since they can be represented in structured data.
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manner, the question remains of how to quantify these characteristics. To our knowledge, there is

no extant research in marketing that automatically characterizes and quantifies different aspects of

visual design in a human interpretable manner.2

Generative Design for Visual Conjoint: We demonstrate how to use these quantified visual

characteristics in an application of visual conjoint analysis. The generative aspect of our method is

critically important in obtaining consumer preferences across visual characteristics, since it allows

us to automatically generate images that vary the visual design separately along each of the discov-

ered characteristics. We obtain consumer preferences over these discovered visual characteristics

using a Hierarchical Bayesian (HB) model, accounting for consumer heterogeneity over observed

demographic and psychographic variables. We then show how our method can be used to auto-

matically generate novel and targeted product designs for consumer segments. Specifically, we

identify two segments of consumers, and obtain segment-level “ideal points” using their estimated

preferences over the disentangled visual characteristics. We then use the generative capability of

the method to generate novel designs corresponding to each segment’s most preferred watch de-

sign. We qualitatively show these “ideal point” visual designs are differentiated, and quantitatively

show they draw choice share away from existing product offerings.

Methodological Basis: We build upon the disentanglement stream of literature in representation

learning, an area of deep learning, with our primary goal of obtaining interpretable representations

from image data. According to Locatello et al. (2019), “the key idea behind this [disentangle-

ment learning] model is that the high-dimensional data [e.g. raw images] can be explained by

the substantially lower dimensional and semantically meaningful [to humans] latent variables.” ([]

indicate our additions for clarity).

Disentanglement learning is a form of representation learning (Bengio, Courville, and Vincent

2013), and commonly builds upon variational autoencoders (VAE) (Kingma and Welling 2014).

2Our focus here is not on discovering outlier characteristics that are particularly surprising to humans, especially experts.
Rather, it is to identify and quantify aspects directly from visual product images and show their use in generative design, all in an
automated manner.
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VAEs are comprised of an encoder neural net and decoder neural net, both of which are parameter-

ized by highly nonlinear deep neural networks. The encoder neural net takes high-dimensional un-

structured data (images) as input and outputs a latent low-dimensional vector of distributions (em-

bedding of visual characteristics). The VAE uses variational inference, an approximate Bayesian

approach, resulting in each of the latent (visual) characteristics represented as distributions rather

than “point estimates.” In contrast to (typical) deterministic neural networks, this stochastic ap-

proach helps model uncertainty over visual characteristics via a continuous and flexible latent

embedding distribution. This helps in our case for both having a consistent (and interpretable)

representation to estimate consumer preferences over, as well as smooth and controllable genera-

tion of novel visual designs. The decoder neural net takes as input the low-dimensional vector and

attempts to reconstruct the original data as output. The idea underlying representation learning is

that the “true” dimension of images in the data belonging to a category (e.g. a set of images of

watches) is much lower than the dimensionality of the raw images.3

Disentanglement aims at identifying a multi-dimensional latent representation in the image

data, where each dimension maps one-to-one with a human interpretable characteristic (Bengio,

Courville, and Vincent 2013; Locatello et al. 2019). With a disentangled representation, a change

in one latent dimension would result in a change to only one human interpretable visual char-

acteristic, whereas with an entangled representation, a change in the level across one discovered

latent dimension would impact multiple human interpretable characteristics. Figure 1 illustrates

the difference between disentangled and entangled representations.

Disentanglement learning using only images with unsupervised learning has significant limita-

tions, due to a well-known result called the impossibility theorem (Locatello et al. 2019). Recent

research recommends using supervised learning with “ground truth” visual characteristics for each

data point (i.e., product image) as a supervisory signal (Locatello et al. 2020).4 However, in our

3Images are high-dimensional data since even a modest-sized image of 1,000×1,000 pixels exists in a 1,000,000-dimensional
space. Random images typically cannot be reduced in dimension, but images that belong to a category can typically be represented
in much lower dimension. Suppose we know that each of the images represents a black circle on a white background; each circle can
then be completely represented by the location of its center (x, y) and its radius r, thus essentially making the data 3-dimensional.

4Specifically, the prediction problem is to predict the ground truth visual characteristics using the discovered characteristics
in the latent representation. For real-world data, researchers first decide a set of visual characteristics to obtain annotations for
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Figure 1: (Color Online) Entangled and Disentangled Visual Characteristics

Example of Entangled Visual Characteristics

Example of Disentangled Visual Characteristics

Entangled Dial 
Color and Strap 
Color

Dial Color

Strap Color

Visual characteristics correspond to dimensions in latent space. Here, we see that the entangled visual characteristic
changes both the dial color and strap color as its the value is changed. Disentangled characteristics corresponding to
two independent characteristics for dial color and strap color, so a change in value corresponds to a change in only one
visual characteristic.

case, and in many practical marketing and business applications, these “ground truth” visual char-

acteristics are unknown and exactly what we seek to learn. Our research thus aims to extend recent

machine learning developments in disentanglement methods.

Contribution: The goal of our method is to automatically identify and obtain a disentangled

representation of interpretable visual characteristics in order to generate counterfactual visual de-

signs targeted to consumer preferences. Our method works even in the presence of correlation

between these visual characteristics in the original data. Current machine learning approaches use

ground truth signals separately for each visual characteristic, which are assumed to completely and

accurately capture the true underlying data generating process for images. However, the critical

challenge is that ground truth is not available in typical applications, and designers expend lots of

effort and resources in determining the visual characteristics for products. Our methodology aims

to overcome this issue by showing that supervised disentanglement, with structured product char-

acteristics as signals (labels), which are readily-available in typical marketing datasets, can both

address known theoretical limitations and improve disentanglement performance to obtain human

interpretable visual characteristics. We evaluate different combinations of signals and find that

and then, ask human coders to quantify the “ground truth” labels corresponding to the chosen set of visual characteristics. For
example, in a dataset of celebrity faces, human annotations were created for a wide variety of visual characteristics including
eyeglasses, shape of face, wavy hair, mustache etc (Liu et al. 2015). Broadly, this manual approach requires first identifying the
visual characteristics (by researcher), obtaining annotations from multiple human coders and reconciling these noisy measures to
create “ground truth” labels.
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using multiple signals can be beneficial for disentanglement. We also caution that the choice of

supervisory signal(s) is important, with some choices leading to worse disentanglement. Finally,

we also compare our method to other approaches for obtaining a low-dimensional representation

in the literature, including standard and variational autoencoders in Web Appendix G, and find that

none of the compared methods produce human-interpretable characteristics.

Our approach has a number of practical advantages. First, the method is designed to work

with unstructured image data that would be practically obtainable in real market settings. It does

not require labeled data on visual characteristics, and is designed to leverage typically available

structured characteristics. Second, the analyst does not define the (unknown) visual characteristics

in advance, and does not even need to specify the number of such characteristics that must be

discovered. Third, our method is also flexible with regard to image quality, and works with very

low resolution images (like 128x128 pixels). Finally, our approach is not very computationally

burdensome and can be applied in a scalable manner across different product categories.

Application and Results: We apply our proposed method on two product categories where vi-

sual design is known to be relevant. We use watches as the primary product category, and also test

the method using sneakers as a second unrelated product category. The disentanglement method

on the watch dataset (both images and structured product characteristics) automatically discovers

and quantifies 6 interpretable visual characteristics of the watches. These discovered characteris-

tics correspond to ‘dial size’, ‘dial color’, ‘strap color’, ‘dial shape’, ‘knob (crown) size’, and ‘rim

(bezel) color’.5 We then evaluate disentanglment performance and human interpretability of the

automatically discovered and quantified visual characteristics. These visual characteristics are later

used for quantifying consumer preferences and generating targeted “ideal point” product designs.

Evaluation: We evaluate our disentanglement method relative to benchmark alternatives in 4

different ways. First, we use a metric called Unsupervised Disentanglement Ranking (UDR) from

5The visual depiction and description of the parts of a watch are available at the website: https://bespokeunit.com/
watches/watch-parts-guide/.
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the machine learning literature (Duan et al. 2020). We compare the UDR of supervised and un-

supervised disentanglement, and find that across product categories, having access to these super-

visory signals based on product characteristics improves disentanglement. Second, we examine

human interpretability of the discovered visual characteristics by surveying users from the US

using Prolific. We generate visual designs of watches by varying one dimension of the latent rep-

resentation at a time, corresponding to one visual characteristic. When respondents are asked to

determine whether these changes are human interpretable and what the change represents, we find

that on average, 86% of respondents agree on the corresponding visual characteristic, indicating

that disentanglement helps lead to human interpretable visual characteristics. Third, we examine

whether the quantified level of the visual characteristic is human interpretable, and find that human

respondents and our disentanglement algorithm agree well (85%). Fourth, we obtain consumer

preferences over visual characteristics using visual conjoint analysis by separately varying each

visual characteristic. We then use these estimated preferences to predict consumer choices be-

tween pairs of watch designs on a holdout sample. We find that our method with only six visual

characteristics and a linear Hierarchical Bayesian model obtains higher predictive accuracy than

more complex machine learning models such as pretrained deep neural nets that have been trained

on millions of images. Fifth, we generate new “ideal point” product designs for two consumer

segments defined using estimated preferences. We show these new products align with segment

visual preferences, and steal choice share from existing products. Finally, we test the generality of

the approach by using the same model architecture in a separate and completely unrelated product

category of sneakers. We find that a supervised approach achieves significantly higher disentan-

glement performance (UDR) than the unsupervised version. However, a different combination of

supervisory signals proves to be better in the sneakers application.

LITERATURE REVIEW

Visual design is instrumental in shaping consumer preferences, perceptions of value, and ex-

periences across a range of categories. As noted in Bloch, Brunel, and Arnold (2003), “Vegetable
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peelers, wireless phones, car-washing buckets, and lawn tractors are all being designed with at-

tention to the aesthetic value of their appearance.” Brands follow a process of incorporating visual

design including identifying and selecting visual elements and implementing them to impact con-

sumer experiences (Simonson and Schmitt 1997). Other research has found a positive relationship

between aesthetic appeal and usability (Tractinsky, Katz, and Ikar 2000).

While important, it currently challenging to characterize and study visual design from a quan-

titative perspective. As Orsborn, Cagan, and Boatwright (2009) summarize, “... possibly even

more challenging, user feedback requires objective measurement and quantification of aesthetics

and aesthetic preference.” This work used 7 researcher-defined visual design characteristics for

automobiles and then quantified these characteristics using distances between components in the

automobile’s physical design specifications. Likewise, Landwehr, Labroo, and Herrmann (2011)

and Kang et al. (2019) both morph visual style of automobiles by identifying feature points repre-

senting key design components, while (Liu et al. 2017) also used this approach to study the impact

of product appearance on demand. Recently, Dew, Ansari, and Toubia (2022) and Burnap, Hauser,

and Timoshenko (2023) use generative deep models for visual morphing over visual characteristics

of logos and automobiles, respectively; however, both works still required definition and quantifi-

cation over interpretable visual characteristics for use by logo or automobile designers. Broadly,

current approaches require human experts to both identify and quantify visual characteristics.

In conceptual contrast, there is a rich literature on methods that aim at automatic, but not

interpretable, summarization of data (e.g., MDS, PCA). These methods which have been exten-

sively used in marketing (DeSarbo, Ramaswamy, and Cohen 1995), to which we refer readers to

Web Appendix A for a detailed overview of connections with existing marketing methods. Our

disentanglement approach aims at both automatic and interpretable discovery and quantification

of visual characteristics. This enables their use in common marketing tasks, which in our case

involves visual conjoint analysis for generating novel counterfactual “ideal point” visual designs

targeted to consumer segments.

Representation Learning and Disentanglement Representation learning is a sub-field of ma-
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chine learning that posits that the data generating process for real-world high-dimensional data

arises from low-dimensional factors. According to Bengio, Courville, and Vincent (2013), repre-

sentation learning means “learning representations of the data that make it easier to extract use-

ful information when building classifiers or other predictors.” The literature has focused on the

properties and the value of different representations for different feature extraction and prediction

applications. Representation learning has found success in a wide variety of applications such as

natural language processing (Liu, Lin, and Sun 2020), speech recognition (Conneau et al. 2020),

causal learning (Schölkopf et al. 2021), and even in the data-driven design of logos, exploring their

influence on brand personality (Dew, Ansari, and Toubia 2022).

METHODOLOGY

Our proposed approach builds on a stream of literature in representation learning known as dis-

entangled representation learning, which aims to separate distinct informative factors of variation

in the data (Bengio, Courville, and Vincent 2013). An example of disentanglement with simple

geometric shapes is provided in Web Appendix B. Disentanglement methods typically build on

deep generative models such as variational autoencoders (VAE) (Kingma and Welling 2014) and

generative adversarial networks (GAN) (Goodfellow et al. 2020).

