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We propose a novel, theory-based approach to the reinforcement learning problem of maximizing profits when

faced with an unknown demand curve. Our method, rooted in multi-armed bandits, balances exploration and

exploitation across various prices (arms) to maximize rewards. Traditional Gaussian process bandits cap-

ture one informational externality in price experimentation – correlation of rewards through an underlying

demand curve. We extend this framework by incorporating a second externality, monotonicity, into Gaussian

process bandits by introducing monotonic versions of both the GP-UCB and GP-TS algorithms. Through

reduction of the demand space, this informational externality limits exploration and experimentation, out-

performing benchmarks by enhancing profitability. Moreover, our approach can also complement methods

such as partial identification. Additionally, we present algorithm variants that account for heteroscedastic

noise in purchase data. We provide theoretical guarantees for our algorithm, and empirically demonstrate

its improved performance across a broad range of willingness-to-pay distributions (including discontinuous,

time-varying, and real-world) and price sets. Notably, our algorithm increased profits, especially for distribu-

tions where the optimal price lies near the lower end of the considered price set. Across simulation settings,

our algorithm consistently achieved over 95% of the optimal profits.
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1. Introduction

We propose a new method based on reinforcement learning using multi-armed bandits

(MABs) for pricing by efficiently learning an unknown demand curve. Our algorithm is

a nonparametric method which incorporates microeconomic theory into Gaussian pro-

cess Thompson sampling. Specifically, we impose weak restrictions on the monotonicity of

demand, creating informational externalities between the outcomes of arms in the MAB.

Our method exploits these informational externalities to achieve more efficient experimen-

tation, higher profitability, and enables more flexible price sets than current methods.
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Consider a manager tasked with determining the price for a product or service. A natural

starting point is to use knowledge of the demand curve. However, the demand curve is

typically known only within the limited price range where an established product has been

sold, leaving it unknown elsewhere. Consequently, pricing errors are most pronounced for

new products that differ significantly from past offerings (Huang et al. 2022). Even in well-

established categories, demand can change substantially across markets and time. A global

survey of sales VPs, CMOs, and CEOs at more than 1,700 companies conducted by Bain

& Company highlights the insidious impact of poor pricing, which can cause long-term

and persistent damage to a firm’s financial prospects (Kermisch and Burns 2018).

To learn the demand curve, a common approach is A/B experimentation (Furman and

Simcoe 2015), which randomly allocates consumers across a set of different prices, typi-

cally in a balanced experiment. However, this approach presents several challenges. First,

firms across a wide range of industries are often reluctant to conduct extensive price

experimentation due to frictions (Aparicio and Simester 2022) or risks. For example, price

experimentation can confuse consumers or alter their expectations leading to uncertain

gains (Dholakia 2015).1 Second, firms often do not run experiments for long enough dura-

tions, making it difficult to detect effects (Hanssens and Pauwels 2016). Third, even in

well-known categories, demand can undergo significant changes over time, necessitating

periodic relearning of demand.

These factors directly imply that a method capable of efficiently identifying and learning

the critical part of the demand curve with minimal experimentation can be highly valuable,

particularly for identifying the optimal price points for products. This problem is especially

suited to a reinforcement learning method known as multi-armed bandits (MABs), which

simultaneously learn while earning, thereby avoiding the wasteful explorations associated

with A/B testing. MABs address the classic trade-off between exploitation (maximizing

current payoff) and exploration (gathering additional information) as the agent seeks to

maximize rewards over a given horizon.

Two common MAB algorithms are Upper Confidence Bound (UCB) and Thompson

Sampling (TS). The UCB algorithm (Auer 2002, Auer et al. 2002) constructs an upper

confidence bound for the reward of each arm by combining the estimated mean reward

1 It is noteworthy that pricing differs from advertising, where companies are generally more willing to experiment
(Simester et al. 2009, Huang et al. 2018, Sahni and Nair 2020).
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with an exploration bonus. This balance between exploiting high-payoff arms and exploring

less-certain ones is achieved by selecting the arm with the highest upper confidence bound.

Meanwhile, the TS approach involves Bayesian updating of the reward distribution for each

arm as they are played (Thompson 1933). Arms are chosen probabilistically, with those

having higher means being more likely to be selected. Thus, TS is a stochastic approach,

whereas UCB is deterministic.

One notable feature of UCB and TS is that they treat the rewards from arms as inde-

pendent. However, in pricing, this assumption does not hold, as an underlying demand

curve connects the different arms (prices). In this paper, we propose a new MAB method

that builds upon canonical bandits by leveraging two distinct but related sources of infor-

mational externalities, informed by economic theory on demand curves.

The first informational externality we observe is that rewards are correlated across prices

through the demand function. Specifically, demand at closer price points is more likely to

be similar than demand at more distant points. This means that the demand at a focal price

point provides insights not only about that price but also about others. This relationship

has been previously recognized in bandit literature and implemented using a Gaussian

process (GP) combined with baseline bandit methods (Ringbeck and Huchzermeier 2019).

Modeling demand with a GP allows for the learning of a more general reward function,

rather than restricting learning to rewards associated with specific arms. We empirically

build on this research through a systematic study of its impact across various settings.

The second informational externality is the characterization that aggregate demand

curves are monotonic, consistent with microeconomic theory. Specifically, the quantity

demanded at a focal price must be weakly lower than the demand at all prices below the

focal price. However, imposing monotonic shape restrictions in the GP space is not trivial;

addressing this challenge constitutes the main contribution of our paper. We leverage

the idea that sign restrictions are easier to impose. The connection between the two is

established by noting that: (i) a monotonically decreasing function is equivalent to its first

derivative being negative at every point, and (ii) the derivative of a GP is also a GP.

Critically, this transforms the problem from imposing monotonic shape restrictions in the

original GP space to imposing sign restrictions in the GP space of derivatives.

We make the following contributions. To researchers and practitioners, we provide a

method that builds upon Gaussian process bandits by specifying demands curves to be
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downward sloping without parametric restrictions. Our algorithm efficiently obtains only

monotonic, downward-sloping demand curves throughout the price experimentation pro-

cess. We demonstrate the effectiveness of the algorithm through theoretical analysis, and

by evaluating performance relative to benchmarks for a wide range of conditions, includ-

ing from field data. Our approach results in significantly higher profits relative to state-

of-the-art methods in the MAB literature. Furthermore, we characterize the underlying

willingness-to-pay distributions under which our algorithm delivers greater performance

improvements and explores the mechanisms driving these results. Overall, the increase in

efficiency means that a larger number of prices can be included in the consideration set.

These are important managerial considerations, given the frictions in undertaking pricing

experimentation. More broadly, in other situations where data has some general known

form a priori, our approach shows how such constraints can be combined with the flexibility

of nonparametric bandits to improve empirical performance.

Our method offers several advantages relative to existing approaches for optimal pricing

under unknown demand. The primary advantage is its efficiency in achieving optimal pric-

ing by learning demand in a flexible, nonparametric manner, particularly when the firm

lacks well-defined prior information. If a firm is willing to undertake adaptive experimenta-

tion to learn demand while minimizing the cost of experimentation, our method enables the

firm to achieve higher profitability. A second advantage is the method’s ability to system-

atically incorporate theoretical knowledge into reinforcement learning problems, ensuring

that the resulting demand satisfies theoretical constraints. Furthermore, it can be applied

to learn about consumer valuations for any vertical quality-like attribute, not just prices.

Third, our method provides an estimate of uncertainty in addition to point estimates of

the demand curve. Indeed, the entire posterior distribution can be obtained, offering a

complete characterization of uncertainty around the learned demand curve. Importantly,

this approach also provides demand estimates for prices outside the initial price set chosen.

Fourth, the method requires little to no human judgment. Unlike most typical RL models,

hyperparameter tuning is automatic, and the method is computationally tractable, allow-

ing the bandit to operate in real time. Fifth, our method does not rely on any knowledge of

consumer characteristics, unlike partial identification approaches such as UCB-PI (Misra

et al. 2019). It can, however, be used in conjunction with partial identification methods to

enhance performance.
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We derive theoretical regret bounds for GP-TS when monotonicity is incorporated. Our

analysis follows the standard approach of Srinivas et al. (2009) and achieves similar results.

However, by enforcing monotonicity, the space of feasible demand curves is reduced, which

in turn decreases the path-dependent regret term and results in tighter regret bounds.

Empirically, we run simulations across a range of settings and find that our proposed

algorithm outperforms several state-of-the-art benchmarks, including UCB, TS, N-TS, GP-

UCB, and GP-TS. Averaged across three main underlying willingness-to-pay distributions,

our algorithm achieves the highest performance, reaching 92% of optimal profits after 500

consumers and 97% of optimal profits after 2500 consumers. Furthermore, we observe that

profits consistently increase when monotonicity is incorporated into GP-UCB (by 21-26%

after 500 consumers and 5-8% after 2500 consumers) and GP-TS (by 10-14% after 500

consumers and 4-6% after 2500 consumers), regardless of the price set granularity (number

of arms). However, there is substantial heterogeneity in the observed uplifts, depending on

the underlying distribution. The largest gains occur when the optimal price lies near the

lower end of the price set. This variation in uplifts is driven by heterogeneity in benchmark

performance across underlying distributions, whereas our algorithm performs consistently.

We also test additional challenging scenarios. First, we evaluate the case where demand

exhibits a discontinuity motivated by the left-digit bias, which presents a challenge since

a GP assumes continuity. We find that our proposed method continues to perform best.

However, if managers are particularly concerned about a sufficiently large left-digit bias,

they may wish to focus only on prices at the discontinuities. Next, we consider cases

where long-term advantages might arise from using our method. Specifically, we examine

situations where demand varies with seasonality and find that, even when these shifts are

unpredictable, our proposed method achieves a long-run performance advantage over the

benchmarks. Further, we demonstrate that these advantages persist in real-world settings,

using a valuation distribution estimated from data on demand for a streaming service.

Finally, we develop an alternative specification that accounts for heteroscedastic noise in

the purchase input data, resulting in small additional performance gains.

2. Literature Review

Our research is related to several streams detailed below. The setting features pricing exper-

imentation and learning over time, which is an active area of research across marketing,

operations research, economics and computer science.
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Demand Learning

Studies in marketing and economics typically make strong assumptions about the infor-

mation that a firm has regarding product demand. The strongest assumption used is that

the firm can make pricing decisions based on knowing the demand curve (or WTP) (Oren

et al. 1982, Rao and Bass 1985, Tirole 1988). A generalization of this assumption is that

firms know the demand only up to a parameter, used in some of the earlier works on

learning demand through price experimentation (Aghion et al. 1991, Rothschild 1974).

Typically, a consumer utility function is specified in terms of product characteristics, price,

and advertising, and preference parameters are estimated from data (Zhang and Chung

2020, Jindal et al. 2020, Huang et al. 2022). However, all these models predetermine the

shape of the demand curve, and cannot incorporate all possible demand curves. Nonpara-

metric approaches are the gold standard, and have been used to account for state changes

between periods, but are often simplified substantially (e.g. having two periods) to ensure

analytical tractability (Bergemann and Schlag 2008, Handel and Misra 2015). However,

this stream typically does not consider learning through active experimentation, which is

the focus of multi-armed bandits stream below.