The methodology developed here builds upon a VAE designed for disentanglement represen-

tation learning. Disentanglement refers to the process of decomposing complex data into inde-

pendent, interpretable factors in order to better capture the true underlying relationships.6 The

method is illustrated in the schematic depicted in Figure 2, and contains an encoder and decoder

neural net. The encoder encodes visual data to discover a low-dimensional latent space of visual

characteristics that are independent and human interpretable. The discovered visual characteris-

tics are then decoded to reconstruct visual representation of the input images using the generative
6Burgess et al. (2017) describes this in more detail: “A disentangled representation can be defined as one where single latent

units are sensitive to changes in single generative factors, while being relatively invariant to changes in other factors (Bengio,
Courville, and Vincent 2013). For example, a model trained on a dataset of 3D objects might learn independent latent units
sensitive to single independent data generative factors, such as object identity, position, scale, lighting or colour, similar to an
inverse graphics model (Kulkarni et al. 2015). A disentangled representation is therefore factorised and often interpretable, whereby
different independent latent units learn to encode different independent ground-truth generative factors of variation in the data.”
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Figure 2: (Color Online) Schematic of Proposed Disentanglement Approach
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Notes: a: The encoder neural net maps an input image into low-dimensional visual characteristics, which are then
used by both the decoder neural net to reconstruct the original image and by the supervised neural net to predict a
supervisory signal corresponding to the image. b: Varying the levels of discovered characteristics to visualise the
semantic meaning encoded by single disentangled visual characteristic of a trained model. In each row the level of a
single visual characteristic is varied while the other characteristics are fixed. The resulting effect on the reconstruction
is visualised. Note that (1) we show three discovered visual characteristics here for illustration purposes, and (2) this
figure only shows disentanglement, not its later use in visual conjoint and generative visual design.

model. The supervised version of the model also predicts a supervisory signal (e.g., brand) from

the discovered visual characteristics. The model minimizes the weighted sum of 5 different type

of losses — reconstruction loss, mutual information loss, total correlation loss, dimension-wise

Kullbeck-Leibler (KL) loss and supervised loss. Note that the supervisory signal can be just one

product characteristic or a combination of product characteristics. We detail the notation used here

in Table 1.

Model: Supervised Variational Autoencoder with Disentanglement Losses

We first describe a variational autoencoder (VAE), the backbone model of our approach, its

extension with disentanglement constraints and supervision. We denote the observed dataset D =

{X,Y} = {(x1,y1), . . . , (xN ,yN)} where the i-th observation is a high-dimensional product

image xi and its corresponding vector of data that can be used as supervisory signals, denoted yi.
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Table 1: Table of Notation for Disentanglement Model

Symbol Category Meaning

x Input Data Product image
y Input Data Supervisory signal(s)

x̂ Output Data Reconstructed image
ŷ Output Data Predicted Supervisory Signal(s)

z Latent Space Visual characteristic vector
zinf Subset of Latent Space Informative visual characteristic vector
Z(i) Latent Space Set of Latent Characteristics for model i

p(z) Model Prior distribution
pθ(x|z) Decoder Neural Net Conditional Probability of Generating Image Data given

Latent Space
qϕ(z|x) Encoder Neural Net Conditional Probability of Latent Space given Image Data
pw(y|z) Supervisory Neural Net Conditional Probability of Supervisory Signal given La-

tent Space
θ Weights of Neural Net Decoder’s parameters
ϕ Weights of Neural Net Encoder’s parameters
w Weights of Neural Net Supervisory Net’s parameters

Eqϕ(z|x) [log pθ(x|z)] Loss Function Reconstruction Loss
Iq(z,x) Loss Function Mutual Information Loss

KL

q(z)|| J∏
j=1

q(zj)

 Loss Function Total Correlation Loss∑J
j=1 KL [q(zj)||p(zj)] Loss Function Dimension KL Divergence Loss

P (ŷ(z), y) Loss Function Supervised Loss
L(θ, ϕ, β;x, z) Loss Function Total Loss

J Hyperparameter Dimensionality of latent space
α Hyperparameter Weight on Mutual Information Loss
β Hyperparameter Weight on Total Correlation Loss
γ Hyperparameter Weight on Dimension KL Divergence Loss
δ Hyperparameter Weight on Supervised Loss
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The VAE uses a two-step data generating process p(x, z) (Kingma and Welling 2014). The

first step samples the visual discovered characteristics denoted by zi ∈ RJ , where J is the number

of characteristics to be discovered (or the size of the latent space). In the second step, the original

product image xi is reconstructed as x̂i using the conditional distribution pθ(x|z). The distribution

pθ is specified as a multivariate Gaussian distribution whose probabilities are formed by nonlinear

transformation of the characteristics, z, using a neural network with parameters θ. We add a

supervised signal yi that is predicted from the conditional distribution pw(y|z), which is a function

formed by non-linear transformation, with parameters w, of latent (visual) characteristics z.

In practice, neural networks are estimated using optimization methods that result in point es-

timates of model parameters (Bengio, Courville, and Vincent 2013); in other words, they do not

model uncertainty of the conditional distributions described above. Modeling the distribution of

the visual characteristics z directly allows the characterization of uncertainty. The disentanglement

approach uses the distributional aspect of modeling visual characteristics by setting distribution-

level penalizations to encourage disentanglement (Kingma and Welling 2014; Chen et al. 2018).

The VAE specifically builds on the variational Bayesian inference literature to incorporate neu-

ral networks within an approximate Bayesian framework (Blei, Kucukelbir, and McAuliffe 2017).

In short, while the neural networks parameterizing the distributions of interest are estimated using

point estimates of their parameters (θ, ϕ,w), we learn full distributions over the visual characteris-

tics z. We refer to pθ(x|z) as the decoder neural net, qϕ(z|x) as the encoder neural net, and pw(y|z)

as the supervised neural net. Given that the “true” unknown posterior p(z|x) is intractable, the vari-

ational Bayesian framework approximates this posterior to maximize a lower bound to, rather than,

the likelihood of the posterior (and thus DGP) itself (Blei, Kucukelbir, and McAuliffe 2017). We

adopt the conventional VAE assumption by parametrizing this approximate posterior with a mul-

tivariate Gaussian with diagonal covariance matrix specified as log qϕ(z|x) = logN (z;µµµ,σσσ2I),

where µµµ and σσσ are the mean and the standard deviation of the approximate posterior (Kingma and

Welling 2014).

We simultaneously train the encoder neural net, the decoder neural net and the supervised
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neural net by minimizing a variational bound of the negative log-likelihood. In practice, this is

specified as a loss minimization problem to find point estimates of the neural network parameters,

(θ, ϕ,w), while inferring a full distribution over the discovered characteristics, zi ∈ RJ . The

parameter space of the deep neural networks in our intended applications are typically in the range

of hundreds of thousands to hundreds of millions depending on architectural choices (e.g., our

specific architecture has 1,216,390 parameters).

The overall loss is composed of several loss terms corresponding to a VAE extended with

supervision and disentanglement terms. We detail these losses starting with the loss of the original

VAE in Equation (1), and refer readers to Kingma and Welling (2014) for its detailed derivation.

The reconstruction loss captures the differences between the reconstructed images generated by

the decoder and the original inputs. Minimizing only this term would obtain a deep net that is able

to generate images that match the input with high fidelity. The regularizer term ensures that the

aggregate distribution of the latent variables does not deviate too much from the prior. This ensures

that the latent space becomes structured and shares the properties of the prior distribution, such as

compactness, smoothness and continuity.

L(θ, ϕ,w;x, z)︸ ︷︷ ︸
Total Loss

= −Eqϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
Reconstruction Loss

+ KL [qϕ(z|x)||p(z)]︸ ︷︷ ︸
Regularizer Term

(1)

To learn disentangled representations, the β-VAE model (Higgins et al. 2017) extends Equation (1)

by imposing a heavier penalty on the regularizer term using an adjustable hyperparameer β > 1.

The idea is that disentangled representations are likely to be less complex and lower dimensional

than entangled representations. The regularizer, which penalizes complexity, therefore promotes

disentanglement.

Higgins et al. (2017) derive the β-VAE loss function as a constrained optimization problem.

Specifically, the goal is to minimize the reconstruction inaccuracy subject to the inferred visual

characteristics being matched to a prior isotropic unit Gaussian distribution. This can be seen in
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Equation (2) where ϵ specifies the strength of the applied constraint.

min
θ,ϕ

−Eqϕ(z|x) [log pθ(x|z)] subject to KL [qϕ(z|x)||p(z)] < ϵ (2)

We can re-write Equation (2) as a Lagrangian under the KKT conditions (Karush 1939), where

the KKT multiplier β is a regularization coefficient. This coefficient β is used as a hyperparameter

to flexibly promote disentanglement, and results in the β-VAE formulation in Equation (3).

min
θ,ϕ

−Eqϕ(z|x) [log pθ(x|z)] + β KL [qϕ(z|x)||p(z)] (3)

Intuitively, β-VAE uses the hyperparameter β to sacrifice reconstruction accuracy in order to learn

more disentangled representations. This framework is adapted and further extended by decompos-

ing the regularizer term in Equation (1) into three terms (Chen et al. 2018; Hoffman and Johnson

2016; Kim and Mnih 2018). These three terms enable us to directly and separately control disen-

tanglement constraints of the model as follows in Equation (4).

KL [qϕ(z|x)||p(z)]︸ ︷︷ ︸
Regularizer Term

of Total Loss

= Iq(z,x)︸ ︷︷ ︸
Mutual

Information
Loss

+ KL

[
q(z)||

J∏
j=1

q(zj)

]
︸ ︷︷ ︸

Total Correlation
Loss

+
J∑
j=1

KL [q(zj)||p(zj)]︸ ︷︷ ︸
Dimension-Wise

KL Divergence Loss

(4)

Finally, we add a supervised loss term to enforce the discovered characteristics to help predict

the supervisory signal(s) y in Equation (5). This enables us to study whether using typical struc-

tured data (e.g., ‘brand’) with a supervised model helps improve disentanglement, and to compare
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supervised versus unsupervised disentanglement.

L(θ, ϕ,w);x, z)︸ ︷︷ ︸
Total Loss

= −Eqϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
Reconstruction

Loss

+ α Iq(z,x)︸ ︷︷ ︸
Mutual

Information
Loss

+ β KL

[
q(z)||

J∏
j=1

q(zj)

]
︸ ︷︷ ︸

Total Correlation
Loss

+ γ
J∑
j=1

KL [q(zj)||p(zj)]︸ ︷︷ ︸
Dimension-Wise

KL Divergence Loss

+ δ P (ŷ(z),y)︸ ︷︷ ︸
Supervised

Loss

(5)

The total loss is comprised of five terms weighted using hyperparameters, (α, β, γ, δ). Ad-

justing these hyperparameters impacts the relative weight of each loss term and directly affects

disentanglement performance. We detail the intuition for these loss terms below.7

Reconstruction Loss: Penalizing the reconstruction loss encourages the reconstructed output

x̂(z) to be as close as possible to the input data x. This ensures that the discovered characteristics

possess the necessary information to be able to reconstruct the product image with high fidelity.

We use L1 Loss (Absolute Error Loss) because unlike an L2 Loss (Squared Error Loss), it is more

robust to outliers. Moreover, L1 loss introduces sparsity and thus, allows the model to focus on

fewer important characteristics for reconstruction.

Mutual Information Loss: Iq(z,x) = Eq(x,z) log
(

q(x,z)
q(x)q(z)

)
is the mutual information between

the discovered visual characteristic z and the product image x. From an information-theoretic

perspective (Achille and Soatto 2018), penalizing this term reduces the amount of information

about x stored in z. The information needs to be sufficient to reconstruct the data while avoiding

storing nuisance information, minimizing copying of the input data. A low α would result in z

storing nuisance information, whereas a high α could result in the loss of sufficient information

needed for reconstruction.
7Note that adjusting these hyperparameters also leads to different models as special cases. In the original VAE, α = β = γ = 1

and δ = 0. In the β-VAE, α = β = γ > 1 and δ = 0, meaning that a heavier penalty is imposed on all three terms of the
decomposed regulariser term in Equation (4). Finally, in β-TCVAE, α = γ = 1, β > 1 and δ = 0 and thus there is a heavier
penalty only on the total correlation loss term. In our proposed supervised approach, we impose α = γ = 1 and find levels of the
hyperparameter set Ω = {β, δ}. We compare it with an unsupervised approach in which we impose α = γ = 1, δ = 0 and find
the levels of the hyperparameter set Ω = {β}.
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Total Correlation Loss: The total correlation loss, KL

[
q(z)||

J∏
j=1

q(zj)

]
, represents a mea-

sure of dependence of multiple random variables in information theory (Watanabe 1960). If the

discovered latent variables z are independent, then the KL divergence is zero. More generally, a

high penalty for the total correlation term forces the model to find statistically independent visual

characteristics. A high β results in a more disentangled representation but with potentially worse

reconstruction quality (and other loss terms).

Dimension-Wise KL Loss: The dimension-wise KL loss term,
J∑
j=1

KL [q(zj)||p(zj)], penalizes

the objective to push q(zj) closer to the prior p(zj), encouraging the distribution of each latent

dimension to not deviate from the prior (e.g., Gaussian) of each dimension. A high weight on this

term reduces the number of discovered visual characteristics, and sets a higher bar for allowing

an additional informative dimension. It ensures that each learned representations in the latent

space has the desired properties of the prior distribution, such as compactness, smoothness, and

continuity (Hoffman and Johnson 2016).

Supervised Loss: Penalizing the supervised loss P (ŷ(z),y), where ŷ(z) ∼ pw(y|z) prioritizes

the discovered visual characteristics z to obtain high accuracy in predicting y. We set the level of

the hyperparameter δ by model selection, and note that δ = 0 for the unsupervised disentanglement

approach. Since our signals are discrete (e.g. brand), we use cross-entropy loss for the multiclass

classification prediction task. Continuous signals like price are discretized using a quantile split to

obtain discrete classes.

Supervised and Unsupervised Disentanglement

A key issue we examine in this research is whether structured product characteristics typically

found in marketing contexts (e.g., brand, price etc.) can be used as supervisory signals to im-

prove disentanglement, and also our ability to discover human interpretable visual characteristics.

Locatello et al. (2019), in an impossibility theorem, showed that in the absence of a supervisory

signal, disentangled representations are probabilistically equivalent to (an infinite set of) entangled

representations. This finding implies that it is not possible to obtain a unique disentangled rep-
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resentation of the ground truth visual characteristics using an unsupervised approach. Locatello

et al. (2020) further experimentally demonstrated that this challenge could be resolved by using

supervision with ground truth characteristics, in which lower supervised loss is correlated with a

high score on disentanglement performance metrics.

However, their approach of knowing ground truth cannot be used for our goal of automatic

discovery and quantification of visual characteristics. The ground truth labels corresponding to

visual characteristics are precisely what we are aiming to discover. Moreover, we would need

a researcher to apply their judgment and define visual characteristics as well as quantify each of

them, implying the approach would not be automated. Our method instead posits that structured

product characteristics and price might have information that correlates with visual characteristics,

and using them as supervisory signals can be helpful in achieving disentanglement. Therefore, our

method does not require access to ground truth characteristics.

Why might structured characteristics serve as good supervisory signals? Typical structured

product characteristics commonly available in marketing data include brand, material, performance

characteristics and price. Material more broadly is known to significantly affect visual appearance

and consumer perceptions (Fleming 2014), e.g. being made of metal (like silver) provides a certain

visual look. Similarly, brand can have a strong impact on the visual look. Consider, for instance

the distinct look of a Mercedes-Benz car or a Louis Vuitton handbag. “Brand signature” is often

perceptible in the visual design, especially for product categories with conspicuous consumption

(Simonson and Schmitt 1997) and for luxury brands (Lee, Hur, and Watkins 2018). Further, exist-

ing marketing research has shown that brands have different personalities (Aaker 1997) that can be

expressed through their product-related characteristics, product category associations, brand name,

symbol or logo, advertising style, price, distribution channel and user imagery (Batra, Lehmann,

and Singh 1993; Liu, Dzyabura, and Mizik 2020). Consumers can also recognize unique visual

styles of brands (Ward et al. 2020). Next, consider the role of price. Many brands, especially

luxury brands, maintain carefully curated pricing tiers with strong consumer associations, and in
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many categories, high-priced products are viewed as having a “premium look” (Cho, Lee, and

Saini 2022).

Evaluating Disentanglement Performance: To evaluate disentanglement performance, we need

a metric that is applicable even when ground truth is not available, and therefore works for both

supervised and unsupervised disentanglement. Almost all existing metrics in the machine learning

literature such as β-VAE metric (Higgins et al. 2017), the FactorVAE metric (Kim and Mnih 2018),

Mutual Information Gap (MIG) (Chen et al. 2018) and DCI Disentanglement scores (Eastwood

and Williams 2018) require access to the ground truth data generating process and are therefore

not suitable for our empirical setting.

We evaluate disentanglement performance using a metric called Unsupervised Disentangle-

ment Ranking (UDR) which satisfies the above requirements. UDR is a metric ranging from 0 to

1, with higher values representing more disentangled representations. UDR crucially allows for an

automated way to select a model when ground truth is not available (Duan et al. 2020).

The UDR metric is based on the assumption that representations obtained from models that are

more disentangled would be more similar to each other than those from models that do not dis-

entangle as well. This implies that given a dataset and a model, the visual characteristics learned

using different random seeds (or different initial conditions) with a disentangled model should be

similar, whereas every entangled representation is different in its own way and there are several

ways to obtain entangled representations since the set of entangled representations is very large

and potentially infinite. We note that whereas the model defines all the hyperparameter levels,

the random seed levels only determine the initial levels of the parameters for the neural net and

any sampling within the algorithm (e.g., dataset splitting or batch-level data sampling during train-

ing). If the disentanglement model is discovering the ground truth representation, then the initial

parameters should not matter as much.

Defining UDR: Unsupervised Disentanglement Ranking (UDR) is defined for a pair of models

i and j using Equation 6. For any pair of models i and j, UDRij is defined as a pairwise metric.
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UDRij =
1

di + dj

 ∑
b∈Z(j)

r2b∑
a∈Z(i)R(a, b)

IKL(b) +
∑

a∈Z(i)

r2a∑
b∈Z(j)R(a, b)

IKL(a)

 (6)

In the above equation, R(a, b) is the correlation between the visual characteristic a that belongs

to model i and the visual characteristic b that belongs to model j. We show the definition in

Equation 7.

R(a, b) = cor(zi(a), zj(b)) (7)

The term ra is the correlation of the visual characteristic in model j that is most similar to the

visual characteristic a in model i. In other words, ra can be defined using Equation 8.

ra = max
b∈Z(j)

corR(a, b) (8)

The right hand side of the Equation 6 has two terms inside the square bracket. The first term
r2b∑

a∈Z(i) R(a,b)
represents the ratio of the (squared) correlation of the visual characteristic a in model

i that is most similar to visual characteristic b in model j, to the sum of the correlations across

all the visual characteristics in model i. The squaring ensures that corner solutions or one-to-one

mappings lead to higher UDR values, which is consistent with the idea of disentanglement. This

term will be higher if there is a one-to-one mapping between one visual characteristic in model

i and another in model j and the characteristics are statistically uncorrelated. The first term is

then added across all the informative visual characteristics b of model j, which are represented by

IKL(b) using a threshold for KL divergence between the characteristic’s posterior and the prior.

The second term represents the counterpart by considering one visual characteristic a that belongs

to model i and then going through the corresponding process described above. Finally, we sum

across all the informative visual characteristics a of model i, i.e. IKL(a).

We normalize this sum above by the total number of informative visual characteristics from
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model i and model j, denoted (da + db). This is done to ensure that just having more informative

characteristics does not mechanically lead to a higher UDR. Therefore, UDRij can be considered

as the average correspondence in informative visual characteristics between two models i and

j, and with a perfect and complete one-to-one correspondence, we will have UDRij = 1. We

calculate the final UDR score for a particular hyperparameter configuration by averaging the UDR

across all pairs of random seeds.

What Does UDR Capture? UDR captures the idea of similarity of two visual representations,

which in turn are comprised of multiple visual characteristics. A pair of visual characteristics a

and b from models i and j respectively, denoted zi,a and zj,b would be scored as highly similar if

they axis align with each other (i.e., correlate) up to permutation and sign inverse. By permutation,

we mean that the same ground truth factor ck may be encoded by different visual characteristics

within the two models zi,a and zj,b where a ̸= b. By sign inverse, we mean that the two models may

learn to encode the levels of the generative factor in the opposite order to each other, zi,a = −zj,b.

Models that are identical except for sign inverse and permutation are isomorphic and equivalent

from a representation learning viewpoint.

We additionally note that the UDR metric in Equation 6 is flexible enough to account for

subsetting, i.e. non-overlapping subsets of visual characteristics that another model has learnt.

While we did not observe this case in our empirical results, we found that changing the supervisory

signal led to the discovery of different subsets of visual characteristics (see Web Appendix H). We

note that differing hyperparameter settings resulted in models with different numbers of latent

dimensions to be “switched off.”

Operationalizing UDR: For each trained model, i.e. with Nseed = 10 random seeds, each

of the representations obtained is compared pairwise with the others. Thus, we perform κ =(
Nseed

2

)
= 45 pairwise comparisons with all other models trained with the same hyperparameters

(β, δ), and the same vector of supervisory signals but with different seed levels. From these

pairwise comparisons, we obtain UDRij , where i and j index the two models. UDR is then
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averaged across all combinations of i and j.

We next select informative visual characteristics and ignore uninformative visual characteris-

tics. To implement this, we obtain the KL [qϕ(z|x)||p(z)] for each visual characteristic and then

select characteristics with KL divergence above a threshold. Variation across an uninformative

characteristic would produce little to zero visual change in the image. Rolinek, Zietlow, and Mar-

tius (2019) showed that during training, models based on VAEs enter a polarized regime such that

some latent variables (in our case, visual characteristics) switch off by being reduced to the prior

qϕ(zj) = p(zj). This is due to the choice of a diagonal posterior. Typically, the dimensionality

of the latent space is set higher than the expected true set of visual characteristics. This results

in some of the characteristics being “switched off” or being very close to the prior distribution.

These switched off characteristics are referred to as uninformative characteristics. Duan et al.

(2020) showed that models with some uninformative characteristics tend to disentangle better and

their unstructured (visual) characteristics are easier to semantically interpret.

Model Training, Selection, and Evaluation

Both the supervised and unsupervised disentanglement approaches require model training (i.e.,

learning model parameters), model selection (i.e., choosing hyperparameters), and model evalua-

tion (i.e., UDR disentanglement performance). However supervised and unsupervised approaches

require different model training and selection steps, while the same evaluation step can we used,

so we can compare them appropriately.

Model Training and Selection: We divide the dataset into (a) a training dataset for learning

disentangled representations, (b) a validation dataset for model selection, and (c) a test dataset in

the ratio 90 : 5 : 5. To avoid data leakage, we ensure that each product is present only in one of the

above subsets. Figure 3 provides a schematic diagram for the model training and selection for the

supervised and the unsupervised approaches. The training process takes in the unstructured data

(watch images) as input, and uses a subset of structured watch characteristics (e.g., brand) as the

supervisory signal to the model.

21



We fix the hyperparameters based on suggestions in the literature (Locatello et al. 2020; Chen

et al. 2018). The number of latent codes J represents the number of characteristics that our model

aims to find. A very low J might miss important characteristics, whereas a high value of J might

lead to more uninformative characteristics. We choose J = 20 to balance these considerations,

based on our empirical setting. Higher values of J do not result in any meaningful change in the

discovered visual characteristics. We need to tune other hyperparameters including learning rate,

batch size and number of training steps or epochs.8

Figure 3: Model Training, Selection, & Evaluation

Train model across N hyperparameter values

using K random seeds for both supervised (for 
each signal) and unsupervised approaches

 

seed 1 seed 2 seed K

…

Use Training Dataset 
(90% of dataset)

Use Test Dataset 
(5% of dataset)

seed 1 seed 2 seed K

…

… … …

Use Validation Dataset 
(5% of dataset)

Training EvaluationSelection

Ω!

Ω"

Ω!, … , Ω"

Supervised Disentanglement 
(for each signal)

𝜌𝜌!"# 	 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
$

(𝐾𝐾 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓	𝐶𝐶𝐶𝐶	

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑓𝑓	𝐿𝐿𝑓𝑓𝑆𝑆𝑆𝑆(Ω$)) 

Unsupervised 
Disentanglement

𝜌𝜌"%!"# = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
$

(𝑈𝑈𝑈𝑈𝑈𝑈(Ω$))

Which approach 
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(across all signals) and 
unsupervised produces 

highest UDR?

Notes: We train N different hyperparameter (Ω) levels for both supervised and unsupervised approaches. For super-
vised approaches, we choose the hyperparameter level that minimize the supervised loss P (ŷ(z), y) on the validation
dataset. For the unsupervised approach, we choose the hyperparameter level that maximise the UDR. We evaluate
different sets of visual characteristics learned by various approaches using the UDR metric.

In order to select the model with appropriate hyperparameters, we sweep over levels of hy-

perparameters corresponding to β (weight on the total correlation loss term) and δ (weight on the

8The considerations for tuning hyperparameters detailed below are common to all deep learning models. A very low learning
rate can lead the model to get stuck on a local minima or converge very slowly and a very high learning rate can lead the model
to overshoot the minima. A low batch size increases the time required to train the model till convergence while a large batch size
significantly degrades the quality of the model so that it is not generalizable beyond the training dataset. Training for low number
of epochs may result in the model not converging, whereas training for a very high number of epochs may result in the model
overfitting on the train dataset. Specifically, we choose the number of random seeds used as 1 to 10; Adam optimizer with learning
rate 5e-4 and parameters b1 = 0.9 and b2 = 0.999; batch size as 64; number of epoch as 100.
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prediction loss term).9 In the unsupervised approach δ = 0 by definition.10 Finally, we retrain the

model on the entire training dataset with the selected hyperparameters, and then use the trained

model to extract discovered visual characteristics on the test dataset. For model evaluation, we

compare all models using the UDR metric.

Model Architecture: We modify the architecture used in Burgess et al. (2017) in order to use im-

ages with a resolution of 128×128 pixels as well as to incorporate a supervised neural net. We use

Convolutional Neural Net (CNNs) to construct the encoder neural net, where we stack a sequence

of CNN layers to learn high-level concepts for images. Finally, we introduce 2 fully-connected

(FC) layers to first flatten the output of the sequence of CNN layers and then reduce the number of

dimensions in order to learn J visual characteristics. The decoder neural net is the transpose of the

encoder neural net, and is designed to reconstruct the image from the J-dimensional latent visual

characteristics. Finally, we include fully connected layers to the discovered visual characteristics

to create the supervised neural net that predicts the signals (structured product characteristics).

Further details of the architecture are provided in Web Appendix C.

Generating New Visual Designs: We exploit the generative nature of the disentanglement learn-

ing model to controllably generate produce images. We feed the decoder of the disentanglement

model a vector whose each dimension corresponds to a latent representation, z. Recall that if the

model achieves disentanglement, then z should be human interpretable. More specifically, each el-

ement of the vector z = (z1, z2, . . . , zJinf
) corresponds to a specific visual characteristic, e.g. dial

color. Note that Jinf corresponds to the number of informative visual characteristics discovered

by the model. Thus, when we choose values of the vector z, the model is able to generate a visual

design. We can thus controllably generate a wide range of visual designs corresponding to any

specified vector z. Since the decoder can take input at any point in the latent space, the model can

generate novel visual designs not present in the original product image data. We show how these

9For each β and δ level, following Locatello et al. (2020), we select the hyperparameter setting corresponding to the lowest
10-fold cross-validated supervised loss for supervised model selection.