Multi-armed Bandits

Multi-armed bandit (MAB) methods are an active learning approach based on reinforce-

ment learning and are used across many fields, with business applications in advertising

(Schwartz et al. 2017), website optimization (Hill et al. 2017, Hauser et al. 2009), and

recommendation systems (Kawale et al. 2015). Two fundamental arm selection algorithms

(or decision rules) that form the foundation for MAB methods are (a) Upper Confidence

Bounds (UCB), based on Auer et al. (2002), which is a deterministic and (b) Thompson

sampling (TS), based on Thompson (1933), a stochastic approach.

Several previous works have explored dynamic pricing with non-parametric demand

assumptions. These often enforce conditions like smoothness or unimodality, and then

approximate the demand using locally parametric functions, such as polynomials (Wang

et al. 2021). However, the resulting algorithms depend heavily on these specific choices. In

contrast, our approach imposes no constraints beyond the economically motivated mono-

tonic shape constraint. Any further restrictions arise naturally from the chosen kernel

(e.g., RBF or Matern), offering greater flexibility for practitioners hesitant to make strong

assumptions.
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While shape constraints have been considered in other contexts, their application to

pricing and reward maximization remains limited. Thresholding bandits aim to find the

arm closest to a given threshold, assuming monotonic arm rewards, but do not focus on

maximizing rewards (Cheshire et al. 2020). Other works primarily address the estimation

problem (Guntuboyina and Sen 2018), or consider contextual settings with monotonic mean

distributions across arms (Chatterjee and Sen 2021). These approaches, while valuable, do

not directly translate to our pricing problem with a focus on reward maximization under

shape constraints motivated by economic theory.2

However, traditional bandit methods typically only model rewards for individual arms,

but not any dependencies across arms. In pricing applications, this independence ignores

the information from the underlying demand curve, which we term as informational exter-

nalities. Recent research below has tried to develop methods to address this issue.

Gaussian Processes and Bandits: Gaussian Processes (GPs) are well-regarded as a highly

flexible nonparametric method for modeling unknown functions (Srinivas et al. 2009). GPs

provide a principled approach to allowing dependencies across arms, without restricting

the functional form. Multi-armed bandits combining GPs along with a decision rule like

UCB or Thompson sampling (TS) have been proposed (Chowdhury and Gopalan 2017).

More specifically, a closely related paper by Ringbeck and Huchzermeier (2019) uses GP-

TS for a multi-product pricing problem. The GP is modeled here at a demand level, which

is important for two reasons. First, it allows modeling demand-level inventory constraints

in a multi-product setting, and second, it allows for a separation of the learning problem

(at demand level) from the rewards optimization (reward is the product of demand and

price). Leveraging the first informational externality, they find that GP-TS improves per-

formance over TS. However, much is not known about the conditions (e.g. the number of

arms or WTP distribution or stability of the demand curve) under which the informational

externality modeled by GP-TS is important, with a material impact on profit outcomes.

Our focus here is on incorporating monotonicity of demand curves, a theory-based restric-

tion that forms the second informational externality, into GP-TS and GP-UCB models,

and evaluating the resulting models. We also evaluate the value of these informational

externalities across a wide spectrum of conditions.

2 A separate line of work incorporates inventory constraints into pricing models Chen et al. (2019), Miao and Wang
(2024). These studies often introduce constraints on revenue or utilize exploration phases that involve significant price
fluctuations, which may not be feasible in practice. Further, their solutions are typically driven by the characterization
of the optimal posted price, differing from our approach.
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There are other approaches to ruling out dominated prices (arms) in pricing bandits. One

particularly notable contribution that incorporates knowledge into bandits is the partial

identification method (Misra et al. 2019). While this approach leverages weakly decreasing

demand curves, it does not otherwise rely on dependencies across arms. Partial identifi-

cation formalizes the idea that the rewards from a specific arm (price) can be dominated

by those of another arm and critically depends on the availability of highly informative

segmentation data to estimate demand bounds for each segment. These demand bounds

are then aggregated across all segments to derive the corresponding aggregated reward

bounds for each price arm. Dominated prices are eliminated if the upper bound for one

price is lower than the lower bound for another price. In contrast, our algorithm does not

require segmentation data to exploit the gains from the monotonicity assumption. Since the

mechanisms in these approaches differ, partial identification can complement our method,

enabling the creation of a hybrid approach.

3. Pricing Problem and Simple Example
3.1. Pricing Problem

We address the pricing problem faced by a firm aiming to maximize cumulative profits

while experimenting under an unknown demand curve. Potential buyers (consumers) arrive

sequentially and are presented with a price selected by the firm. Each consumer then

decides whether to purchase a single unit or not (in line with Misra et al. (2019), we focus

on discrete choice purchases), depending on whether the offered price is below or above

their willingness to pay (WTP).3 For each consumer, the reward (profit) received by the

firm equals the price minus the cost if the consumer makes a purchase and zero otherwise.

Overall, the firm must make two key decisions. First is the selection of the set of prices to

be tested in the experiment—this is assumed to be exogenous, although in our simulations

we test multiple price sets with varying granularities to guide firms in this decision. Second,

the firm is allowed to periodically adjust the price shown to an incoming consumer based

on limited past purchase decisions obtained during the pricing experiment. This paper

focuses on designing an algorithm that selects prices (from the price set) throughout the

experiment to maximize profits. The algorithms considered belong to a class known as

multi-armed bandits (MABs), described in Section 4.

3 The population of consumers has a population-level distribution of WTP, which corresponds directly to the demand
curve.
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We consider a few additional assumptions in this pricing problem. First, consumers are

randomly drawn from a population with a stable WTP distribution of valuations. Sec-

ond, consumers are short-lived, and the overall distribution of price expectations remains

unaffected by the experimentation. These assumptions are typical in field experiments

and necessary for the results to be applicable once the experiment has ended.4 Third, we

assume the firm operates as a single-product monopolist.5 Fourth, the firm seeks to set

a single optimal price, meaning it does not engage in price discrimination and does not

consider inventory or other factors (Besbes and Zeevi 2009, Ferreira et al. 2018, Ringbeck

and Huchzermeier 2019, Misra et al. 2019).6 Finally, given the pace at which prices must

be adjusted for efficient experimentation, our algorithms are suited to the online domain

rather than physical stores.

3.2. Simple Pricing Experiment Example

We now illustrate a simple example of a balanced pricing experiment with certain valuation

distributions to show why existing bandit algorithms may struggle, and how our algorithm

can enhance performance. Consider a monopolist firm selling a single-unit product of zero

marginal cost with an unknown demand curve D(p) = 1 − p, testing prices tested P =

{0.1,0.3,0.5,0.7,0.9} each 100 times. Figure 1 presents the results of demand and profit

learning. Figure 1a) shows sample mean demand at tested prices (blue dots) with 95%

credible intervals, while Figure 1b) displays sample mean profit (red dots) with 95% credible

intervals. Grey dotted lines represent the true demand and profit curves.

This figure highlights a key phenomenon: the credible intervals for demand are fairly

consistent,7 but those for profit vary greatly and expand with price due to the scaling

effect. Learning occurs at the demand level, but optimal pricing decisions depend on profit.

4 This excludes dynamic situations where consumers may change over time or where current decisions are heavily
influenced by future expectations. Such cases include strategic consumers (Nair 2007), learning (Erdem and Keane
1996, Yu et al. 2016), and stockpiling (Ching and Osborne 2020, Hendel and Nevo 2006). These assumptions are
often implicit in field experiments, such as in the advertising literature (Hoban and Bucklin 2015, Lambrecht et al.
2018, Gordon et al. 2019). For instance, if strategic consumers believe that a firm offering discounts is experimenting
and may discount further later, the observed treatment effect may not accurately reflect reality.

5 This assumption can be relaxed; the results will hold as long as the algorithm is deployed in a stable environment
where (1) competitors do not change prices strategically in response to real-time changes and (2) firms are unconcerned
with potential future competitors (Rubel 2013).

6 Inventory constraints are relevant when stock is limited, as in clothing. When products are constrained, it may be
preferable to forgo selling to one consumer to sell to another with a higher WTP. For products without production
constraints, such as a Netflix subscription, this issue does not arise.

7 Small differences are discussed in Appendix EC.6.
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Figure 1 Demand and Profit Learning for a Balanced Experiment
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Notes. Results of a single balanced experiment where each of the prices {0.1,0.3,0.5,0.7,0.9} was tested 100 times with a true
unknown demand of D(p) = 1− p. Figure a) shows the mean and 95% credible intervals for purchase probability at each price
tested – the dotted grey line shows the true purchase probability. Figure b) shows the mean and 95% credible intervals for profit
at each price tested – the dotted grey line shows the true expected profit.

Consequently, the difficulty of identifying the optimal price depends on its position within

the tested prices. A high optimal price simplifies the task, as learning that lower prices

yield smaller profit intervals is less challenging. Conversely, a low optimal price compli-

cates the task, as determining that higher prices are suboptimal demands more consumer

purchase data. This results in poorer algorithmic performance when the optimal price is

low. Incorporating monotonicity enhances performance by excluding any demand curve

where demand increases with price, thereby narrowing the range of possible demand curves

and reducing demand intervals. This effect is amplified by the scaling effect, significantly

lowering the profit intervals at high prices.

4. Model Preliminaries
4.1. MAB Components

This section formally introduces multi-armed bandits (MABs) and their application to the

pricing problem. Notably, all MABs have three components: actions, rewards, and a policy.

The first component – actions – refers to the set of prices from which the firm can choose.

Prior to the experiment, the firm selects a finite set of A ordered prices P = {p1, . . . , pA},

where p1 < p2 < · · ·< pA, and prices are scaled so that 0≤ pa ≤ 1.8 While this paper does

not explicitly model how to choose the set of prices, the general trade-off is that learning is

easier with fewer prices, but a higher optimum is possible when more prices are considered.

8 With unscaled prices {p̃1, . . . , p̃A}, the set of scaled prices can be created by dividing any price by the largest price
in the set, i.e., pa = p̃a/p̃A.
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Table 1 Summary of Bandit Notation

Notation Description Formula

Ψ Pricing policy (i.e., decision rule) Depends on algorithm

a Action from the set of actions A a∈A= {1,2, ...,A}

t
Time-step: denotes the t-th consumer of the
price experiment

P Set of prices to be tested
pa Scaled price corresponding to action a pa ∈ P = {p1, ..., pA} where 0≤ pa ≤ 1 ∀pa

nat
Number of times price pa has been chosen
through time t

sat
Number of purchases at price pa through time
t

Ht History from past t rounds of experiment Ht = {St = (s1t, ..., sAt),Nt = (n1t, ..., nAt)}
at Action chosen at time t at =Ψ(P,Ht−1)
D(pa) Demand at price pa

yat Purchase rate through time t of price pa yat = sat/nat

π̄at Mean profit through time t of price pa π̄at = pa(sat/nat)

πat

Profit realized when price pa was tested in
time period t

The results section provides general guidelines for how to pick the set of prices. Once P is

chosen, at each time-step t of the experiment, the firm chooses a price pa from P .