10We use Unsupervised Disentanglement Ranking (UDR) for unsupervised model selection.
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generated visual designs can be used for conducting visual conjoint analysis.

EMPIRICAL APPLICATION

We use our disentanglement method with an application to a dataset of watches. This dataset

satisfies several desiderata detailed below. First, we would like a product category where visual and

design aspects captured in the images are likely to play an important role in consumer valuation

and choice behavior (Kotler and Rath 1984). Second, we would like a market with a large number

of products in order to train the deep learning algorithm. Third, as with typical marketing data, we

need to have a set of structured characteristics appropriately matched up with the images. Finally,

for our validation exercise, human respondents need to be familiar with the product category in

order to evaluate the interpretability of the discovered visual characteristics.

Data

Our data includes 6,187 watches corresponding to 2,963 unique brand-models auctioned at

Christie’s auction house, spanning the years 2010 – 2020. The data on watches is particularly

appropriate for the reasons above. For each auctioned watch in the dataset, we have its image,

structured product characteristics, and the hammer price paid at the auction. Structured character-

istics include the brand of the watch, model of the watch, year of manufacture or circa, type of

movement associated with the watch, dimensions of the watch and materials used in the watch.

Figure 4 shows a sample of watch images in our dataset. The hammer price (in $1000s) are in

inflation-adjusted year 2000 dollars.

A total of 199 unique brands are present in the data. Audemar’s Piguet, Cartier, Patek Philippe

and Rolex are the four brands with the largest share of observations, while the remaining brands

are coded as Others. Circa is coded as Pre-1950, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s and

2010s. Movement of a watch is classified as either mechanical, automatic or quartz. Dimensions

of the watch refers to the watch diameter in case of a circular dial or the length of the longest edge

in case of a rectangular dial (in millimeters). Material is coded as gold, steel, a combination of
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Figure 4: (Color Online) Sample of Watches Auctioned at Christie’s

gold and steel or other materials. Summary statistics of the data are provided in Web Appendix D.

Results: Discovered Visual Characteristics

Figure 5 illustrates the output of the disentanglement model with supervisory signals “Brand

+ Circa + Movement,” showing discovered visual characteristics. Each row of the figure demon-

strates how the watch design changes based on changes in levels of one specific discovered visual

characteristic, while keeping all the other characteristics fixed. We only show 6 visual character-

istics as the others were found to be uninformative. By uninformative, we mean that traversing

along those dimensions leads to no visual changes, and the posterior distribution of the discov-

ered latent variable is almost identical to pure Gaussian noise. From ex-post human inspection (by

researchers), we observe six distinct visual characteristics that are independent as well as human

interpretable. These are labeled ‘dial color’, ‘dial size’, ‘strap color’, ‘rim (bezel) color’, ‘knob

(crown) size’ and ‘dial shape’.

Figure 6 shows the density plot of these discovered visual characteristics. All visual character-

istics are initially modeled by a standard normal prior distribution. In the training process, each

visual characteristic is encoded in the representation as a continuous distribution. If the algorithm

finds a lot of variation along the visual characteristic in the image data, then we would observe

the variance of that characteristic to increase. In contrast, if the algorithm finds little variation on

some visual characteristic, e.g. if all watches have circular dials, the posterior distribution for this

dimension would have a low variance. It is important to note that we do not artificially constrain

the scale of the visual characteristics, and allow the model to discover it from the data. Summary

statistics of the visual characteristics are provided in Web Appendix E.
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Figure 5: (Color Online) Discovered Visual characteristics
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Notes: Latent traversals along a focal watch used to visualise the semantic meaning encoded by single visual char-
acteristic learnt by a trained model. In each row, the quantitative level of a single characteristic is varied keeping the
other characteristics fixed. The resulting reconstruction is visualized. Discovered visual characteristics are learned by
supervising the characteristics to predict both the brand, circa and movement simultaneously.

The sign (negative or positive) is arbitrary. For example, with dial size, negative might imply

large dials, whereas positive might imply smaller dials. The sign might also be reversed, and both

such representation would be equally valid (in fact, isomorphic). As the literature on disentangle-

ment has pointed out, representations with different permutations (of latent dimensions) and signs

are equivalent (Duan et al. 2020). Thus, the numbers corresponding to the latent dimension do

represent “size” in the image in a monotonic sense. Thus, knowing the latent visual characteristic

can permit the model to generate a product image with a specific size, or the inverse.

Finally, we show that the discovered visual characteristics are not highly correlated (Table 2),

consistent with the goal of maintaining statistical independence across the latent dimensions. In

contrast, an autoencoder is not able to find any disentangled visual characteristic and a plain-vanilla

variational autoencoder finds entangled visual characteristics. Please refer to the Web Appendix G

for these results.

Evaluating Models with UDR: The model evaluation step compares the set of supervised mod-

els and the unsupervised model to evaluate the model with the best disentanglement, or the highest

UDR metric. The results of the comparison of different supervisory signals for disentanglement

learning are detailed in the Web Appendix F.

We find that including a combination of signals, i.e. brand, circa, and movement, was sub-
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Table 2: Correlations Between Visual Characteristics

Dial Dial Strap Rim (Bezel) Dial Knob (Crown)
Size Color Color Color Shape Size

Dial Size 1.00 0.17 -0.08 -0.03 -0.02 0.00
Dial Color 0.17 1.00 0.03 -0.00 0.09 -0.02
Strap Color -0.08 0.03 1.00 -0.11 -0.03 -0.04
Rim (Bezel) Color -0.03 -0.00 -0.11 1.00 0.09 -0.01
Dial Shape -0.02 0.09 -0.03 0.09 1.00 0.05
Knob (Crown) Size 0.00 -0.02 -0.04 -0.01 0.05 1.00

Figure 6: Density of Discovered Visual characteristics (from ‘Brand+Circa+Movement’ Signal)

Notes: The distribution of the visual characteristics corresponding to dial size, rim (bezel) color, dial shape and knob
(crown) size is close to a standard normal distribution. However, the distribution of dial color and strap color is not
similar to any standard distribution.

stantially better (UDR = 0.398) than the unsupervised approach (UDR = 0.131). We also note

that additional supervision might not always help, because the classification problem of predict-

ing a combination of all signals correctly can become more challenging. We show the discovered

visual characteristics from the unsupervised approach as well as from supervised approaches cor-

responding to the supervisory signal combination with the lowest and the highest UDR in the Web

Appendix G.

We find that supervision can help even in the absence of ground truth on visual characteristics

by using structured product characteristics as supervisory signals. However, the specific combina-

tions of signal(s) that would work better is likely to depend to a significant degree on the details
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of the empirical setting, including the product category and potentially even the resolution of the

product images.

Effectiveness of Supervisory Signals Effectiveness in Disentanglement

We next aim to develop an understanding of why some signals might be good for supervision.

Consider what is required for a signal to work well for disentanglement. Let’s start with why

ground truth works, when the data images have been generated perfectly from different values

of this ground truth factor. The supervised loss term in the objective uses the visual image to

predict the signal, when there is only a single visual dimension that is varying in the data (image)

generating process. The objective is to minimize prediction loss (e.g. MSE). If we use ground truth

on a specific visual characteristic (e.g. dial color), the disentanglement algorithm is incentivized

to find that visual characteristic as a discovered latent dimension, since doing so would allow it to

reduce the supervised loss, all else equal.

A similar logic holds when we we have a good signal that is correlated with the ground truth.

The presence of the supervisory signal incentivizes the algorithm to find the specific latent di-

mension corresponding to the visual characteristic. Now, the algorithm is unlikely to entangle it

with other factors since there is an incentive to find orthogonal (or statistically uncorrelated) latent

dimensions. A higher quality (or stronger) signal would improve the incentive to find the visual

characteristic that predicts the signal as a separate dimension, and also improve disentanglement

by the above logic.

With ground truth, there is a one-to-one mapping between each ground truth signal and a

specific latent dimension or discovered visual characteristic. However, with imperfect signals,

there is a many to many mapping between these signals and the true visual characteristics. Thus,

while the above logic holds, there are some additional tradeoffs. For instance, if one supervisory

signal impacts multiple true visual characteristics, then the algorithm would have to trade off the

improvements in predictive accuracy across multiple dimensions. If there are multiple such signals

that are predictive of one visual characteristic, the model would also have to weigh improvements
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across each of them in terms of predictive accuracy.

Broadly speaking, signals that are more strongly correlated with the visual look of the product

would prove to be better signals. Signals that are more likely to strongly predict one of the visual

characteristics are likely to perform well, even if they do not predict all of the visual characteristics.

In contrast, signals that weakly predict multiple visual characteristics are less likely to work well.

Also, a set of signals would work better when they encode different information, i.e. each signal

in the set would be strongly correlated with one separate dimension of visual characteristics, but

not other dimensions. Beyond this broad logic, it is an empirical question as to which signals work

better. For some product categories, brand – for instance – might work well if brand influences the

look. However, in other categories, where a brand might include several different products without

a common look, then brand might not be a good signal.

To evaluate whether a signal is effective, we quantify the degree to which the representation

obtained separates out the visual characteristics when conditioned by different values of the signal.

To implement this concept, we first select the most disentangled representation using UDR across

all possible supervisory signal combinations. We then compare the distribution of these visual

characteristics across different values of the signal, operationalized by the Jensen-Shannon (JS)

distance.11

Let zinf be the set of informative latent variables. Denote the set of values taken by a supervi-

sory signal i as yi ∈ Yi = {1, 2, . . . , Yi}. For example, say signal i = 1 is brand, and the values it

can take include Patek Philippe and Rolex and Cartier etc. Signal i = 2 say is price with values

High and Low. We define the signal effectiveness Si of a supervisory signal i as:

Si =
1

2Jinf |Yi| (|Yi| − 1) |
∑

k∈zinf

∑
l∈Yi

∑
m∈Yi:m ̸=l

JS(p(zk|yi = l), p(zk|yi = m)) (9)

11The Jensen-Shannon distance (JS distance) is a symmetric and smoothed version of the Kullback-Leibler divergence (KL
divergence). It measures the similarity between two probability distributions. Given two probability distributions P and Q, the JS

distance is defined as: JS(P,Q) =

(
1

2
KL(P ||M) +

1

2
KL(Q||M)

)1

2 , where KL(X||Y ) is the Kullback-Leibler divergence of

X from Y , and M =
1

2
(P +Q). Note that JS distance is always bounded between 0 and

√
log 2.
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The intuition is that better or more informative signals will generate more separation in latent vi-

sual characteristics. Consistent with this intuition, we find that Brand obtains a signal effectiveness

of 0.24, whereas Price has a lower signal effectiveness of 0.13. This implies that the difference in

the distribution of visual characteristics across watches corresponding to different brands is greater

than the difference in the distribution of visual characteristics across low and high prices.

Price as a Signal: Price could well be an effective signal in other empirical settings. In our case

of luxury watches, the price has some unique propertiesm that might reduce its effectiveness.12 In

other empirical settings without these specific considerations, price could well serve as one of the

better signals. We show results for an separate product category, sneakers, in which price is a better

signal for disentanglement in Web Appendix H.

Validation of Discovered Visual Characteristics

We would like to evaluate whether the visual characteristics discovered by the disentanglement

model are human interpretable, both qualitatively and quantitatively. We conducted two surveys to

validate that humans (a) identify the distinct characteristics and (b) are consistent with our model in

their quantitative evaluation.13 In the first survey, we evaluate the interpretability of the discovered

characteristics from visual data. We show respondents an image illustrating different parts of the

watch before the survey to help them understand the visual elements of the product.14

Next, we generated counterfactual images that vary along only one visual characteristic. For

example, each watch image (see Figure 7) is generated by fixing all except one focal visual char-

acteristic, and only changing the level of the focal visual characteristic. We ask 99 respondents to

identify which part of the watch is changing as they scan the images from left to right, and how

that part was changing. We find that the average agreement among respondents was 86%, with a

12First, luxury watches are expensive products, and no low cost watches were included in our dataset. Second, hammer prices
are based on auction outcomes and hence can be driven by a small number of bidders. These buyers may not be price sensitive,
and hence price might not be an informative signal. Third, the same model of a watch can be auctioned multiple times, leading to
variation in prices within model, and therefore a noisier price signal.

13We choose respondents based in the US who are fluent in English. For both surveys, we employ an attention check.
14We obtained the parts of the watch from the URL: https://bespokeunit.com/watches/watch-parts-guide/.

This was shown in all survey screens.
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range from 73%–96%, despite the low image resolution. In the second column of the Table 3, we

report the percentage of respondents in the survey who agree with each other on which part of the

watch is changing.

Figure 7: (Color Online) Survey Question to Validate Interpretability

We next examine in a second survey (Figure 8) whether the quantification of the characteristics

automatically determined by the method was consistent with human interpretation. We gener-

ated several pairs of watch images that differed only along one visual characteristic. We ask 300

respondents to select the pair of watches that are more similar, which represents an ordinal evalua-

tion. We evaluate whether the responses matched with our algorithm’s quantification. We find that

a strong majority (average of 85%) agree with the algorithm’s quantification scale for the visual

characteristics, as detailed in the third column of Table 3.