The second component – rewards – refers to the profits that a firm makes at each

purchase opportunity. The firm faces an unknown true demand D(p), and the true profit

function is given by π(p) = pD(p). We assume variable costs are zero, though the model can

easily accommodate such costs.9 The true profit is not observed; instead, the firm observes

noisy realizations of profits corresponding to each price pa. Considering the data at each

price separately, we define nat to be the number of times that price pa has been chosen

through time t, and sat to be the cumulative number of purchases for action a through time

t. The observed purchase rate through time t for price pa is simply yat =
sat
nat

. Accordingly,

the mean profit for a price pa at time t is π̄at = pa

(
sat
nat

)
.

The final component – a policy – denoted by Ψ, is a decision-making rule that picks

an action or price in each round using the history from past rounds. In this situation, the

history can be written as Ht = {St = (s1t, . . . , sAt),Nt = (n1t, . . . , nAt)}. Formally, in round

t, the policy picks a price using the history from the past (t− 1) rounds: pat =Ψ(P,Ht−1).

What distinguishes various MAB algorithms is how this policy is defined. For a typical

randomized experiment, the policy can be defined as an equal probability across all arms,

completely ignoring history. A summary of the notation is given in Table 1.

9 Simply, the reward obtained from a potential consumer who purchases is the price charged minus the cost.



Weaver, Kumar & Jain: Nonparametric Pricing Bandits Leveraging Informational Externalities
12

4.2. Performance Metrics

To assess the performance of our proposed algorithm, we need to compare it to other bandit

algorithms. This is equivalent to a comparison of policies, as only the policy Ψ depends on

the algorithm, while the price set and arm rewards are common across algorithms.

Among the various performance metrics in the bandit literature, the most common is

regret, which is defined as the difference between rewards under full knowledge (always

playing the optimal price) and the expected rewards from the policy in question (Lai and

Robbins 1985). Formally, the cumulative regret of policy Ψ through time t is

Regret(Ψ, P, t) =E

[
t∑

τ=1

(π∗−πaτ |Ψ, P,Hτ−1)

]
(1)

where P is the set of prices being considered, π∗ is the ex-post maximum expected profit

in a given round, and πaτ is the profit realized when price pa is played in time period τ .

This metric10 is used in the discussion of theoretical properties in Appendix EC.4.11

An alternative objective is to maximize the expected total reward (Gittins 1974, Cohen

and Treetanthiploet 2020).12 Formally, the goal is to pick a decision rule, Ψ, that selects a

sequence of prices from the consideration set, P , that maximizes the total expected profit:

E

[
t∑

τ=1

πat | P

]
(2)

We use this metric to discuss our empirical simulation results, as it is more intuitive in

the context of the pricing problem (a firm maximizing profits through experimentation

with an unknown demand curve). Additionally, if the true rewards distribution is unknown

(e.g., in a field experiment), total rewards can still be compared, whereas regret lacks a

straightforward alternative formulation.

10 Formulating the bandit problem as a statistical problem (regret) rather than an optimization problem (maximizing
cumulative reward) lends itself better to theoretical guarantees (Cohen and Treetanthiploet 2020).

11 Theoretical guarantees often state that an algorithm has the lowest possible bound for expected regret; however, this
is subtly different from empirical performance, which may be higher for algorithms without such theoretical properties.
For example, it is proven that under certain conditions, UCB has the lowest possible bound for expected regret (Auer
et al. 2002). However, empirically, under the same conditions, it is often outperformed by greedy algorithms with
respect to maximizing rewards (Bayati et al. 2020).

12 Among a set of algorithms, the one with the lowest cumulative regret is the same as the one with the highest
cumulative rewards.
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4.3. Baseline Policies – Deterministic and Stochastic Algorithms

Finally, we consider baseline policies, which serve as building blocks for our algorithm. The

simplest approach is a fully randomized experiment (A/B testing), where a random arm

is selected, ignoring the history of arms played and their outcomes. Another class includes

myopic policies, such as greedy-based algorithms (e.g., ϵ-greedy) and softmax (Dann et al.

2022). In this paper, we build on two popular policies, UCB and TS, which tradeoff learning

and earning, and form a fundamental component of typical bandit algorithms.

UCB: The Upper Confidence Bound (UCB) algorithm is a deterministic, nonparametric

approach popularized for its proven asymptotic performance, achieving the lowest possible

maximum regret (Lai and Robbins 1985, Agrawal 1995, Auer et al. 2002). The UCB policy

scores each arm by summing an exploitation term and an exploration term, then selecting

the arm with the highest score. The exploitation term is the sample mean of past rewards

at a given arm, which provides information about past payoffs. The exploration term,

meanwhile, increases with the uncertainty of the sample mean for an arm; specifically, it

decreases as an arm is chosen more frequently and as the empirical variance of rewards

at that arm decreases. Thus, the UCB policy balances exploitation and exploration.13 To

adapt UCB to pricing, we scale the exploration term by price, as shown in eq. (3) (Misra

et al. 2019). This adjustment accounts for the known variation in the range of possible

rewards at each arm, which is not generally assumed.

pUCB
a = argmax

pa∈P

(
π̄at+ pa

√
log(t)

nat

min

(
1

4
, Vat

))

Vat =

(
1

nat

nat∑
τ=1

π2
aτ

)
− π̄2

at+

√
2 log t

nat

(3)

TS: Thompson Sampling (TS) is a randomized Bayesian parametric approach. For each

arm, a reward distribution is specified with a prior, and updated based on the history of

past trials (Thompson 1933). In each round, an arm is chosen according to the probability

that it is optimal, given the history of past trials. Specifically,

Prob(pa |Ht−1) = Prob(E[πa,t | pa]>E[πa,t | pa′],∀pa′ ̸= pa |Ht−1). (4)

The simplest implementation is to sample from each distribution in each round and select

the arm with the highest sampled payoff. In our setting, where purchase decisions are

13 If the exploration term were zero, this would be equivalent to a fully greedy algorithm.
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binary, the TS approach uses a scaled beta distribution, with parameters representing

the number of successes and failures (Chapelle and Li 2011, Agrawal and Goyal 2012).

Specifically, at time t+1 for each arm a, a sample is drawn from Beta(sat+1, nat−sat+1)

and then scaled by the price, pa. The arm with the highest value is then chosen.

Another benchmark we consider is Nonparametric Thompson Sampling (N-TS ) by

Urteaga and Wiggins (2022), which extends standard TS to handle reward model uncer-

tainty. Unlike traditional TS, which requires knowledge of the true reward model, N-TS

uses Bayesian nonparametric Gaussian mixture models to flexibly estimate each arm’s

reward distribution. This approach allows the complexity of the per-arm reward model

to adjust dynamically as new observations are collected, enabling sequential learning and

improved decision-making.

5. Informational Externalities

In this section, we incorporate the two informational externalities into the baseline policies.

Our objective is to create a general method that combines any decision rule (such as UCB,

TS, or others) with the two relevant informational externalities. The first informational

externality – continuity – is implemented using Gaussian process bandits developed by

Srinivas et al. (2009). The main contribution of this paper, however, is the incorporation of

the second externality – monotonicity – which also builds on the Gaussian process frame-

work. An overview of how these externalities are incorporated into the baseline policies is

shown in Figure 2.

Figure 2 Overview of Incorporation of Informational Externalities

TS UCB

GP-TS GP-UCB

GP-TS-M GP-UCB-M

Baseline Policies

GP Bandits

Monotonic GP 
Bandits
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+ Informational 
Externality 2
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5.1. First Informational Externality: From Points to Functions

The first informational externality recognizes the local dependence of functions through

continuity, whereas baseline MABs consider outcomes at discrete arms to be separate and

independent. Specifically, in the pricing application, we know that demands at two prices

tend to be closer when the prices are closer together. With 10 arms, to inform demand at

arm a (say price pa = 0.5), the demands at pa−1 = 0.4 and pa+1 = 0.6 are most informative.

More generally, it is possible to learn about the demand D(p) at price p from observed

demands at nearby price points, such as D(p+ ϵ) for small ϵ. Note that the information

spillover is bidirectional, with points further away being less important and weighted less

due to the structure of the covariance matrix.

The logic of sharing information between arms means that using functions to model

demand across the range of prices, rather than focusing only on demand at specific arms

(price points), may lead to increased performance. A straightforward parametric approach

would involve specifying functional forms (e.g., splines) to flexibly model the true demand

curve, using observations at the arms (prices). However, there is a risk that any parametric

approximation chosen by the researcher may be insufficient to capture the true shape of

the demand curve.

We take a more flexible nonparametric approach by modeling the space of demand func-

tions as a Gaussian process (GP). A Gaussian process is a stochastic process (a collection

of random variables) such that every finite subset has a multivariate Gaussian distribution;

a simple example of fitting a GP to data can be found in Appendix EC.1. GPs can be

thought of as a probability distribution over possible functions, allowing any function to

be probabilistically drawn from the function space on the chosen support, unlike typical

parametric models. Thus, any arbitrary demand curve can be modeled, and the GP learns

the shape from the data. Following Srinivas et al. (2009), GPs can be incorporated into

the bandit framework using both UCB and TS (Chowdhury and Gopalan 2017).

Advantages of GPs relative to other methods: GPs offer several desirable features for the

present class of problems. First, GPs provide a parsimonious, nonparametric approach

to incorporating both informational externalities in a transparent, principled, and prov-

able manner.14 Second, GPs have closed-form solutions that allow hyperparameters to be

14 An alternative approach would be to use a parametric model like GLM-UCB (Filippi et al. 2010) and restrict the
coefficients to obtain weakly decreasing demand functions.
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tuned quickly with maximum likelihood estimation. Intuitively, GPs work well with bandits

because the exploration-exploitation trade-off relies on understanding the complete distri-

bution of rewards, not just the mean reward at each arm.15 A GP, specifying probability

distribution over functions, offers a principled way to manage the exploration-exploitation

trade-off.

Finally, we note that other nonparametric methods, including many machine learning

methods, may provide higher-accuracy estimates for the mean. However, because they are

not typically capable of quantifying the certainty of their predictions, they are ill-suited

for bandit algorithms, where managing the exploration-exploitation trade-off is crucial.

In contrast, GPs directly quantify uncertainty, allowing it to be incorporated into the

decision-making process in a principled way. The value of modeling uncertainty has been

demonstrated by ignoring uncertainty using only the means of the posterior GP rather

than the entire posterior.16

5.1.1. Gaussian Processes The key building block of our approach, which underpins

the modeling of both informational externalities, is the Gaussian process. As in Ringbeck

and Huchzermeier (2019), we model the GP at the demand-level and then scale by price,

allowing the bandit to make decisions at the reward-level.

Table 2 Summary of GP Notation

Description Notation in Pricing Setting
Training data Dt = {Pt, yt}
Noise hyperparameter σ2

y

RBF kernel kRBF(pi, pj) = σ2
De

−(pi−pj)
2

2l2

RBF hyperparameters {σD, l}
Covariance function (kernel) evaluated at two points k(pi, pj)
Covariance matrix between price vectors K(P,P )

Training Data: The goal of estimating a GP here is to learn the space of demand functions

at test points, P ,17 given the purchase decision history obtained at time t from the MAB

experiment. The training data is defined as Dt = {Pt, yt}, where Pt = {pa : a ∈ At} and

15 This is also incorporated to some degree in the UCB algorithm, which models both a term for the sample mean of
each arm and an exploration bonus dependent on the bounds surrounding those sample means.

16 This approach can be thought of as a greedy-based GP algorithm. This was tested in Srinivas et al. (2009), who
found it was “too greedy too soon and tends to get stuck in shallow local optima” (p. 4), leading the algorithm to
under-explore and produce inaccurate results.

17 In our setup, we use only the prices from the test set, though it is possible to estimate for any arbitrary price.
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yt = {yat : a ∈ At}. Here, At ⊆ A is the subset of actions tested by time t, and yat =
sat
nat

represents the observed purchase rate for price pa at time t. The purchase rates, yat, provide

a noisy signal of the true value of the demand function D(p) at pa; specifically, we assume

yat =D(pa)+ϵ, where ϵ∼N (0, σ2
ya). The vector σ

2
y = (σ2

y1
, . . . , σ2

yA
) is referred to as the noise

hyperparameter. Importantly, the cardinality of the training data depends on the number

of prices in the test set, |P |=A. Therefore, it does not depend on t, the number of purchase

decisions observed, reducing the dimensionality. The computation and equivalence of these

two approaches is discussed in Appendix EC.2.

Kernel: A Gaussian process flexibly models dependencies across input points using a

kernel, implemented through a covariance function. A kernel k(·, ·) takes two points (in

our setting, prices pi and pj) from the input space and returns a scalar representing the

covariance between the outputs at those points. From this, a covariance matrix K(·, ·) can

be constructed for a set of inputs.

A commonly used and robust kernel for GPs is the radial basis function (RBF) kernel,

also known as the Gaussian kernel or the squared exponential kernel (Duvenaud 2014).

kRBF(pi, pj) = σ2
De

−
(pi−pj)

2

2l2 (5)

The RBF kernel has a set of desirable properties suited to our setting. It is differentiable

and can provably approximate any arbitrary continuous target function uniformly on any

compact subset of the input space (Micchelli et al. 2006).

Shape Hyperparameters: The RBF kernel has two shape hyperparameters, σD and l. The

first hyperparameter, σD, is a scale factor that controls the amplitude of the function

(i.e., the average distance of the function from its mean). The second hyperparameter, l,

determines the smoothness18 of the function, describing how the correlation between two

points decreases as the distance between them increases (Shahriari et al. 2015).

A crucial practical step in estimating the GP is tuning the hyperparameters. To minimize

human (researcher) judgment, it is ideal to have an efficient, accurate, and automatic

method for selecting hyperparameters. We use standard non-Bayesian methods for tuning

the hyperparameters.19 This approach involves choosing values of the hyperparameters that

maximize the likelihood of the data given the model. Mathematically, this is equivalent to

18 Intuitively, this can be thought of as the length of the “wiggles.”

19 Bayesian tuning methods are often too slow and not suitable for real-time bandit settings.
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minimizing the negative log marginal likelihood (equation 2.30 in Williams and Rasmussen

(2006)):

log prob(yt|Pt) =−1

2
yTt (K(Pt, Pt)+σ2

yI)
−1yt−

1

2
log |K(Pt, Pt)+σ2

yI| −
t

2
log(2π) (6)

Noise Hyperparameter: While the noise hyperparameter can be estimated along with the

shape hyperparameters, we choose to specify it directly due to the difficulty of disentangling

shape and noise hyperparameters (Murray 2008).20 A conservative approach to specifying

the noise hyperparameter –without estimation – is to use the upper bound. We leverage

the fact that purchase decisions in our model follow a Bernoulli distribution and lie within

the interval [0,1] to calculate this upper bound, which is 0.25 and occurs when the true

purchase probability is 0.5.21 While this may be overly conservative for some prices, in

contrast, setting noise hyperparameters too low could limit exploration and lead to poor

results by causing the algorithm to get stuck in errant equilibria. A discussion of alternative

methods, where noise takes on different values for different prices (i.e., heteroscedastic

noise), is provided in Appendix EC.6.

Posterior Prediction: Estimating the posterior GP is done using standard GP regression

on training data. Equations and an illustrative example are provided in Appendix EC.1.

5.1.2. GP-UCB and GP-TS Gaussian processes can be combined with bandits, such

as UCB and TS, to create GP-UCB (Srinivas et al. 2009) and GP-TS (Chowdhury and

Gopalan 2017), respectively. The general idea is that instead of using the raw data directly,

a posterior GP is estimated before applying a UCB or TS rule to choose a price. As with

the baseline algorithms, we scale by price to adapt to the pricing setting.

To initialize the algorithm, we select the first price randomly.22 Once one data point is

available, the training data Dt = {Pt, yt} can be used to choose the hyperparameters using

equation (6). Additionally, the posterior mean µ(D∗) and covariance matrix Cov(D∗) can

be calculated using equations (EC.5) and (EC.6).23

20 For example, consider two close input points (x-axis) that have very different outputs (y-axis). One possible
explanation is that the data is accurate, and the GP requires shape parameters that permit sufficiently high variation
to capture large output differences from nearby inputs. Alternatively, the true outputs may be close together, but
the data is very noisy; in this case, the previous shape parameters would be overfitting.

21 As we use purchase rates rather than purchase decisions as the training data, we also need to divide by nat at each
price. See Appendix EC.2 for details.

22 Another possible initialization method is to set arbitrary hyperparameters and model the GP without data. Both
methods are practical, with only minor differences in overall performance (under 1% in all our simulations), and
neither method consistently outperforms the other.

23 D∗ is a random variable denoting the Gaussian process posterior prediction.
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With the GP estimated, we can apply either UCB and TS to select a price arm. For

GP-UCB, at each price pa ∈ P , the posterior demand mean µt(pa) and variance σ2
t (pa) are

used to determine the price at iteration t+1 according to the following decision rule:

pGP-UCB
a = argmax

pa∈P

(
pa

(
µt(pa)+β

1/2
t+1σt(pa)

))
(7)

where βt =
2
5
log(|P |t2π2/(6δ)).24 Note that we have scaled by pa as the algorithm is opti-

mizing for reward rather than demand (the level at which the GP was estimated).

On the other hand, in GP-TS, rather than sampling at each arm as in traditional TS, a

demand draw for every test price, D(t)(pa), can be obtained by sampling from the posterior

GP. Specifically, D(t)(P ) is a sample from the posterior normal distribution with the given

mean and covariance matrix, D∗ ∼N (µ(D∗),Cov(D∗)). Then, using Thompson sampling,

the selected price will be

pGP-TS
a = argmax

pa∈P

(
paD

(t)(pa)
)

(8)

5.2. Second Informational Externality: Monotonicity

We now focus on the main contribution of this paper: incorporating the second informa-

tional externality into Gaussian process bandits. The monotonicity property has a global

influence, as demand at price pj, D(pj), constrains all demands at higher prices since

D(pi)≤D(pj) when pi ≥ pj. Similarly, all demands at lower prices are constrained as well:

D(pi)≥D(pj) when pi ≤ pj Note that the impact is asymmetric: specifically, demand at a

higher price pi is upper-bounded by demand at a lower price pj, while demand at a lower

price is lower-bounded by demand at a higher price.

Our method is general enough to integrate with both GP-UCB and GP-TS, as past liter-

ature (Chowdhury and Gopalan 2017) shows that neither completely dominates the other.

We refer to the monotonic versions of GP-UCB and GP-TS as GP-UCB-M and GP-TS-M,

respectively. The goal is to determine whether and under what conditions incorporating

monotonicity improves performance for either variant.

When using GP-TS or GP-UCB, the baseline GP allows for any demand function and

does not impose any restrictions on the shape. Our goal is to obtain only weakly decreas-

ing monotonic demand functions. For GP-TS-M, we require a way to randomly draw a

24 Srinivas et al. (2009) found in their experiments that δ = 0.1 works well empirically, and we use that value here.
Other values of β may perform better in different simulations, though determining β without past data is generally
challenging (Hoffman et al. 2011).
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monotonic function from the set of monotonic functions in the posterior GP. For GP-

UCB-M, we require an estimate of the mean and variance from the subset of monotonic

demand curves from the posterior; alternatively, this can be approximated by averaging

over multiple monotonic draws.

To obtain a random monotonic draw, a simple approach is to use rejection sampling by

repeatedly sampling from the GP until a weakly decreasing draw is obtained. While this

approach can work, there is no guarantee that a weakly decreasing draw will be found

quickly. This issue is further exacerbated when there are few observations or when there

are many test prices; faced with many arms and (noisy) non-monotonic sample means, the

probability of finding a monotonic draw can become vanishingly small.

To ensure that a weakly decreasing draw can be obtained from a GP expediently in

all cases, we develop a method from first principles. We note that sampling a monotonic

function from a GP is intractable. We therefore transform the problem by leveraging a

helpful property of GPs that the derivative of a GP is also a GP (and that the RBF

kernel is infinitely differentiable), allowing us to estimate the derivative of the GP from

our data. The transformed problem, where we obtain a draw from a GP with all values

being negative, then becomes a tractable sampling problem (equivalent to sampling from

a truncated normal). Specifically, a decreasing monotonic function can be characterized by

having negative first derivatives at all points. We then use the basis functions proposed

by Maatouk and Bay (2017) to estimate the demand function from a random sample of

negative derivatives.

An important property of this principled approach is that the function is guaranteed

to be monotonic not only at the discrete price levels forming the support but also at any

intermediate price where no experimentation is performed. This ensures consistency in the

function’s behavior across the entire price range. The only assumption required is that the

demand function is differentiable with a continuous derivative.

5.2.1. Basis Functions To estimate the demand function, we use a collection of func-

tions hj known as the interpolation basis. These basis functions are defined a priori and

remain the same regardless of the input data. They provide a method for estimating a func-

tion at all points by linearly interpolating between known function values at knots spaced

over the support. Following Maatouk and Bay (2017), let uj ∈ [0,1], for j = 0,1, . . . , J ,
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denote equally spaced knots on [0,1] with spacing δJ = 1/J and uj = j/J . The interpolation

basis is defined as

hj(p) = h

(
p−uj

δJ

)
where h(p) = (1− |p|)1(p∈ [−1,1]). (9)

Then, for any continuous function D : [0,1]→R, the function

DJ(·)≈
J∑

j=0

D(uj)hj(·) (10)

approximates D by linearly interpolating between function values at the knots uj. A key

property of the interpolation basis is that, as the gap between the evenly spaced knots

becomes infinitesimally small, the distance between the estimate and the true function

converges to 0.

Our goal, however, is to simplify the sampling problem by approximating the demand

function in terms of its derivatives at the knot points. Equation 10 can be transformed to

express the demand function in terms of its intercept, derivatives, and the original basis

functions hj, as shown in Proposition 1 (a derivation is provided in Appendix EC.3.2).

Appendix EC.3.1 provides a visual demonstration of the basis functions hj and their inte-

grals
∫ p

0
hj(x)dx.