Figure 8: (Color Online) Survey Question to Validate Quantification

31



Table 3: Human Interpretation of Visual Characteristics and Quantification

Visual characteristic Interpretability Survey Quantification Survey

Dial Size 76% 83%
Dial Color 80% 92%
Strap Color 88% 92%
Rim (Bezel) Color 79% 88%
Dial Shape 87% 68%
Knob (Crown) Size 70% 85%

In addition to comparing the supervised and unsupervised disentanglement models using UDR,

we compare the interpretability of the visual characteristics produced by them. Table G.1 in

the Web Appendix G shows that supervised disentanglement models produce more human in-

terpretable visual characteristics.

Robustness

We examine the robustness of the model and findings as detailed below.

Different Product Category: We evaluate the disentanglement performance of our method with

an unrelated product category of sneakers. We obtain data for over 2000 sneakers from Zappos,

along with the structured product characteristics of price and brand. We find that our method,

without any changes in architecture, is able to disentangle three human-interpretable visual char-

acteristics: upper color, sole color and topline shape. These results are in the Web Appendix H.

We find that for sneakers, price serves as a relatively good supervisory signal for disentanglement.

Alternative Approach: We evaluate an alternative approach of using SHAP-learned features as

an input to the disentanglement model (Lundberg and Lee 2017). The idea behind SHAP is to

determine the pixels in the image that are most influential in the classification of a data point.

We find that the SHAP-based approach produces fewer number of visual characteristics than our

existing approach of feeding the raw image data to the disentanglement learning model. These

results are in the Web Appendix I.
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VISUAL CONJOINT ANALYSIS TO GENERATE “IDEAL POINT” PRODUCTS

We next generate new “ideal point” products that are targeted to consumer segment preferences

over the 6 disentangled visual characteristics. Specifically, we developed a conjoint survey and

conducted a conjoint analysis to elicit customer preferences, segmented consumers based on their

preferences, and generated novel “ideal point” visual designs that maximized segment preferences

over the visual characteristics. Table 4 provides a 7-step high-level overview of this application

from survey design to “ideal point” generation.

Table 4: Steps in Visual Conjoint Analysis and Generative “Ideal Point” Design

Step Description

1 Conduct a visual conjoint analysis to elicit consumer choices over 729
generated visual designs across 6 visual characteristics.

2 Estimate consumers’ visual preferences using a three-tiered hierarchical
Bayesian model trained on conjoint analysis data.

3 Segment consumers into two segments using the estimated consumer
preference relationship between consumer covariates (demographics)
and visual characteristic.

4 Define the “existing market” as the Top-10 products by utility in the
overall set of 729 existing products used in the conjoint survey.

5 Define segment-level “ideal points” in visual characteristics space for
the two segments. The “ideal point” for each segment is defined as the
norm-scaled average preference vector of the segment.15

6 Generate new “ideal point” designs corresponding to above visual char-
acteristics.

7 Evaluate model predictions of consumer preference for generated “ideal
point” designs by inferring how choice shares change for each segment
in the counterfactual market of “existing + ideal point” products.

Conjoint Survey Design

We designed a choice-based conjoint (CBC) survey to elicit consumer preferences over a set of

generated watches. Generated watch designs were created by sampling 3 levels – low, medium, and

high – of the posterior distributions of the 6 discovered visual characteristics, resulting in 36 = 729
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visual designs. We obtained CBC survey responses from 400 individuals through the Prolific plat-

form, filtered to obtain a set of 253 respondents.16 Each respondent evaluated 15 pairs of watches.

The data includes binary responses for the 15 CBC questions, as well as respondents’ covariates;

namely, demographics and psychographics based on Likert responses to visual appearance.

The conjoint survey was designed with 7 survey stages. The conjoint survey stages are sum-

marized along with their purpose in the Web Appendix J. Each CBC question consisted of a binary

choice between two watch designs as shown in Figure 9. The CBC design ensured all unique prod-

uct designs were enumerated while also sampling pairs of product images that spanned the visual

attribute space for statistical efficiency, i.e., D-optimality (McCullough 2002).

Figure 9: (Color Online) Example choice-based conjoint (CBC) question in conjoint survey.

Conjoint Model Specification, Estimation, and Evaluation

Model Specification: We specify in Table 5 a three-level Hierarchical Bayesian (HB) model

(Lenk et al. 1996) to estimate and infer individual-level preferences elicited from the conjoint sur-

vey over the 6 discovered visual characteristics denoted z (“Dial Color”, “Dial Shape”, “Strap

Color”, “Dial Size”, “Knob (Crown) Size”, “Rim (Bezel) Color”). We additionally included 6

respondent covariates denoted r (“Gender - Male”, “Gender - Female”, “Age”, “Income”, “Educa-

16Respondents were filtered post-hoc for a number of reasons: (a) they did not pass the Instructional Manipulation Check (IMC)
attention check (Oppenheimer, Meyvis, and Davidenko 2009), (b) they gave inconsistent responses to repeated questions, (c) they
did not wear a watch, or (d) they answered “Prefer not to say” for any of the demographic questions.
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tion”, and “Aesthetic Importance”).17

Table 5: Mathematical Representation of HB Conjoint Model for Visual Characteristics

Model Element Mathematical Representation

Gaussian Hyperprior µΘ ∼ N (0, σ2
Θ)

Impact of Consumer Characteristics on Preferences Θ ∼ N (µΘ,ΛΘ)

Correlation of Preferences over Visual Characteristics Ωβ ∼ LKJ(η)

Preference Parameters βi ∼ N (ΘT ri,D(σβ)ΩβD(σβ))

Utility Function uji = βT
i zj + ϵij

Probability of choice j ψi(j, j
′) =

exp(uji )

exp(uji ) + exp(uj
′

i )

Note that in Table 5, LKJ(η) is a Cholesky factorization of the correlation matrix Ωβ of the

individual “part-worth” preference vector over visual characteristics (Lewandowski, Kurowicka,

and Joe 2009). D(·) denotes a diagonal matrix, ri are consumer covariates, uji is the utility cus-

tomer i gets from watch design j, and ϵij is a Gumbel random variable. The Bernoulli probability

parameter ψi(j, j
′) is specified by the logit function, and {j, j′}i denotes the set of all pairwise

choice comparisons for watches j, j′ ∈ J that customer i chose over in the conjoint survey. Note

that σ2
Θ, ΛΘ, η are researcher-defined hyperparameters chosen via model selection using prediction

accuracy on the validation data split as the evaluation metric.

We tested a variety of parametric HB model specifications including Gaussian mixture pri-

ors before settling on a variant of the conventional HB model specification, namely, a unimodal

population-level prior, β, over individual-level “part-worth” coefficient vectors, βi. The mean of

the consumer preference “part-worth” vector was accordingly modeled as the inner product be-

tween respondents’ covariates and an upper-level model parameter matrix, Θ. We specified the

full covariance matrix over the visual attributes, with the prior drawn from a Cholesky factoriza-

tion of the covariance matrix for numerical stability, and imposed positive semi-definiteness during

sampling (Lewandowski, Kurowicka, and Joe 2009). Lastly, we included a third-level prior over

Θ specified as a matrix of Gaussians to act as a population-level intercept term. We estimated this

17These 6 covariates were selected from the full set of covariates for model parsimony via initial correlation analysis. Gender
covariates were one-hot encoded, while the remaining four covariates were re-coded as real values normalized in the range [-1, 1].
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hierarchical model using MCMC sampling conditioned on observed consumer choices and their

demographics. The HB model estimation details are in Web Appendix J.

Table 6: Population-averaged preference parameter β from individual-level βi

Visual Characteristic Preference Parameter β Credible Interval

Dial Color 0.41 [0.23, 0.59]
Dial Shape 0.018 [-0.15, 0.18]
Strap Color -1.7 [-1.9, -1.4]
Dial Size 0.36 [0.09, 0.6]
Knob (Crown) Size -0.26 [-0.43, -0.095]
Rim (Bezel) Color -0.60 [-0.77, -0.44]

Table 6 shows population-averaged estimated individual-level preference parameters βi over

the 6 visual attributes, along with credible intervals of 94% of posterior mass. Note that these are

the estimated distributions of preference coefficients, not distributions of visual product charac-

teristics. These plots were drawn by averaging individual-level respondent posteriors (averaging

the posterior draws for each respondent to obtain individual-level posterior means, followed by

averaging across respondents). For robustness, we compared the mean of these posteriors to a ho-

mogeneous logit model and found qualitatively similar results (same effect signs), noting that the

magnitudes are different due to modeling heterogeneity as well as the (implicit) assumption of the

scale parameter being unity in logit estimation (Hauser, Eggers, and Selove 2019).

Figure 10(a) shows the correlation matrix of consumer preferences as a heatmap (i.e., normal-

ized mean and standard deviation) over the 6 visual attributes. We find that the strongest corre-

lation (0.70) in consumer preferences is between ‘strap color’ and ‘rim color.’ This implies that

dark ‘strap color’ and dark ‘rim color’ are preferred together. The second and third strongest cor-

relations (-0.43 and 0.41) are between ‘dial shape’ and ‘dial color,’ and ‘dial size’ and ‘dial color,’

respectively. This implies consumers prefer circular ‘dial shape’ with light ‘dial color’ and larger

‘dial size’ with dark ‘dial color.’

We next analyze the relationship between respondents’ covariates (demographics) and their

preferences over visual attributes. Figure 10(b) shows a heatmap of the expectation of Θ + µΘ,
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namely, the matrix Θ plus an intercept term µΘ from the 3rd-level Gaussian hyperprior (see Table

5). This shows us for example how demographic variables like ‘sex’ correlate with visual charac-

teristics like ‘strapcolor.’ Respondents who indicated they are females, on average, prefer watches

with a light ‘dial color,’ intermediate ‘strap color,’ and smaller ‘dial size’; while those who indi-

cated male on average preferred watches with a dark ‘dial color’, dark ‘strap color,’ and larger ‘dial

size.’ We also find older respondents prefer lighter ‘strap color.’ Lastly, we find respondents who

indicated appearance is important for them (psychographic) prefer larger ‘dial size.’

Figure 10: Consumer Preferences. (a) Correlation Matrix of Preferences across Visual
Characteristic (b) Interaction between Consumer Demographic and Visual Preferences

Model Evaluation: We compare the predictive accuracy of our representation used along with

the HB model against several benchmarks, and evaluated the models on hit rates for respondents’

binary choices among watch visual designs. The first benchmark was a homogenous logit model

without respondent covariate variables. The second benchmark was a pretrained deep learning

model that included covariate variables to model respondent heterogeneity. We chose the ResNet50

architecture (He et al. 2016) after pre-testing a variety of pretrained network architectures (e.g.,
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Table 7: Conjoint Model Accuracy

Model Out-of-Sample
Hit Rate (SD)

Disentangled Embedding + Logit Model (Homogeneity) 62.97% (2.90%)
Disentangled Embedding + Neural Net (Homogeneity) 65.81% (2.22%)
Pretrained Deep Learning Model Embedding (Observable Heterogeneity) 68.31% (1.54%)
Disentangled Embedding + Neural Net (Observable Heterogeneity) 67.52% (0.92%)
Disentangled Embedding + Random Forest (Observable Heterogeneity) 68.77% (0.90%)
Disentangled Embedding + XGBoost (Observable Heterogeneity) 69.10% (0.41%)
Disentangled Embedding + HB Model (+ Unobserved Heterogeneity) 71.61% (1.87%)
Disentangled Embedding + HB Model w/ Interactions (+ Unobserved Heterogeneity) 70.68% (1.35%)

Note: The homogeneity / heterogeneity we refer to in the Table above refers to consumer-level heterogeneity.

DenseNets, VGG) and their performance on the prediction accuracy metric.18 Transfer learning to

our conjoint choice task was achieved by “freezing” parameters in the “bottom” layers of neural

network, removing the “top” classification layer, and adding new layers on top to train for conjoint

choice prediction. These new layers consisted of two nonlinear layers of size 64 before input into

a final logit layer for classification. Lastly, we benchmarked 3 nonlinear machine learning models

as well as an HB model with pairwise interaction terms in an effort to assess how interactions

between the visual characteristics influence consumer choice.

Table 7 reports out-of-sample hit rates. Out-of-sample splits were defined by holding out CBC

conjoint tasks for each respondent (stratified splitting) as is convention in the conjoint analysis

literature (Gustafsson, Herrmann, and Huber 2013) and preference learning in the machine learning

literature (Fürnkranz and Hüllermeier 2010).

We find the homogenous logit model achieves the lowest prediction accuracy, perhaps unsur-

prising given that out of all benchmarked models, it makes the strongest (implicit) assumptions on

the data and does not account for uncertainty nor heterogeneity.19 The nonlinear machine learn-

ing models achieved the next highest hit rates, with random forests and XGBoost outperforming

the two neural networks; namely a feedforward neural net on the visual characteristics and the

18ResNet50 consists of 50 layers consisting of 48 convolutional layers, each with batch normalization, rectified linear, and
residual connection between layers. We used pretrained parameters originally estimated on the ImageNet benchmark dataset.

19By strongest assumptions, we mean this model assumes the smallest hypotheses class (i.e., most inflexible and high “bias”)
of the benchmarked models while also assuming no uncertainty about the model being correct (i.e., a point estimate).
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ResNet50 pretrained deep learning model on the generated images.

The HB model with a linear utility specification achieved the highest prediction accuracy, due

to modeling both observed and unobserved consumer heterogeneity. The HB MNL with interac-

tions did not obtain a higher accuracy than the HB MNL model without the (explicit in likelihood)

interaction terms. We believe this is likely due to two reasons. First, the HB model without interac-

tions models correlations in consumer preferences across characteristics as we are estimating a full

covariance matrix (i.e., not isotropic or diagonal). Second, we observed lack of convergence likely

from model overparameterization. Our parametrization of the HB MNL model with interactions

required us to model the (explicit) interaction parameters as being homogeneous (not conditional

on covariates). Without this simplification, the number of parameters would increase substantially.