Proposition 1. Assuming a demand function D : [0,1]→R is differentiable with a con-

tinuous derivative (i.e., D ∈C1([0,1])), it can be estimated by its intercept and derivatives

using the following equation:

D(p)≈D(0)+
J∑

j=0

D′(uj)

∫ p

0

hj(x)dx (11)

While this approach applies to all class C1 functions on the support, we additionally

assume that the unknown demand functionD is weakly decreasing, meaning that it belongs

to a subset M defined as follows:

M := {D ∈C1([0,1]) :D′(p)≤ 0, p∈ (0,1)} (12)

In other words, D belongs to the subset of functions where the derivative is never positive

at any value of p.
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5.2.2. GP-UCB-M and GP-TS-M There are a few differences between the monotonic

and non-monotonic versions of GP bandits. When incorporating monotonicity, instead of

estimating a GP of the means at the test prices, we first estimate a GP of the derivatives

at the knots, concatenated with the mean at the intercept. Crucially, the intercept and

derivatives must be estimated together, which is possible due to the property of a GP

that the joint distribution of values and their derivatives is also a GP (Appendix EC.3.3

provides details on calculating the derivative of a GP). Once the posterior GP is estimated,

off-the-shelf sampling can be used to acquire a draw where every derivative is non-negative,

specifically we use the TruncatedNormal package in R (Botev and Belzile 2021). Then,

equation (11) provides a formula to recover the demand sample D(t) at the desired test

prices using only the draw and basis functions h. From this point, the decision rules for GP-

UCB or GP-TS can be applied as usual. Formally, the methods are outlined in Algorithms

1 and 2.

Algorithm 1: GP-TS-M

1 Set test prices P , kernel k, noise hyperparameter σ2
y , and knots U

2 Compute the integrals of the basis functions at U using equation (9)

3 Define test points as U0 = {0}∪U (concatenate the intercept)

4 For t= 1 pick price randomly, and observe purchase decision

5 Initialize training input Pt and training output yt

6 for t= 2,3, ... do
7 Compute shape hyperparameters σD and l using equation (6)

8 Compute covariance matrix (equation (EC.3)) using Pt and U0 with equations (EC.11), (EC.12),

(EC.13)

9 Estimate posterior GP using equations (EC.5) and (EC.6)

10 Sample randomly from the posterior GP at test points U0

11 Estimate the demand draw D(t) at test prices P using equation (11)

12 Play price pa = argmaxpa∈P

(
paD

(t)(pa)
)

13 Observe purchase decision

14 Update Pt and yt
15 end

5.2.3. Theoretical Properties We now characterize the theoretical properties of our

algorithms.25 Our main theoretical result shows a regret with a main term that scales like

25 We make a slight adjustment by relaxing the monotonicity assumption, requiring monotonicity only at the knot
points rather than across all points
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Algorithm 2: GP-UCB-M

1 Set test prices P , kernel k, noise hyperparameter σ2
y , and knots U

2 Compute the integrals of the basis functions at U using equation (9)

3 Define test points as U0 = {0}∪U (concatenate the intercept)

4 For t= 1 pick price randomly, and observe purchase decision

5 Initialize training input Pt and training output yt

6 for t= 2,3, ... do
7 Compute shape hyperparameters σD and l using equation (6)

8 Compute covariance matrix (equation (EC.3)) using Pt and U0 with equations (EC.11), (EC.12),

(EC.13)

9 Estimate posterior GP using equations (EC.5) and (EC.6)

10 Obtain B samples from the posterior GP at test points U0

11 Estimate the demand draw D(t,b) at test prices P using equation (11) for each of the B samples

12 Estimate µt(pa) and σt(pa) from the collection of demand draws

13 Play price pa = argmaxpa∈P

(
pa

(
µt(pa)+β1/2

t+1σt(pa)
))

14 Observe purchase decision

15 Update Pt and yt
16 end

O

(
E
[√

γT
∑T

t=1 p
2
t

])
where γT is a problem dependent quantity reflecting the underlying

effective dimension of the kernel, and pt is the price played at time t. Our analysis follows

the standard approach of Thompson sampling for Gaussian processes; we refer the reader

to Srinivas et al. (2009) for more details on the interpretation of γT . We note that, in the

case of the RBF kernel, γT is log(T ), and therefore has a negligible contribution to the

regret. As we discuss in Appendix EC.4, the regret also consists of a smaller term ET ,

which we show empirically to be bounded by a sublinear term.

The most interesting aspect of the regret is the improved “path-dependent” analysis,

which reflects the actual prices played and demonstrates the advantage of exploiting the

monotonic structure (Zhao et al. 2023). At worst, if we naively upper bound pt by 1, this

yields a regret of O(
√
γTT ). However, this expression does not capture the true behavior of

our proposed method. Intuitively, since we are achieving sub-linear regret, we expect that,

as time progresses, the price pt converges to p∗ as t→∞. Thus, for large T , our regret is

closer to p∗
√
T ≤

√
T .

Furthermore, as we discuss in Section 3.1, by multiplying the demand by p to obtain

profits, we are effectively creating larger confidence intervals (and thus greater uncertainty)
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for profit at higher prices. In contrast, lower prices yield smaller confidence intervals and

less uncertainty on the profit curve. Consequently, pt may be very large in the earlier rounds

as the algorithm strives to reduce uncertainty on the profit at higher prices, regardless of

whether we use UCB or Thompson sampling. By enforcing monotonicity, this effect is still

present but mitigated, as D(p) is necessarily smaller for larger values of p, even if we have

not fully learned the function at those values. As a result, the pt we ultimately play should

be smaller with monotonicity.

6. Analysis and Results

We now explain the implementation of the algorithms, specifically detailing key compo-

nents such as consumer valuations, the number of arms, and the sequence of events in the

multi-armed bandit.

Sequence of Events: We evaluate our proposed algorithm and benchmarks using simula-

tions based on a standard setup for assessing bandit algorithms in pricing (Misra et al.

2019). Each simulation has the following structure. First, at each time period, a potential

buyer (consumer) arrives from a large pool of consumers by being drawn from an unknown

but stable WTP distribution. They are shown a price chosen by the algorithm (which

has no specific knowledge about this consumer), and they decide to purchase one unit if

and only if their valuation for the product is greater than the price shown. The outcome

(purchase or no purchase) is observed by the algorithm, which then updates its history of

observations. We allow for the algorithm to update its price every 10 consumers.26

Varying the Number of Arms: When choosing the number of arms (prices), the decision

maker must balance two competing considerations: the granularity of the price set and the

complexity of the learning problem. A smaller set of test prices faces the risk that the best

price within the set is far from the true optimal price. Conversely, testing a larger set of

prices increases the complexity of learning, slowing convergence and potentially leading to

higher cumulative losses. We evaluate performance across different price sets, normalized

from 0 to 1, using intervals corresponding to 5, 10 and 100 arms.

26 While prices could be updated every period (i.e., for each consumer), this may be impractical in real-world settings.
To better reflect industry practices, we change prices every 10 consumers, as in Misra et al. (2019).
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Valuation (WTP) Distributions: Right-skewed, Left-skewed, and Symmetric: To evaluate the

performance of various MAB policies, it is crucial to consider different shapes of consumer

valuation (WTP) distributions. Following Misra et al. (2019), we analyze three types of

distributions using specific parameterizations of the Beta distribution: Beta(2,9) for a right-

skewed distribution, Beta(9,2) for a left-skewed distribution, and Beta(2,2) for a symmetric

distribution. A graphical depiction of the willingness to pay, the demand curve, and the

profit curve for each simulation setting is provided in Figure 3. A monopolist with perfect

knowledge of the demand curve would set prices to maximize profit. The true optimal

prices are 0.15 for Beta(2,9), 0.42 for Beta(2,2), and 0.68 for Beta(9,2).

Figure 3 WTP Distributions and Demand and Profit Functions
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Algorithm Initialization: The algorithms are initialized with either a prior or by limited

experimentation. For UCB, we assume a prior that encourages exploration by treating

every untested price as if it has been tested once and resulted in a purchase.27 In contrast,

TS- and GP-variants can use uninformed priors, enabling price selection even without prior

data. To make the comparison more consistent,28 we have GP-variants select the first price

randomly, after which the price can be chosen using the data-estimated GP.

6.1. Results

Our results present several variants within the two main classes of algorithms (TS and

UCB). Figure 4 illustrates the cumulative performance of each algorithm over time (or

27 An alternative approach is to test each price before applying the UCB policy; however, our initialization priors
allow for the possibility of not testing every price, which can improve algorithmic performance.

28 When faced with an uninformed prior, there are slight differences in the distribution of the first price chosen by the
monotonic and non-monotonic algorithms. This can lead to minute differences in performance (under 1% and usually
around 0%) depending on the underlying WTP distribution attributable solely to the first price decision, which we
mitigate by choosing the first price randomly.
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number of consumers), whereas Table 3 provides the exact values from this figure at

500 and 2500 consumers. Table 4 shows the uplift, or gains, from incorporating the two

informational externalities relative to the baseline algorithms. Finally, Figure 5 presents a

histogram of prices played, offering insight into the behavior of the different algorithms.

6.1.1. Main Results: Cumulative Performance The performances of the algorithms

are shown in Figure 4, which reports the cumulative percentage of optimal rewards relative

to the case when the optimal arm (price) is played.29 In each subfigure, the horizontal black

dotted line represents the maximum obtainable rewards given the price set (i.e., the ratio

of the reward obtained from playing the best price within the price set to the true optimal

reward). The value of this line increases as the price set enlarges, approaching the true

optimal of 100%. Visually, algorithms with no informational externalities are represented

with dots, those with the first informational externality (i.e., the GP) are represented

with dashes, and those with both informational externalities are represented with solid

lines. UCB-variants are shown in warm (orange-based) colors, while TS-variants are in cool

(blue-based) colors.

In general, the results show that incorporating informational externalities improves algo-

rithmic performance, though the effects vary across distributions and the number of arms.

We explore this in more detail, starting with the case of 5 arms, illustrated in Figure 4a. For

the right-skewed Beta(2,9) distribution, despite all algorithms eventually converging to the

optimal price with sufficient learning, there is a significant separation in performance across

algorithms even after 2500 consumers. Incorporating the first informational externality –

a Gaussian process – results in minimal improvement for UCB and a slight decrease in

performance for TS. However, incorporating the second informational externality – mono-

tonicity – leads to substantial performance gains for both GP-UCB and GP-TS. Finally,

the Nonparametric TS (N-TS) algorithm performs well relative to most other algorithms

but is outperformed by GP-TS-M.

Next, we examine the symmetric and left-skewed distributions, Beta(2,2) and Beta(9,2),

respectively. While the ordering of algorithms’ performance is similar to the right-skewed

Beta(2,9) case, we observe that the differences between algorithms begin to shrink. This

29 There are two sources of variation between simulations: one from the algorithm itself and another from the exact
WTP draws from the true distribution. Using expected rewards from playing a price reduces the variation caused
by WTP draws, allowing for a cleaner comparison of algorithmic performance. Misra et al. (2019) also use expected
rewards in their analysis.
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Figure 4 Cumulative Percent of Optimal Rewards (Profits)
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iii) Left−Skewed: Beta(9,2)

Algorithm
TS GP−TS GP−TS−M N−TS
UCB GP−UCB GP−UCB−M

a) 5 Arms

b) 10 Arms

c) 100 Arms

Notes. The lines represent the means of the cumulative expected percentage of optimal rewards across 1000 simulations. The
black horizontal line represents the maximum obtainable reward given the price set, while 100% represents the true optimal
reward given the underlying distribution.
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Table 3 Cumulative Percent of Optimal Rewards (Profits)

After 500 Consumers
% of Price Set Maximum Reward % of True Optimal Reward

Algorithm B(2,9) B(2,2) B(9,2) Mean B(2,9) B(2,2) B(9,2) Mean
5 Arms

TS 72.7 91.2 97.6 87.2 65.6 87.7 97.2 83.5
GP-TS 66.7 92.0 95.3 84.7 60.2 88.4 94.9 81.2
GP-TS-M 87.3 94.6 96.3 92.7 78.7 90.9 95.9 88.5
N-TS 82.0 73.3 49.7 68.3 73.9 70.5 49.5 64.6
UCB 27.0 90.0 96.5 71.1 24.3 86.5 96.1 69.0
GP-UCB 26.6 92.0 96.6 71.8 24.0 88.5 96.2 69.6
GP-UCB-M 71.1 93.1 97.2 87.1 64.1 89.5 96.8 83.5

10 Arms
TS 51.0 82.8 93.6 75.8 46.9 82.5 93.2 74.2
GP-TS 61.1 90.4 94.3 81.9 56.2 90.1 93.9 80.1
GP-TS-M 90.3 93.5 95.3 93.0 83.1 93.3 94.9 90.4
N-TS 43.5 76.8 85.6 68.6 40.0 76.5 85.2 67.3
UCB 14.6 79.8 91.4 61.9 13.5 79.6 91.0 61.3
GP-UCB 27.0 89.8 95.6 70.8 24.8 89.5 95.2 69.8
GP-UCB-M 79.1 90.9 96.1 88.7 72.9 90.7 95.7 86.4

100 Arms
TS 1.0 43.5 69.0 37.8 1.0 43.5 69.0 37.8
GP-TS 60.6 90.3 94.3 81.8 60.6 90.3 94.3 81.8
GP-TS-M 87.4 93.3 95.3 92.0 87.4 93.3 95.3 92.0
N-TS 28.4 59.3 60.4 49.3 28.4 59.3 60.4 49.3
UCB 0.7 44.8 71.4 39.0 0.7 44.8 71.4 39.0
GP-UCB 20.5 88.1 94.8 67.8 20.5 88.1 94.8 67.8
GP-UCB-M 71.5 89.8 95.2 85.5 71.5 89.8 95.2 85.5

After 2500 Consumers
% of Price Set Maximum Reward % of True Optimal Reward

Algorithm B(2,9) B(2,2) B(9,2) Mean B(2,9) B(2,2) B(9,2) Mean
5 Arms

TS 92.1 96.6 99.4 96.1 83.0 92.9 99.0 91.7
GP-TS 86.2 96.9 98.9 94.0 77.7 93.2 98.5 89.8
GP-TS-M 95.6 97.8 99.1 97.5 86.1 94.1 98.7 93.0
N-TS 94.6 80.3 50.2 75.0 85.3 77.2 50.0 70.8
UCB 75.4 96.6 99.1 90.4 68.0 92.9 98.7 86.5
GP-UCB 77.0 97.5 99.2 91.2 69.4 93.8 98.8 87.3
GP-UCB-M 90.8 98.0 99.3 96.0 81.9 94.2 98.9 91.7

10 Arms
TS 83.7 93.5 98.1 91.8 77.1 93.2 97.7 89.3
GP-TS 82.3 96.6 98.2 92.4 75.8 96.3 97.7 89.9
GP-TS-M 96.6 97.2 98.4 97.4 88.9 96.9 98.0 94.6
N-TS 76.5 90.7 95.6 87.6 70.4 90.4 95.2 85.3
UCB 52.4 91.9 97.3 80.5 48.3 91.6 96.9 78.9
GP-UCB 73.4 96.5 98.6 89.5 67.6 96.2 98.2 87.3
GP-UCB-M 93.5 96.8 98.7 96.3 86.1 96.5 98.3 93.6

100 Arms
TS 22.8 73.3 90.2 62.1 22.8 73.3 90.2 62.1
GP-TS 82.0 96.3 98.2 92.2 82.0 96.3 98.2 92.2
GP-TS-M 94.2 97.1 98.4 96.6 94.2 97.1 98.4 96.6
N-TS 32.2 67.4 74.6 58.1 32.2 67.4 74.6 58.1
UCB 12.4 70.8 87.2 56.8 12.4 70.8 87.2 56.8
GP-UCB 69.7 95.7 98.1 87.8 69.7 95.7 98.1 87.8
GP-UCB-M 90.1 96.0 98.0 94.7 90.1 96.0 98.0 94.7

finding aligns with expectations outlined in Section 3, as the learning problem becomes

easier when the optimal price is higher within the price set, allowing all algorithms to

perform well. The one exception is N-TS, which performs worse in these cases. Averaging

across all three distributions, the best-performing algorithm is GP-TS-M, achieving 92.7%
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of the maximum reward obtainable given the price set (and 88.5% of the true optimal) after

500 consumers and 97.5% (93.0% of the true optimal) after 2500 consumers (see Table 3).

We now increase the number of arms or prices. As the number of arms increases from

5 to 10, the rank ordering of the algorithms remains similar, with a few notable differ-

ences. In the Beta(2,9) case, the first informational externality allows GP-TS to initially

outperform TS, though TS narrowly surpasses it by 2500 consumers. In contrast, GP-UCB

now significantly outperforms UCB. Similarly, in both the Beta(2,2) and Beta(9,2) cases,

the performance gap between GP-TS (GP-UCB) and TS (UCB) widens. Accordingly, the

variation in performance across algorithms increases, with the lower-performing algorithms

falling further behind the best-performing ones that use a GP. This growing difference

occurs because of the first informational externality. Meanwhile, the second informational

externality again provides a substantial gain in the Beta(2,9) case but only minor improve-

ments in the Beta(2,2) and Beta(9,2) cases. GP-TS-M continues to lead in performance,

while N-TS performs comparably to TS and UCB.

When the number of arms increases from 10 to 100, the learning problem becomes more

challenging, and the above patterns intensify. The gap between the best and worst perform-

ing algorithms widens further, driven primarily by the benefits of the first informational

externality, which grows as the number of arms increase. Learning across 100 arms without

leveraging nearby information requires significantly more data, making the advantages of

shared learning through a Gaussian process increasingly pronounced. The second informa-

tional externality maintains similar effects regardless of the number of arms, reinforcing

the substantial gain in the Beta(2,9) case while providing only minor improvements in

the Beta(2,2) and Beta(9,2) cases. GP-TS-M remains the best-performing algorithm, with

N-TS still performing similarly to TS and UCB.

Having discussed the results across price granularities (number of arms), a question

remains: in practice, a priori, how should a firm choose the price set? The general trade-off

is that learning the optimal price is easier (more efficient) with fewer prices, but a higher

optimum is possible when more prices are considered.

To illustrate, in the Beta(9,2) case with 5 arms and after 2500 consumers, GP-TS-M

achieves 99.1% of the maximum reward possible given the chosen price set, which equates

to 98.7% of the true optimal reward. Meanwhile, at the higher price granularity of 100

arms, GP-TS-M achieves 98.4% of both the maximum reward possible and the true optimal
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reward. In this case, the maximum reward possible with 5 arms happens to be close enough

to the true optimal that the benefits of an easier learning problem outweigh the potential

gains from being able to select a price closer to the true optimal. This is not always true.

In the Beta(2,9) case, the maximum reward possible is just 90.2% of the true optimal. As

a result, despite GP-TS-M obtaining 95.6% of the maximum reward possible with 5 arms,

it achieves just 86.1% of the true optimal – much worse than 100 arms which achieves

94.2%. Thus, one important benefit of our proposed approach is that it makes it feasible

to have a larger number of arms, enabling more precise discovery of the optimal price.

Overall, averaged across the three distributions, the highest-performing algorithm rela-

tive to the true optimal is GP-TS-M with 100 arms. Thus, we suggest firms use many arms,

as this allows for higher potential gains that outweigh the losses from a more challenging

learning problem, which are significantly mitigated by the incorporation of informational

externalities.30 Additionally, GP-TS-M with 100 arms is also the best-performing algo-

rithm after 500 consumers, making this advice applicable for experiments of wide range of

reasonable durations.31

6.1.2. Uplifts: Performance Increase from Informational Externalities We next

examine the uplifts (the percentage improvement in cumulative profits from including an

informational externality) in Table 4. This analysis quantitatively assesses the value of

the externalities and clarifies how their impact depends on valuation distributions and the

numbers of arms. Overall, we observe that while the uplift from the first externality is

most influenced by the number of arms, the uplift from the second externality is primarily

affected by the underlying WTP distribution.

After 2500 consumers, the benefit of incorporating the first informational externality

using GPs into both TS and UCB increases with the number of arms across all three

distributions. Averaged across the distributions, the uplift for adding GP to TS is −2.1%

for 5 arms, 0.6% for 10 arms, and 48.4% for 100 arms. For UCB, the corresponding uplifts

are 1.0%, 11.1%, and 54.7%. For 100 arms, a common pattern for both TS and UCB

emerges: the uplift sharply decreases as the optimal price increases, shifting from the

30 Across the three distributions we tested, with 100 arms the maximum reward obtainable was at least 99.99% of the
true optimal, suggesting that 100 arms may be sufficient. Further testing on a wider variety of WTP distributions
would be useful.

31 If the experiment becomes sufficiently short, there will eventually be a point where a smaller price set will perform
better.
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Table 4 Uplifts in Performance from Informational Externalities

After 500 Consumers
TS UCB

5 Arms 10 Arms 100 Arms 5 Arms 10 Arms 100 Arms

Uplift from
1st externality
(GP compared
to base algos)

B(2,9)
-8.0%

(-8.6, -7.3)
20.6%

(19.2, 22.1)
5940%

(5840, 6040)
2.0%

(0.0, 4.1)
92.1%

(86.6, 97.6)
2720%

(2650, 2790)

B(2,2)
1.0%

(0.6, 1.3)
9.4%

(9.0, 9.8)
108%

(107, 109)
2.4%

(2.0, 2.7)
12.6%

(12.1, 13.1)
96.6%

(96.0, 97.2)

B(9,2)
-2.4%

(-2.5, -2.2)
0.8%

(0.6, 1.0)
36.8%

(36.6, 37.1)
0.1%

(0.0, 0.3)
4.6%

(4.5, 4.8)
32.7%

(32.6, 32.8)

Mean
-2.8%

(-3.1, -2.6)
8.2%

(7.8, 8.5)
116%

(115, 117)
0.9%

(0.7, 1.2)
14.3%

(13.9, 14.7)
73.9%

(73.4, 74.4)

Uplift from
2nd externality
(GP-M compared
to GP algos)

B(2,9)
31.5%

(30.5, 32.5)
50.1%

(48.4, 51.8)
45.5%

(44.1, 47.0)
176%

(170, 182)
237%

(222, 252)
296%

(281, 310)

B(2,2)
2.9%

(2.6, 3.2)
3.5%

(3.2, 3.9)
3.4%

(3.1, 3.8)
1.3%

(1.0, 1.6)
1.4%

(1.0, 1.8)
2.1%

(1.6, 2.5)

B(9,2)
1.0%

(0.9, 1.2)
1.1%

(1.0, 1.2)
1.1%

(0.9, 1.2)
0.6%

(0.5, 0.7)
0.5%

(0.4, 0.6)
0.5%

(0.4, 0.5)

Mean
9.6%

(9.3, 9.8)
13.7%

(13.3, 14.0)
12.6%

(12.3, 12.9)
21.5%

(21.1, 21.9)
25.6%

(25.1, 26.0)
26.3%

(25.9, 26.7)