Specifically, we would have to model the likelihood using explicit terms for the 6 main effect +

15 interaction effects, in addition to their covariance matrix, which would be of size (6 + 15) x

(6 + 15). In short, we believe explicit modeling of interactions for this dataset resulted in a less

parsimonious model than the HB MNL model, resulting in worse out-of-sample performance.

Generating New “Ideal Point” Product Designs for Customer Segments

Developing new products and their product positioning is critical to profit-seeking firms in a

competitive market (Rao et al. 2014). “Ideal points” refer to the optimal positioning of a new prod-

uct in characteristic space based on preferences, often of a targeted consumer segment (DeSarbo,

Ramaswamy, and Cohen 1995; Wedel and Kamakura 2000; Lee, Sudhir, and Steckel 2002). Iden-

tification of such ideal points has been extensively studied in marketing research and practice for

over 50 years (Johnson 1971; Hauser and Urban 1977). The general approach involves the follow-

ing steps: (a) obtain data on a consumer or segment stated or revealed preferences over a set of

existing products that are represented by product characteristics, (b) estimate a predictive model of

preferences over these characteristics, and (c) identify new points in product characteristic space

corresponding to the position of the maximally preferred product of the customer or segment.

We build upon this work by generating “ideal point” visual designs, in our case, maximally
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preferred watch designs for two chosen customer segments. Recent work in marketing has likewise

used generative modeling to obtain preferred product designs (Dew, Ansari, and Toubia 2022;

Cheng, Lee, and Tambe 2022; Burnap, Hauser, and Timoshenko 2023). The difference is that

our method is based on interpretable visual characteristics, and we can vary any subset of them

separately to create designs that span the space of visual characteristics. Interpretability is also

highly desirable and often is required by practitioners for implementing these systems (Bloch 1995;

Norman 2004).

We identify two customer segments to design “ideal point” products for from customer pref-

erences estimated using the HB model on the conjoint survey data. Segment 1 corresponds to

”affluent women” who self-reported they were female and made more than $100,000, and Seg-

ment 2 corresponds ”less affluent men” who self-reported they were male and made less than

$50,000. The variables and thresholds used segmentation were chosen via the HB estimated Θ

matrix relating between customer covariates and visual characteristics as shown in Figure 10. We

note that this segmentation thus serves as a proof-of-concept, with other segmentation approaches

possible.

Figure 11: (Color Online) Generated “Ideal Point” Watches for Two Segments

(a) Segment 1 (b) Segment 2

We next generate new visual designs for watches corresponding to the “ideal point” product

(i.e., optimal visual characteristics) for each segments, and plot them in Figure 11. The “ideal

point” refers to a point in the visual characteristic space corresponding to the maximal expected

utility of consumers in a given segment, constrained to lie in a feasible portion of the visual char-

acteristic space (DeSarbo, Ramaswamy, and Cohen 1995). “Feasible” must be defined given our
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(conventional) assumption of utility as an inner product between consumer preferences and (vi-

sual) product characteristics (i.e., “more is better”). We defined the “ideal point” product zs for

segment s as the segment’s preference coefficients scaled to the average Euclidean norm ρc of the

set of C “existing products” in the market.20 Alternative models that instead searches the charac-

teristic space via optimization methods could also be used (Michalek, Feinberg, and Papalambros

2005; Belloni et al. 2008).

The ideal point zs is specified as:

zs =
ρs
ρc
β, ρs =

∥∥β∥∥
2
, ρc =

1

C

C∑
j=1

∥zj∥2 (10)

where ∥·∥2 denotes the Euclidean norm.

Lastly, we calculate the expected choice share of the adding the ideal point product for each

segment to the market. For each segment, we assumeC = 10 such that the segment’s consideration

set consists of the Top-10 products by utility in the overall set of existing products (729 existing

watches used in the conjoint survey). Since we have heterogeneity at the individual-level βi, not

every customer will have the same Top-10, so we defined the segment’s Top-10 as the 10 watches

that appeared most frequently when aggregated across individual customers. We note that with

the given definition of ideal point, we may not always see the ideal point visual design having the

highest choice share.

Figure 12 shows the change in expected choice shares for each segment’s “ideal point” and the

Top-10 existing products for the segment. We find 20.9% choice share for Segment 1’s ideal point

and 24.8% choice share for Segment 2’s ideal point, signaling that the new ideal point product

did indeed align with segment-level preferences. Thus, the “ideal point” generated product stole

choice share from existing products for each segment. We note this analysis did not elicit (and sub-

20This norm scaling ρs
ρc

is an assumption required for us to define an “ideal point” given that we have assumed the conventional
inner-product-based utility model between consumer preference and product (visual) characteristics. Without this assumption (or a
similar bound), the “ideal point” would be at infinity (Kaul and Rao 1995). Intuitively, this assumption and our definition of zs is
analogous to “ideal point” methods in that we are finding the location on a hypersphere in which inverse-distance from that point
results in maximum utility for the segment (DeSarbo, Ramaswamy, and Cohen 1995).
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sequently estimate) individual consumer preferences for an “outside option,” such that the analysis

is limited to choice shares and not market shares.

Figure 12: Segment-Level Choice Shares With and Without Ideal Point Product

DISCUSSION AND CONCLUSION

Despite the importance of visual characteristics in marketing and business, the automatic iden-

tification and quantification of visual characteristics that represent visual design (and correspond-

ing consumer response) has remained an open challenge. This is important as consumers have

preferences over visual design across a wide range of product characteristics (Bloch 1995). Mar-

keting research has a long history of studying visual design, but only recently has had access to

representations of visual characteristics that are realistic (e.g., images) while also being human

interpretable.

Our research develops a methodology to automatically discover and quantify visual design

characteristics using a combination of unstructured product image data, in conjunction with struc-

tured product characteristics and price. In contrast to ML methods which require ground truth, we

use structured characteristics to supervise the disentanglement model to enhance its performance.

The discovered characteristics are disentangled, and interpretable by humans. Moreover, we can

generate novel counterfactual designs by varying the levels of the discovered characteristics one at

a time. We use this flexibility to conduct visual conjoint design and obtain consumer preferences
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over visual characteristics, which are then used to generate targeted “ideal point” visual designs.

Our approach has specific limitations worth noting and addressing in future research. First, it

requires structured data to be matched to corresponding unstructured data; our application used

watch images matched to structured characteristics, but other applications may not have structured

data as readily accessible. Second, although the model does not require human intervention, the

data is preprocessed to ensure centering, similar size, background color, and orientation. Third, no

algorithm can guarantee semantic interpretability of discovered visual characteristics, because that

is a uniquely human ability (Locatello et al. 2019; Higgins et al. 2021). However, we validate our

proposed method and find that it performs well quantitatively both with disentanglement metrics

(UDR) as well as in human interpretability. Fourth, the performance of our (basic) model architec-

ture likely varies with quality and resolution of images; richer characteristics in higher-resolution

images may necessitate adjustments. Lastly, though literature heavily suggests the importance of

visual stimuli in conjoint analysis (Dahan and Srinivasan 2000; Dotson et al. 2019; Sylcott, Ors-

born, and Cagan 2016), future work could provide more direct comparisons between visual and

traditional text descriptors.

There are several questions worthy of note for future research. First, it would be useful to

understand what combinations of product characteristics typically improve disentanglement the

most across product categories, and the underlying reason. Likewise, developing neural network

architectures with implicit biases for disentanglement would be valuable. Second, examining the

performance of this or similar methods in other modalities like text or audio would help answer

questions around practical usage for other marketing tasks. Since consumer decision making is

likely to depend on multiple sources of information and persuasion, it would be interesting to

examine whether having one modality helps to improve the impact of another, e.g. the presence of

text might help disentangle images better. Finally, it would be interesting to examine how visual

characteristics may be incorporated into models of demand and supply, so that we can understand

both consumer preferences and firm strategic choices involving visual design.
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A Connections with Existing Marketing Methods

We include a high-level comparison of the methods in Table A.1.

Table A.1: Comparison of Methods

Method PCA MDS AE VAE Disentanglement

Dimensionality Reduction Yes Yes Yes Yes Yes
Reconstruction of Existing Examples Yes Yes Yes Yes Yes
Generation of New Examples No No No Yes Yes
Use with Unstructured Data Yes Yes Yes Yes Yes
Interpretability using Unstructured Data No No No No Yes
Stochastic (S) or Deterministic (D) D D D S S
Non-Linear Transformations No No Yes Yes Yes

Several methods used in marketing can be used to compress high-dimensional data

into a lower-dimensional representation as shown in Table A.1. The simplest and per-

haps most well-known is principle component analysis (PCA). PCA assumes that the

data lie on a linear subspace and captures the global linear structure in the data. PCA

has been used in marketing for dimensionality reduction (Liu, Singh, and Srinivasan

2016; Kappe and Stremersch 2016) in order to make solving the models tractable.

Multi-dimensional scaling (MDS) is a method that aims to minimize dissimilarity be-

tween distances in the high-dimensional data and distances in the lower-dimensional

representation. MDS is a general method as “distance” can be nonlinear and even non-

metric; however, conventionally researchers assume Euclidean distances which makes

it equivalent to PCA (Williams 2000). While PCA and MDS have been widely-used in

marketing to reduce data dimensionality for managerial interpretation (see, e.g., (Lee

and Bradlow 2011)), these methods are not well suited to capturing complex nonlin-

ear relationships in unstructured data (Linting et al. 2007). Consequently, they are

likewise not well suited for our goal of discovering interpretable visual characteristics

directly from unstructured image data.

An autoencoder (AE) (Baldi and Hornik 1989; Rumelhart, Hinton, and Williams 1986)

is a nonlinear method that focuses on reconstructing the original high-dimensional data
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(typically unstructured data such as images), while compressing the original data into a

lower-dimensional representation. Autoencoders can capture complex nonlinear rela-

tionships, especially those prevalent in visual data, and thus typically outperform linear

methods like PCA in terms of reconstruction accuracy (Mika et al. 1998). An AE is

equivalent to PCA if it is restricted to only linear transformations (Roweis and Ghahra-

mani 1999; Bengio, Courville, and Vincent 2012). While the AE can reconstruct the

original data with medium-to-high fidelity, it cannot generate new out-of-sample data

that it has never seen. Thus, similar to the case of PCA and MDS, we cannot term it

as a generative model.

In contrast, a variational autoencoder (VAE) is a probabilistic generative model that

similarly represents high-dimensional data using lower-dimensional latent variables

(Kingma and Welling 2014). The VAE takes a Bayesian approach by learning the

latent variable distributions using variational inference. While architecturally similar

to the (non-generative) AE, the VAE is able to generate new data that are similar to

the input data by sampling from its probabilistic generative model by conditioning on

the latent variables. Lastly, β-TCVAE (Chen et al. 2018) builds upon VAE by: (a)

promoting statistical independence in the latent space; (b) discourages data copying

by minimizing mutual information between the input data and the latent space; (c)

minimizes the number of truly informative dimensions. The above objectives are often

conflicting, and the model uses hyperparameters that decide the weights associated

with these terms.

Comparison of Generative Methods: The two broad classes of generative models

are based on variational autoencoders (VAEs) (Kingma and Welling 2014) and genera-

tive adversarial networks (GAN) 1 (Goodfellow et al. 2020). Most state-of-the-art dis-

entangled representation learning methods are based on VAEs. VAEs are comprised

of two models – the encoder neural net and the decoder neural net. The encoder neural

net compresses high-dimensional input data to a lower-dimensional latent vector (la-

tent characteristics), followed by inputting the latent vector to the decoder neural net

1In a GAN, two neural networks compete with each other in a zero-sum game to become more accurate.
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which outputs a reconstruction of the original input data. VAEs balance having both

a low reconstruction error between the input and output data (e.g., images, text), as

well as a KL-divergence of the latent space distribution (latent characteristics) from a

researcher-defined prior distribution (e.g., Gaussian). The KL-divergence term acts as

a regularizer on the latent space, such that it has desired structure (smoothness, com-

pactness). VAEs are parameterized in both the encoder neural net and decoder neural

net using neural networks whose parameters are learned jointly.

Table A.2: Comparison between VAE and GAN based methods

# Topic VAE GAN Source

1 Disentanglement Performance High Low (Lee et al. 2020)
2 Quality of generated image Low High (Lee et al. 2020)
3 Training instability Low High (Lee et al. 2020)
4 Local v Global Concepts Global Local (Gabbay, Cohen, and Hoshen 2021)
5 Data requirement Low High (Karras et al. 2020)
6 Ability to work on small or detailed objects No Yes (Locatello et al. 2020)

Notes: 1,2,3 According to Lee et al. (2020): “VAE-based approaches are effective in learning useful disentangled
representations in various tasks, but their generation quality is generally worse than the state-of-the-arts, which
limits its applicability to the task of realistic synthesis. On the other hand, GAN based approaches can achieve the
high-quality synthesis with a more expressive decoder and without explicit likelihood estimation. However, they
tend to learn comparably more entangled representations than the VAE counterparts and are notoriously difficult to
train, even with recent techniques to stabilize the training.” 4: According to Gabbay, Cohen, and Hoshen (2021):
“Such methods that rely on a pretrained unconditional StyleGAN generator are mostly successful in manipulating
highly-localized visual concepts (e.g. hair color), while the control of global concepts (e.g. age) seems to be
coupled with the face identity.” 5: According to Karras et al. (2020): “Acquiring, processing, and distributing
the 105 — 106 images required to train a modern high-quality, high-resolution GAN is a costly undertaking.
The key problem with small datasets is that the discriminator overfits to the training examples; its feedback to
the generator becomes meaningless and training starts to diverge.” 6 According to Locatello et al. (2020): “It is
however interesting to notice how the GAN based methods perform especially well on the data sets SmallNORB
and MPI3D where VAE based approaches struggle with reconstruction as the objects are either too detailed or too
small.”

Several methods based on GANs have also been used for disentanglement. InfoGAN

was one of the first scalable unsupervised methods for learning disentangled repre-

sentations (Chen et al. 2016). While GANs are typically less suited relative to VAEs

for representation learning, as GANs traditionally do not infer a representation2, Info-

GAN explicitly constrains a small subset of the ‘noise’ variables to have high mutual

information with generated data. Several VAE-based methods have proven to be su-

2Moreover, GANs tend to suffer from training instability. Common failure modes are vanishing gradients, mode collapse, and
failure to converge.
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perior (Kim and Mnih 2018; Chen et al. 2018) than InfoGAN. Recent methods based

on StyleGAN (Karras, Laine, and Aila 2019) such as Info-StyleGAN (Nie et al. 2020)

are able to perform disentanglement at a much higher resolution (1024×1024) unlike

the VAE-based methods. However, unlike InfoGAN, Info-StyleGAN suffers from the

need for human labels or pretrained models, which can be expensive to obtain (Voynov

and Babenko 2020).

We choose a VAE-based approach over a GAN-based approach for several reasons.

First, our goal is to propose an easy-to-train method that can be used by researchers

as well as practitioners (Lee et al. 2020). Second, our goal of discovering unique

(visual) characteristics that are human interpretable and independent of each other re-

quires high disentanglement performance, but reconstruction accuracy is not our pri-

mary goal (Lee et al. 2020). GANs suffer from lower disentanglement performance

because they focus on localized concepts but not global concepts of the image (Gab-

bay, Cohen, and Hoshen 2021). On the other hand, discovered characteristics from

VAEs are much more globally distributed as compared with GANs. This allows the

VAE-based methods to discover few important and human interpretable unstructured

(visual) characteristics that can represent the input raw data. Third, one of the benefits

of our approach is that we are able to not just discover disentangled characteristics,

but infer the levels of these characteristics for all datum in the data. This enables use

in downstream marketing tasks that require characteristic levels, for example, visual

conjoint analysis to understand consumer preferences. GANs do not conventionally

infer a representation of the data, and hence do not have this benefit. Finally, VAEs of-

ten require less data to train in comparison with GANs (Karras, Laine, and Aila 2019).

Thus, even though GANs can provide much better reconstruction and work better for

small and detailed objects (Locatello et al. 2020), we choose a VAE-based approach

because of its suitability to our research question.
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B Disentanglement with a Simple Geometric Shape

Consider the dataset of 2D objects dSprites (Higgins et al. 2017). Each image in this data

(see Figure B.1) shows an object of a specific shape, size and color at a specific location in the

image. Across images, we can see different possible combinations of these visual characteristics.

The objective of disentanglement is to separate out these independent factors of variation to obtain

object shape, position, size, and color as the 4 latent dimensions discovered by the disentanglement

model. The advantage of disentanglement is that, even when the dimensionality of the latent space

is increased to a large number, it will only discover these true factors of variation (shape, size,

color and position).

Figure B.1: Sample of dSprites Images
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C Model Architecture

The model architecture is detailed in Figure C.1. The encoder neural net for the VAEs consisted

of 5 convolutional layers, each with 32 channels, 4 × 4 kernels, and a stride of 2. This was fol-

lowed by 2 fully connected layers, each of 512 units. The latent distribution consisted of one fully

connected layer of 40 units parameterizing the mean and log standard deviation of 20 Gaussian

random variables. The decoder neural net architecture was the transpose of the encoder neural net

but with the output parameterizing Bernoulli distributions over the pixels. Leaky ReLU activations

were used throughout. We used the Adam optimizer with the learning rate 5e-4 and parameters

b1 = 0.9 and b2 = 0.999. We set batch size equal to 64. We train the model for 100 epochs.

Figure C.1: Model Architecture
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D Summary Statistics of Structured Characteristics of Auc-
tioned Watches

Table D.1 provides summary statistics of the auctioned watches.

Table D.1: Summary Statistics of Structured Characteristics of Auctioned Watches

Statistic Mean SD Min Max

Brand (Audemar’s Piguet) 0.06 0.24 0 1
Brand (Cartier) 0.07 0.25 0 1
Brand (Patek Philippe) 0.20 0.40 0 1
Brand (Rolex) 0.18 0.38 0 1
Brand (Others) 0.49 0.50 0 1
Circa (Pre-1950s) 0.05 0.21 0 1
Circa (1950s) 0.05 0.22 0 1
Circa (1960s) 0.07 0.26 0 1
Circa (1970s) 0.10 0.30 0 1
Circa (1980s) 0.08 0.26 0 1
Circa (1990s) 0.19 0.39 0 1
Circa (2000s) 0.33 0.47 0 1
Circa (2010s) 0.14 0.35 0 1
Movement (Automatic) 0.54 0.50 0 1
Movement (Mechanical) 0.36 0.48 0 1
Movement (Quartz) 0.11 0.31 0 1
Watch Dimensions (in mm) 36.21 6.83 9 62
Material (Gold) 0.60 0.49 0 1
Material (Gold and Steel) 0.05 0.22 0 1
Material (Steel) 0.28 0.45 0 1
Material (Others) 0.07 0.25 0 1
Hammer Price (in $000s) 23.25 55.18 1.00 950.20

Notes: The unit of analysis for each auction is a single watch.
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E Summary Statistics of Visual Characteristics of Auctioned
Watches

Table E.1 details the summary statistics of the visual characteristic levels learned.

Table E.1: Summary Statistics of Discovered Visual Characteristics

Visual characteristic Mean SD Min Max

Dial Size 0.28 1.49 −11.08 9.68
Dial Color 0.38 1.59 −5.42 3.42
Strap Color 0.50 1.58 −4.50 3.08
Rim (Bezel) Color 0.25 1.01 −6.27 5.33
Dial Shape −0.19 0.99 −6.03 3.36
Knob (Crown) Size 0.11 0.93 −7.61 6.79
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F Watches: UDR and Hyperparameters for Different Supervi-
sory Signals

Table F.1 lists the UDR corresponding to each combination of supervisory signals. Table F.2

lists the hyperparameters obtained for each combination of supervisory signals.

Table F.1: Comparison of Different Supervisory Approaches (at Optimal Hyperparameter
Weights for Each Signal)

Number of Signals Supervisory Signals UDR

0 Unsupervised 0.131
1 Brand 0.135
1 Circa 0.112
1 Material 0.128
1 Movement 0.116
1 Price (2 Discrete Classes) 0.125
2 Brand & Circa 0.309
2 Brand & Material 0.363
2 Brand & Movement 0.121
2 Brand & Price 0.117
2 Circa & Material 0.184
2 Circa & Movement 0.357
2 Circa & Price 0.112
2 Material & Movement 0.122
2 Material & Price 0.114
2 Movement & Price 0.144
3 Brand, Circa & Material 0.296
3 Brand, Circa & Movement 0.398
3 Brand, Circa & Price 0.319
3 Brand, Material & Movement 0.242
3 Brand, Material & Price 0.315
3 Brand, Movement & Price 0.314
3 Circa, Material & Movement 0.307
3 Circa, Material & Price 0.341
3 Circa, Movement & Price 0.241
3 Material, Movement & Price 0.078
4 Brand, Circa, Material & Movement 0.300
4 Brand, Circa, Material & Price 0.387
4 Brand, Circa, Movement & Price 0.290
4 Brand, Material, Movement & Price 0.306
4 Circa, Material, Movement & Price 0.290
5 Brand, Circa, Material, Movement & Price 0.313
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Table F.2: Optimal Hyperparameters Obtained by Model Selection Criteria

Approach Signal # Signals β δ

Unsupervised − 0 18 0
Supervised Brand 1 18 50
Supervised Circa 1 4 35
Supervised Material 1 6 25
Supervised Movement 1 4 20
Supervised Price 1 1 16
Supervised Price (with 2 classes) 1 22 45
Supervised Brand and Circa 2 48 5
Supervised Brand and Material 2 50 1
Supervised Brand and Movement 2 6 20
Supervised Brand and Price 2 6 25
Supervised Circa and Material 2 36 1
Supervised Circa and Movement 2 50 5
Supervised Circa and Price 2 4 18
Supervised Material and Movement 2 6 10
Supervised Material and Price 2 4 20
Supervised Movement and Price 2 12 20
Supervised Brand, Circa and Material 3 48 1
Supervised Brand, Circa and Movement 3 50 1
Supervised Brand, Circa and Price 3 50 1
Supervised Brand, Material and Movement 3 40 1
Supervised Brand, Material and Price 3 50 1
Supervised Brand, Movement and Price 3 48 1
Supervised Circa, Material and Movement 3 48 1
Supervised Circa, Material and Price 3 46 1
Supervised Circa, Movement and Price 3 42 1
Supervised Material, Movement and Price 3 1 1
Supervised Brand, Circa, Material and Movement 4 44 1
Supervised Brand, Circa, Material and Price 4 50 1
Supervised Brand, Circa, Movement and Price 4 50 1
Supervised Brand, Material, Movement and Price 4 44 1
Supervised Circa, Material, Movement and Price 4 44 1
Supervised Brand, Circa, Material, Movement and Price 5 44 1
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G Discovery of Visual Characteristics across Models

We compare the visual characteristics discovered by our disentanglement approach with bench-

mark models like Autoencoders, Variational Autoencoders and Unsupervised Disentanglement.

Comparison among Disentanglement Models: Figure G.1 show the discovered visual charac-

teristics learned by the supervised approaches corresponding to three cases: supervised with high

UDR, supervised with low UDR and the unsupervised approach. We compare the human inter-

pretability of the visual characteristics obtained from the supervised disentanglement approach

with the ones obtained from the unsupervised approach using consumer surveys. In these surveys,

we ask consumers whether they are able to interpret the discovered visual characteristics. From

Table G.1, we can see that on average consumers are better able to interpret the visual characteris-

tics from the supervised approach as compared with the unsupervised approach. Thus, the results

of these survey validate that supervision helps us obtain more disentangled visual characteristics

in addition to just using the UDR metric.3

Table G.1: Human Interpretation of Visual Characteristics

Visual Characteristic Mean [95% CI] % Improvement

Supervised Unsupervised

Dial Color 0.80 [0.70, 0.89] 0.81 [0.72, 0.90] –†

Dial Size 0.76 [0.66, 0.86] 0.78 [0.69, 0.88] –†

Strap Color 0.88 [0.80, 0.96] 0.90 [0.83, 0.97] –†

Rim Color 0.79 [0.69, 0.88] 0.42 [0.30, 0.54] 88.1%
Dial Shape 0.87 [0.79, 0.95] 0.49 [0.37, 0.61] 90.5%
Knob Size 0.70 [0.59, 0.80] 0.56 [0.44, 0.68] 25.0%

Across All 6 Char 0.80 [0.76, 0.84] 0.67 [0.62, 0.71] 21.2%
† The mean interpretability of the visual characteristic in the supervised approach

overlaps with the 95% CI of the interpretability of the unsupervised.

We note that although we find supervision helps disentanglement, and that supervision is re-

quired for overcoming the “impossibility theorem” discussed in Locatello et al. (2019), unsuper-

vised disentanglement has a known ability to discover some visual characteristics. This observa-

tion helped spur the drive towards more control over the VAE objective by decomposing it into

3To assess the variability and reliability of our sample estimates, we employed a bootstrap resampling method.
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Figure G.1: Discovered Visual characteristics from Multiple Supervisory Signals

(a) High UDR: ‘Brand’, ‘Circa’ & ‘Movement’ Supervisory Signal
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z5

z6

Low Quantified Level High Quantified Level

(b) Low UDR: ‘Circa’ Supervisory Signal
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z5

z6

Low Quantified Level High Quantified Level

(c) Unsupervised Approach

z1
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z3

z4

z5

z6

Low Quantified Level High Quantified Level

Notes: Latent traversals along a focal watch used to visualise the semantic meaning encoded by single visual char-
acteristic learnt by a trained model. In each row, the quantitative level of a single characteristic is varied keeping the
other characteristics fixed. The resulting reconstruction is visualized. a: Discovered visual characteristics learned
by supervising the characteristics to predict the brand, circa, and movement simultaneously. b: Discovered visual
characteristics learned by supervising the characteristics to predict the circa simultaneously. c: Discovered visual
characteristics learned by the unsupervised approach.
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terms that explicitly control disentanglement (Chen et al. 2018; Hoffman and Johnson 2016). In

short, several factors may be at play, including (1) the common prior assumption of isotropic Gaus-

sian has no off-diagonal covariance terms, promoting uncorrelatedness of the embedding; and (2)

VAEs pursue PCA direction (locally) (Rolinek, Zietlow, and Martius 2019). Further intuition for

why unsupervised disentanglement can work in practice at all is well-discussed in Mathieu et al.

(2019).

Comparison with Benchmark Models: We obtain the visual characteristics discovered by an an

autoencoder (AE) and a variational autoencoder (VAE) to serve as reference to the disentanglement

model. Figure G.2 gives the output of discovered visual characteristics from an autoencoder and

a variational autoencoder. We show the top six visual characteristics based on the KL divergence

value of the difference between the posterior and the Gaussian prior.