Uplift from
both externalities
(GP-M compared
to base algos)

B(2,9)
20.4%

(19.6, 21.3)
78.5%

(76.9, 80.0)
8610%

(8470, 8740)
174%

(168, 179)
468%

(457, 479)
975%

(970, 980)

B(2,2)
3.8%

(3.5,4.1)
13.2%

(12.7, 13.6)
115%

(114,116)
3.6%

(3.2, 3.9)
14.1%

(13.6, 14.5)
100%

(100, 101)

B(9,2)
-1.4%

(-1.5, -1.2)
1.9%

(1.7, 2.1)
38.3%

(38.0, 38.6)
0.8%

(0.7, 0.9)
5.2%

(5.0, 5.3)
33.3%

(33.2, 33.4)

Mean
6.4%

(6.1, 6.6)
22.9%

(22.5, 23.2)
143%

(143, 144)
22.6%

(22.1, 23.0)
43.3%

(42.9, 43.7)
119%

(119, 120)
After 2500 Consumers

TS UCB
5 Arms 10 Arms 100 Arms 5 Arms 10 Arms 100 Arms

Uplift from
1st externality
(GP compared
to base algos)

B(2,9)
-6.4%

(-6.5, -6.2)
-1.6%

(-1.9, -1.3)
262%

(260, 264)
2.2%

(1.9, 2.4)
40.4%

(39.7, 41.1)
464%

(462, 467)

B(2,2)
0.3%

(0.1, 0.4)
3.4%

(3.2, 3.5)
31.4%

(31.2, 31.6)
1.0%

(0.9, 1.1)
5.0%

(4.8, 5.1)
35.2%

(35.0, 35.4)

B(9,2)
-0.5%

(-0.6, -0.5)
0.0%

(0.0, 0.1)
8.8%

(8.7, 8.9)
0.1%

(0.0, 0.1)
1.3%

(1.3, 1.4)
12.5%

(12.4, 12.6)

Mean
-2.1%

(-2.2, -2.0)
0.6%

(0.5, 0.8)
48.4%

(48.2, 48.6)
1.0%

(0.9, 1.1)
11.1%

(11.0, 11.3)
54.7%

(54.5, 54.9)

Uplift from
2nd externality
(GP-M compared
to GP algos)

B(2,9)
10.9%

(10.6, 11.1)
17.4%

(17.1, 17.8)
14.9%

(14.6, 15.2)
18.0%

(17.6, 18.5)
27.6%

(27.1, 28.1)
29.4%

(28.9, 30.0)

B(2,2)
1.0%

(0.9, 1.1)
0.7%

(0.5, 0.8)
0.9%

(0.7, 1.0)
0.4%

(0.3, 0.5)
0.3%

(0.2, 0.5)
0.3%

(0.1, 0.4)

B(9,2)
0.2%

(0.2, 0.3)
0.3%

(0.2, 0.3)
0.3%

(0.2, 0.3)
0.1%

(0.1, 0.2)
0.2%

(0.1, 0.2)
-0.1%

(-0.1, 0.0)

Mean
3.7%

(3.6, 3.8)
5.5%

(5.4, 5.6)
4.8%

(4.7, 4.9)
5.3%

(5.1, 5.4)
7.7%

(7.5, 7.8)
7.8%

(7.7, 7.9)

Uplift from
both externalities
(GP-M compared
to base algos)

B(2,9)
3.8%

(3.6, 4.0)
15.4%

(15.2, 15.6)
315%

(313, 318)
20.5%

(20.0, 21.0)
78.9%

(78.1, 79.7)
629%

(627, 632)

B(2,2)
1.3%

(1.1, 1.4)
4.0%

(3.9, 4.2)
32.5%

(32.3, 32.7)
1.4%

(1.3, 1.6)
5.3%

(5.1, 5.5)
35.6%

(35.4, 35.8)

B(9,2)
-0.3%

(-0.4, -0.3)
0.3%

(0.2, 0.4)
9.0%

(8.9, 9.1)
0.2%

(0.2, 0.3)
1.5%

(1.4, 1.5)
12.4%

(12.3, 12.5)

Mean
1.5%

(1.4, 1.6)
6.2%

(6.1, 6.3)
55.5%

(55.4, 55.7)
6.3%

(6.2, 6.4)
19.6%

(19.5, 19.8)
66.8%

(66.6, 66.9)
Notes. The table provides mean uplifts (averaged across 1000 simulations) along with their corresponding 99% confidence
intervals, calculated using a paired t-test. The means are weighted.

right-skewed Beta(2,9) to the left-skewed Beta(9,2). These differences are substantial, with

uplifts exceeding 200% for Beta(2,9) but dropping to just 9%–13% for Beta(9,2). This

pattern persists for UCB across all numbers of arms, whereas for TS, the first externality

actually decreases profits in the Beta(2,9) case for both 5 and 10 arms.
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For the second informational externality, the uplift patterns are consistent within the

TS and UCB families of algorithms, specifically for GP-TS to GP-TS-M and GP-UCB to

GP-UCB-M. Across the various numbers of arms, the uplifts remain stable, ranging from

3.7% to 5.5% for the TS family and 5.3% to 7.8% for the UCB family. However, the uplifts

vary substantially between distributions, with high gains concentrated in the Beta(2,9)

case; they drop to under 1% for Beta(2,2) and approach 0% for Beta(9,2).

For 500 consumers, the uplift patterns are similar to those disccused earlier, but more

pronounced. This is because comparative gains from algorithms often occur in the early

rounds; over time, all algorithms eventually converge to the optimal price. This also implies

that informational externalities are broadly valuable, regardless of whether the manager

operates with a low experimentation budget (500 consumers) or a relatively high one (2500

consumers).

6.1.3. Mechanism: Investigating the Prices Chosen by Algorithms To understand

why algorithms vary in performance, we examine the set of prices (arms) selected by each

algorithm. Figure 5 presents three sets of three panels. Each graph includes both a left and

a right y-axis. The left y-axis corresponds to the blue bar plots, which show the percentage

of time each price was chosen. The right y-axis corresponds to the red horizontal lines,

which represent the proportion of optimal rewards obtainable by selecting that price. The

highest red line is further marked with a black dot, indicating the price that achieved the

maximum reward within the price set as well as its percentage of the true optimal.

The value of the first informational externality (using a GP) increases with the number

of arms, with the largest gains observed when there are 100 arms, while for 5 arms, the

gains are negligible or even negative. This mechanism becomes clear when comparing

the top row (5 arms) with the bottom row (100 arms) of Figure 5. Since TS does not

account for dependence across arms, it must learn the reward for each price individually,

requiring extensive testing of each price. In contrast, GP-TS pools information across many

low-performing arms, enabling it to focus on higher-reward areas more quickly without

repeatedly testing each price. As the number of arms increases, these advantages become

substantial.

However, with just 5 arms, TS can learn the reward distribution for each price relatively

quickly and may even outperform GP-TS. For example, with 5 arms and a Beta(2,9)

distribution, GP-TS selects prices 0.7 and 0.9 (which provide minimal rewards) far more
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Figure 5 Histogram of Prices Played
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i) Right−Skewed: Beta(2,9)
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ii) Symmetric: Beta(2,2)
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iii) Left−Skewed: Beta(9,2)
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iii) Left−Skewed: Beta(9,2)

Algorithm TS GP−TS GP−TS−M

a) 5 Arms

b) 10 Arms

c) 100 Arms

Notes. Each subfigure has two y-axes, with price as the common x-axis. The left y-axis corresponds to the bar plots and
represents the % of time each arm is chosen (based on 2500 consumers, averaged over 1000 simulations). The right y-axis
corresponds to the red horizontal lines, which indicate the % of the true optimal reward obtainable at each corresponding price.
The black dot marks the price that is optimal within the price set.

frequently than TS. When the arms or prices are far apart, the value of learning across arms

can be negative. This is also exacerbated since the GP uses a single noise hyperparameter

across all prices, leading to larger noise estimates in this price range. Consequently, the
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GP requires more learning to eliminate these prices from consideration than TS. Appendix

EC.6 outlines a method to address this issue by incorporating heterogeneity in noise for

GP modeling.

Meanwhile, for the second informational externality, the largest gains occurred in the

Beta(2,9) case, with positive uplifts diminishing as we move to the Beta(2,2) and Beta(9,2)

cases. In the top-left panel (5 arms, right-skewed), all algorithms play the optimal price

of 0.1 the majority of the time. However, both TS and GP-TS play prices 0.7 and 0.9

with a non-negligible frequency, whereas GP-TS-M almost never selects these prices. Since

these arms provide nearly zero reward, playing them is quite costly, which highlights the

superior performance of GP-TS-M.

To understand why this occurs, recall that profit is demand scaled by price, meaning

that even if demands are learned equally across prices, uncertainty bounds around profits

are increasing with price. Algorithms that do not consider monotonicity (such as TS and

GP-TS) must invest significant resources to determine whether high prices are suboptimal.

As monotonicity requires each demand curve to be monotonically decreasing, it eliminates

many possible demand curves that TS and GP-TS cannot disregard. Specifically, it can lead

to gains by excluding from consideration demand curves that upward-slope at high prices

when the true optimal is a low price. Thus, with minimal data, monotonicity effectively

reduces the need to explore high-noise, low-profit regions, thus demonstrating its value.

This advantage, however, applies primarily when the optimal price is low. Because lower

prices have smaller reward bounds, other algorithms can also quickly dismiss low-profit,

low-price arms; for example, the left-skewed panels of Figure 5 show that all of the algo-

rithms rarely played prices below 0.5. Ultimately, the advantage from incorporating the sec-

ond informational externality diminishes as the optimal price within the price set increases,

although it remains positive across all simulations we ran.

6.1.4. Robustness: Alternative WTP Distributions We also conduct several analyses

to assess the robustness of the method developed here. First, in Appendix EC.5.1, we test

our method in an empirical setting using a demand curve estimated from field data. In

this setting, the optimal price was low within the price set considered, and the results

accordingly aligned with the Beta(2,9) case for 5, 10, and 100 arms. This lends credence to

our main analysis and demonstrates the practical value and applicability of the method.
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Next, since the GP-based method requires continuity of the demand curve, we consider

cases where the demand curve has discontinuities at known prices – specifically, left-digit

bias (Thomas and Morwitz 2005), where consumers perceive a larger price increase when

the left-digit changes (e.g., from $1.99 to $2.00 is perceived as greater than a one-cent

increase). We find that even in this challenging situation, the informational externalities

improve performance (see Appendix EC.5.2). However, if the left-digit bias is large enough,

it may be more effective for a firm to use only the prices immediately preceding the

discontinuities as the price set rather than adopting a finer price granularity.

Finally, to examine whether the proposed bandit algorithms provide a long-run or per-

sistent advantage, we explore the case of time-varying (seasonal) demand in Appendix

EC.5.3, where we introduce an unknown demand shock each period. Once again, we find

that informational externalities, especially monotonicity, significantly enhance long-term

profits. Notably, we find that learning is so efficient that, when the shocks are large enough,

GP-TS-M can achieve higher profits by restarting the bandit experiment at each shock

rather than relying on prior data. For the other algorithms tested, however, the start-up

cost outweighed the gains from more accurately learning the demand curve.