We cannot interpret any of the visual characteristics discovered by the AE. Note that these

characteristics are not uninformative because their KL divergence is not close to 0. We find that

the VAE leads to entanglement. By entangled, we mean that when any one entangled characteristic

is changed while others are fixed, the watch image changes in more than one interpretable visual

characteristic. This is unlike a disentangled model in which there is a one-to-one mapping between

visual characteristics and latent factors of variation.
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Figure G.2: Discovered Visual characteristics from Different Methods

(a) Autoencoder
Low Quantified Level High Quantified Level
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(b) Variational Autoencoder
Low Quantified Level High Quantified Level
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z4
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Notes: Latent traversals along a focal watch used to visualise the semantic meaning encoded by single visual char-
acteristic learnt by a trained model. In each row, the quantitative level of a single characteristic is varied keeping the
other characteristics fixed. The resulting reconstruction is visualized. a: Discovered visual characteristics learned by
Autoencoder. b: Discovered visual characteristics learned by Variational Autoencoder.
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H Disentanglement in a Different Product Category – Sneak-
ers

Our data includes sneakers sold at Zappos. For each sneaker in the dataset, we have its image,

brand, and price. Figure H.1 shows a sample of sneaker images in our dataset. We obtained the

dataset of sneakers sold on Zappos in March 2023. These shoes were classified as sneakers by the

retailer. Overall, our dataset includes 2,227 unique sneaker models with an average of 2.5 images

per sneaker model. The size of the overall dataset includes 5,575 images. We only included the

side view of sneakers in order to focus on the variation in the shape of the sneakers. Finally,

we specifically used grayscale images because each sneaker model with the same shape comes

in multiple colors. We preprocessed each image to have the size of 128x128 dimensions to keep

the images consistent with the watch category. A total of 247 unique brands are present in the

data. Skechers, Vans, New Balance, adidas and ASICS are the five brands with the largest share of

observations. Table H.1 provides summary statistics of the sneakers.

We use the same deep learning model architecture as well as the same hyperparameters (except

the disentanglement hyperparameters β and δ) as the one used for learning visual characteristics of

watches. We follow the same method for training the model, selecting the hyperparameters β and

δ based on lowest supervised loss on a held-out dataset and then evaluating different supervisory

signals for the sneakers category using Unsupervised Disentanglement Ranking (UDR).

Figure H.1: Sample of Sneakers Sold at Zappos

From Table H.2, we show that price serves as the most effective supervisory signal for learn-

ing human-interpretable visual characteristics for sneakers. To understand why price is the most

effective supervisory signal, we calculate the Signal Effectiveness score that relies on the intuition

that better or more informative signals will generate more separation in latent visual characteris-
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Table H.1: Summary Statistics of Structured characteristics of Sneakers Sold at Zappos

Statistic Mean SD Min Max

Brand (Skechers) 0.09 0.29 0 1
Brand (Vans) 0.08 0.28 0 1
Brand (New Balance) 0.07 0.26 0 1
Brand (adidas) 0.06 0.24 0 1
Brand (ASICS) 0.05 0.22 0 1
. . .
Brand (Others) 0.14 0.34 0 1
Price (in $s) 112.30 46.45 30.00 650.00

tics. Consistent with this intuition, in sneakers, the Signal Effectiveness Score for brands is 0.26

compared with 0.32 for discrete prices.

Table H.2: Comparison of Different Supervisory Approaches

Number of Signals Supervisory Signals UDR

0 Unsupervised 0.126
1 Brand 0.093
1 Price (5 Discrete Classes) 0.267

Figure H.2 gives an output of discovered visual characteristics corresponding to the supervisory

signals ‘price’. In each row of the figure, we show how the sneaker image changes based on

changes in levels of one visual characteristic, while keeping all the other characteristics fixed. We

only show three visual characteristics as rest of the characteristics are found to be uninformative

i.e. the KL divergence of the posterior was not much different from the Gaussian prior. Traversing

along an uninformative characteristic leads to no visual change, and we show one uninformative

characteristic for reference.
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Figure H.2: Discovered Visual Characteristics of Sneakers

Upper Color
DARK

Upper Color 
LIGHT

Sole Color
LIGHT

Sole Color
DARK

Topline Shape
HIGH-TOP

Topline Shape
LOW-TOP

Uninformative 
Characteristic

Uninformative 
Characteristic

Low Quantified Level High Quantified Level

Notes: Latent traversals along a focal sneaker used to visualise the semantic meaning encoded by single visual
characteristic learnt by a trained model. In each row, the quantitative level of a single characteristic is varied keeping
the other characteristics fixed. The resulting reconstruction is visualized. Discovered visual characteristics learned by
supervising the characteristics to predict the price simultaneously.
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I Using Shapley Values (SHAP) for Disentanglement

In this section, we use an alternative approach to discover visual characteristics. The idea

behind this approach is to identify select elements (pixels) of each input image that are predictive

of a supervisory signal, and then use those elements as an input to the disentanglement model.

In this approach, we first train a deep learning model to predict the supervisory signal (e,g.

brand) from images. Next, we calculate SHAP values to identify which features of the deep learn-

ing model drive the model’s results (Lundberg and Lee 2017). The SHapley Additive exPlanations

(SHAP) technique utilizes game theory to interpret the results of machine learning models. It con-

nects optimal credit allocation with local explanations using the classic Shapley values from game

theory and their related extensions (Shapley 1997). SHAP values of each feature captures the con-

tribution of each feature to overall model predictions. It is calculated by estimating differences

between models with subsets of the feature space and then averaging across samples.

We calculate SHAP values to rank the features based on their contribution to the model’s out-

put. The higher the SHAP value for a feature, the more significant its contribution. We then sort

the SHAP values in descending order to select the pixels corresponding to the top features using

the SHAP values as a mask. These image subsamples are used as an input to the disentanglement-

based VAE model. Figure I.1 shows a sample of images fed to the disentanglement-based VAE

model using this approach.

Figure I.2 gives example output of discovered visual characteristics from this approach. In

each row of the figure, we show how the watch image changes based on changes in levels of one

selected visual characteristic, while keeping all the other characteristics fixed. We show the top

six visual characteristics based on the KL divergence value of the difference between the posterior

and the Gaussian prior. We can only interpret the first three visual characteristics. The next three

visual characteristics appear to be entangled. By entangled, we mean that when any one entangled

characteristic is kept fixed and other characteristics are changed, the watch image changes in more

than one interpretable way. Note that these characteristics are not uninformative because their KL

divergence is not close to 0.
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Figure I.1: Sample of images from SHAP-based approach

Figure I.2: Discovered Visual Characteristics using SHAP-based approach
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LARGFE

Unknown
UNKNOWN

Unknown
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UNKNOWN

Unknown
UNKNOWN
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UNKNOWN
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Low Quantified Level High Quantified Level

Notes: Latent traversals along a focal watch used to visualise the semantic meaning encoded by single visual char-
acteristic learnt by a trained model. In each row, the quantitative level of a single characteristic is varied keeping the
other characteristics fixed. The resulting reconstruction is visualized.
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J Conjoint Analysis: Survey Design and Model Estimation

Conjoint Survey Stages The conjoint survey stages are summarized along with their purpose in

Table J.1.

Table J.1: Conjoint Survey Design Elements

Stage Name Purpose

1 Introduction Explain purpose of study and obtain consent.1

2 Category Identification Open-ended questions to determine whether respondents were
able to identify what category (e.g. shoes) a blurry image be-
longed to.2

3 Instructional Manipulation
Check (IMC)

Attention check “trap question” for post-hoc respondent filtering.

4 Choice-Based Conjoint (CBC)
Instructions

Explain upcoming conjoint choice question tasks with instruc-
tions to choose based only on visual style.4

5 “Warm Up” CBC Practice Help respondents understand the range of watch designs before
making real choices.

6 15 CBC questions Elicit respondent choice of preferred watch design
7 Respondent Information Obtain demographic and psychographic variables7

1 Respondents were also instructed to be as “consistent” in their choices as possible, with a monetary incentive
of $2 for consistency (in addition to $3 for completion).

2 Respondents saw a set of 4 blurry images for each of the 3 product categories (automobiles, shoes, and
watches) similar to the generated watch designs from the disentanglement model. They were then asked for
a one word description of the images. We find that greater than 99% of respondents identify the product
category depicted in the images. We also used generated watch designs and find that 97% of respondents
identify the product category as watches.

4 Respondents were instructed to choose between two possible watch designs based only on visual style. No
other information such as price or other product characteristics were provided.

7 Respondents demographic variables (e.g., age, gender, income, education) as well as Likert and psycho-
graphic questions about how important visual appearance was to the respondent were obtained.

Estimation of HB Conjoint Analysis Model We estimated posterior distributions of HB model

parameters {{βi}Ni=1,Θ, µΘ,Λβ} with Markov chain Monte Carlo (MCMC) sampling using the

No-U-Turn (NUTS) sampler (Hoffman, Gelman et al. 2014). Sampling consisted of 8 parallel

chains, each with 10,000 draws of which 5,000 were used for sampler tuning. Convergence of

MCMC chains was determined via acceptance criteria of the sampler and its targets (80%), and

chain divergences from trace plots (less than 5% draws diverging). Hyperparameter values for

prior distributions were determined from overlap of prior draws with posterior draws, and by using

both in-sample and out-of-sample hit rates.

Our codebase was written in Python using the PyMC library (Patil, Huard, and Fonnesbeck
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2010) with the Jax, NumPyro, and Aesara graph compilation libraries to leverage graphical pro-

cessing unit (GPU) acceleration. Estimation using 48 CPU cores with a base clock at 3.8 GHz

for sampling takes approximately two hours for the aforementioned sampling strategy. Estimation

using GPU sampling with 4 RTX8000’s approximately quarters the computational time, but we

note this is heavily dependent on GPU system configuration with CUDA/OpenCL kernel libraries.

22



References

Baldi, Pierre and Kurt Hornik (1989), “Neural Networks and Principal Component Analysis:

Learning from Examples Without Local Minima,” Neural Networks, 2 (1), 53–58.

Bengio, Yoshua, Aaron C Courville, and Pascal Vincent (2012), “Unsupervised Feature Learning

and Deep Learning: A Review and New Perspectives,” CoRR, abs/1206.5538, 1 (2665), 2012.

Chen, Ricky T. Q., Xuechen Li, Roger B Grosse, and David K Duvenaud (2018), “Isolating

Sources of Disentanglement in Variational Autoencoders,” Advances in Neural Infor-

mation Processing Systems, pages 2615–2625 https://proceedings.neurips.

cc/paper/2018/hash/1ee3dfcd8a0645a25a35977997223d22-Abstract.

html.

Chen, Xi, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel (2016),

“Infogan: Interpretable Representation Learning by Information Maximizing Generative Ad-

versarial Nets,” Advances in Neural Information Processing Systems, pages 2180–2188.

Gabbay, Aviv, Niv Cohen, and Yedid Hoshen (2021), “An Image is Worth More than a Thousand

Words: Towards Disentanglement in the Wild,” Advances in Neural Information Processing

Systems, 34.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio (2020), “Generative Adversarial Networks,” Commu-

nications of the ACM, 63 (11), 139–144.

Higgins, Irina, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,

Shakir Mohamed, and Alexander Lerchner (2017), “β-VAE: Learning Basic Visual Concepts

with a Constrained Variational Framework,” International Conference on Learning Repre-

sentations https://openreview.net/forum?id=Sy2fzU9gl.

Hoffman, Matthew D, Andrew Gelman et al. (2014), “The No-U-Turn Sampler: Adaptively Setting

Path Lengths in Hamiltonian Monte Carlo.,” Journal of Machine Learning Research, 15 (1),

1593–1623.

23

https://proceedings.neurips.cc/paper/2018/hash/1ee3dfcd8a0645a25a35977997223d22-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/1ee3dfcd8a0645a25a35977997223d22-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/1ee3dfcd8a0645a25a35977997223d22-Abstract.html
https://openreview.net/forum?id=Sy2fzU9gl


Hoffman, Matthew D and Matthew J Johnson (2016), “Elbo Surgery: Yet Another Way

to Carve Up the Variational Evidence Lower Bound,” Advances in Neural Infor-

mation Processing Systems http://approximateinference.org/accepted/

HoffmanJohnson2016.pdf.

Kappe, Eelco and Stefan Stremersch (2016), “Drug Detailing and Doctors’ Prescription Decisions:

The Role of Information Content in the Face of Competitive Entry,” Marketing Science,

35 (6), 915–933.

Karras, Tero, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila (2020),

“Training Generative Adversarial Networks with Limited Data,” Advances in Neural Infor-

mation Processing Systems, 33, 12104–12114.

Karras, Tero, Samuli Laine, and Timo Aila (2019), “A Style-Based Generator Architecture for

Generative Adversarial Networks,” Computer Vision and Pattern Recognition, pages 4401–

4410.

Kim, Hyunjik and Andriy Mnih (2018), “Disentangling by Factorising,” International Conference

on Machine Learning, pages 2649–2658 https://proceedings.mlr.press/v80/

kim18b.html.

Kingma, Diederik P and Max Welling (2014), “Auto-Encoding Variational Bayes,” stat, 1050, 1.

Lee, Thomas Y and Eric T Bradlow (2011), “Automated Marketing Research using Online Cus-

tomer Reviews,” Journal of Marketing Research, 48 (5), 881–894.

Lee, Wonkwang, Donggyun Kim, Seunghoon Hong, and Honglak Lee (2020), “High-Fidelity

Synthesis with Disentangled Representation,” European Conference on Computer Vision,

pages 157–174.
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