7. Conclusion and Future Research

We have proposed a method for efficient and robust learning of the relevant portion of

the demand curve by using reinforcement learning in multi-armed bandits informed by

microeconomic principles, specifically monotonicity of demand curves..

Notably, our algorithm outperformed baseline methods across a variety of scenarios,

including number of arms and valuations distributions as well as challenging cases like

discontinuous and time-varying demand, and achieved significant gains across both the

short and long term horizons. Our method is particularly beneficial for managers with

limited time for experimentation. By reducing the required experimentation time, our

approach makes price experimentation more feasible, minimizing potential monetary losses

and limiting negative consumer impact. Our method leverages informational externalities

to enable testing a finer grid of prices, allowing firms to evaluate prices closer to the true

optimal. This not only increases gains during the experiment but can also lead to long-term

profit improvements when a near-optimal price is adopted after the experiment concludes.

There are several avenues to extend this research. First, the method could be adapted to

settings involving multiple units purchased or multiple products, where consumer choices
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for one product inform the valuation distribution of related products. Second, applying

the method to competitive environments, where competitors are experimenting with price

levels and demand responses, would be valuable. More broadly, efficiently learning unknown

demand curves with minimal experimental impact remains a significant challenge across

many markets. This research contributes to addressing this challenge by closely integrating

theory with algorithm development for effective learning.
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Filippi S, Cappe O, Garivier A, Szepesvári C (2010) Parametric bandits: The generalized linear case. Advances in

neural information processing systems 23.

Furman J, Simcoe T (2015) The economics of big data and differential pricing. The White House President Barack

Obama .

Gittins J (1974) A dynamic allocation index for the sequential design of experiments. Progress in statistics 241–266.

Goldberg PW, Williams CK, Bishop CM (1997) Regression with input-dependent noise: A gaussian process treatment.

Advances in neural information processing systems 10:493–499.

Gordon BR, Zettelmeyer F, Bhargava N, Chapsky D (2019) A comparison of approaches to advertising measurement:

Evidence from big field experiments at facebook. Marketing Science 38(2):193–225.

Guntuboyina A, Sen B (2018) Nonparametric shape-restricted regression. Statistical Science 33(4):568–594.

Handel BR, Misra K (2015) Robust new product pricing. Marketing Science 34(6):864–881.

Hanssens DM, Pauwels KH (2016) Demonstrating the value of marketing. Journal of marketing 80(6):173–190.

Hauser JR, Urban GL, Liberali G, Braun M (2009) Website morphing. Marketing Science 28(2):202–223.

Hendel I, Nevo A (2006) Measuring the implications of sales and consumer inventory behavior. Econometrica

74(6):1637–1673.



Weaver, Kumar & Jain: Nonparametric Pricing Bandits Leveraging Informational Externalities
38

Hill DN, Nassif H, Liu Y, Iyer A, Vishwanathan S (2017) An efficient bandit algorithm for realtime multivariate

optimization. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 1813–1821.

Hoban PR, Bucklin RE (2015) Effects of internet display advertising in the purchase funnel: Model-based insights

from a randomized field experiment. Journal of Marketing Research 52(3):375–393.

Hoffman M, Brochu E, De Freitas N, et al. (2011) Portfolio allocation for bayesian optimization. UAI, 327–336

(Citeseer).

Huang J, Reiley D, Riabov N (2018) Measuring consumer sensitivity to audio advertising: A field experiment on

pandora internet radio. Available at SSRN 3166676 .

Huang Y, Ellickson PB, Lovett MJ (2022) Learning to set prices. Journal of Marketing Research 59(2):411–434.

Jindal P, Zhu T, Chintagunta P, Dhar S (2020) Marketing-mix response across retail formats: the role of shopping

trip types. Journal of Marketing 84(2):114–132.

Kawale J, Bui HH, Kveton B, Tran-Thanh L, Chawla S (2015) Efficient thompson sampling for online matrix-

factorization recommendation. Advances in neural information processing systems, 1297–1305.

Kermisch R, Burns D (2018) Is pricing killing your profits. Bain & Company Report, Bain: Boston .

Kersting K, Plagemann C, Pfaff P, Burgard W (2007) Most likely heteroscedastic gaussian process regression. Pro-

ceedings of the 24th international conference on Machine learning, 393–400.

Lai TL, Robbins H (1985) Asymptotically efficient adaptive allocation rules. Advances in applied mathematics 6(1):4–

22.

Lambrecht A, Tucker C, Wiertz C (2018) Advertising to early trend propagators: Evidence from twitter. Marketing

Science 37(2):177–199.

Maatouk H, Bay X (2017) Gaussian process emulators for computer experiments with inequality constraints. Math-

ematical Geosciences 49(5):557–582.

Miao S, Wang Y (2024) Demand balancing in primal-dual optimization for blind network revenue management. URL

https://arxiv.org/abs/2404.04467.

Micchelli CA, Xu Y, Zhang H (2006) Universal kernels. Journal of Machine Learning Research 7(12).

Misra K, Schwartz EM, Abernethy J (2019) Dynamic online pricing with incomplete information using multiarmed

bandit experiments. Marketing Science 38(2):226–252.

Murray I (2008) Introduction to gaussian processes. Dept. Computer Science, University of Toronto .

Nair H (2007) Intertemporal price discrimination with forward-looking consumers: Application to the us market for

console video-games. Quantitative Marketing and Economics 5(3):239–292.

Oren SS, Smith SA, Wilson RB (1982) Nonlinear pricing in markets with interdependent demand. Marketing Science

1(3):287–313.

Rao RC, Bass FM (1985) Competition, strategy, and price dynamics: A theoretical and empirical investigation.

Journal of Marketing Research 22(3):283–296.
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Electronic Companion Supplement

EC.1 Gaussian Process Regression

This section provides an overview of Gaussian process regression. Formally, the assumption

is that the demand function D is jointly Gaussian-distributed and completely defined by

its mean µ(p) and covariance function k(p, p′), such that D(p) ∼ GP(µ(p), k(p, p′)). The

mean and covariance functions are defined as follows (Williams and Rasmussen 2006):

µ(p) = E[D(p)], (EC.1)

k(p, p′) = E[(D(p)−µ(p))(D(p′)−µ(p′))]. (EC.2)

For ease of exposition, we set µ(p) = 0.32

The kernel can then be used to compute a covariance matrix K(P,P ), which contains

the covariance between all test points, as well as a covariance matrix (either K(P,Pt) or

K(Pt, P )) between training and test cases. The joint distribution of the training data Pt

and the test points P can be written as follows (equation (2.21) in Williams and Rasmussen

(2006)):  yt

D∗

∼N

0,

K(Pt, Pt)+σ2
yI K(Pt, P )

K(P,Pt) K(P,P )

 , (EC.3)

where D∗ =D(P ) is a random variable denoting the GP predictions at test points P . It

then follows from equations (2.22–2.24) in Williams and Rasmussen (2006) that:

D∗|Pt, yt, P ∼N(µ(D∗), Cov(D∗)), where (EC.4)

µ(D∗) =K(P,Pt)[K(Pt, Pt)+σ2
yI]

−1yt, (EC.5)

Cov(D∗) =K(P,P )−K(P,Pt)[K(Pt, Pt)+σ2
yI]

−1K(Pt, P ). (EC.6)

Figure EC.1 illustrates a simple example of GP regression. As data is obtained, the space

where the true demand function could exist becomes more constrained. Accordingly, the

range of uncertainty is smaller in areas closer to data points compared to those farther

away, as shown by the shaded area representing the 95% confidence intervals at the test

points.

32 If we have a GP, D ∼ GP (µ,k), where the prior mean function is non-zero, then D′ = D − µ is the zero-mean
Gaussian process, D′ ∼GP (0, k). Hence, using observations from the values of D, we can subtract the prior mean
function values to obtain observations of D′, perform inference on D′, and then add back the prior mean µ(P ) to the
posterior mean to recover the posterior of D.
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Figure EC.1 Random Samples from Gaussian Process With and Without Training Data
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Notes. Lines represent five random draws from the GP in both the prior and posterior. In the prior, the mean was set to 0.5.
For both the prior and posterior, the RBF kernel was used with hyperparameters l = 0.2, σ2

D = 0.08, and σ2
y = 0.0016. There

were 101 test points, P = {0,0.01,0.02, . . . ,1}. The five draws from the posterior distribution were sampled from the GP with
training data Pt = {0.05,0.2,0.25,0.4,0.7} and yt = {0.9,0.75,0.85,0.6,0.3}. The shaded area represents the 95% confidence
interval at each test point.

EC.2 Computational Issues

A computational issue that arises in fitting a posterior Gaussian process is that matrix

inversion is O(n3), implying it does not scale well to larger datasets. Typically, the training

data grows with each purchase observation (thus depending on t), but we mitigate this issue

because purchases can only be observed at prices within the fixed price set. This allows us

to set the input training data as the set of test prices and the associated output training

data as the observed purchase rates. The only additional adjustment needed is to the

noise hyperparameter. As the sample variance scales with the number of observations, the

noise hyperparameter is specified accordingly: σ2
y = {0.25/n1t, . . . ,0.25/nAt}. This approach

ensures that computational complexity does not increase with the number of purchase

observations but instead depends on the size of the initial set of test prices.

Additionally, one common issue when running GP algorithms is floating-point precision

errors, which can lead to negative eigenvalues and violate the positive semi-definite prop-

erty of covariance matrices. We follow the approach devised by Rebonato and Jäckel (2011)

to obtain the nearest covariance matrix.

EC.3 Implementation of Monotonic GP Bandits
EC.3.1 Basis Function Visualization

Consider an example where N = 4 meaning there are 5 equally spaced knots {0, 1
4
, 1
2
, 3
4
,1}.

Figure EC.2 shows the five basis functions along with their corresponding integrals.
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Figure EC.2 Plot of Basis Functions and their Integrals (5 knots)
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EC.3.2 Derivation of Proposition 1

Lemma EC.1. The distance between a continuous function D and its estimate via basis

functions DJ(p) =
∑J

j=0D(uj)hj(p) converges to 0 as J →∞.

From Lemma EC.1, a continuous demand functionD can be estimated via basis functions

as D(p)≈
∑J

j=0D(uj)hj(p). Since, by assumption, the derivative of D is also continuous,

the same formula can be used to estimate D′ as follows:

D′(p)≈
J∑

j=0

D′(uj)hj(p). (EC.7)

Additionally, by the Fundamental Theorem of Calculus,

D(p)−D(0) =

∫ p

0

D′(t)dt. (EC.8)

Substituting (EC.7) into (EC.8) gives

D(p)≈D(0)+
J∑

j=0

D′(uj)

∫ p

0

hj(t)dt. □ (EC.9)

EC.3.3 Gaussian Process – Estimation of Derivatives and Intercept

The basis function method requires the estimation of the intercept and the derivatives

at each of the prices in the consideration set. More formally, the goal is to estimate the

posterior mean and covariance for {D(0),D′(p1), . . . ,D
′(pA)}. Temporarily ignoring the

intercept, the key insight is that the derivatives of a GP are also a GP. This implies that

D′∗, the posterior vector of derivatives of D∗, is given by:

D′∗ ∼N

(
d

dp
µ(D∗),

d

dp
Cov(D∗)

)
. (EC.10)
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Since the values of D∗ are only at the test points P , the derivative only needs to be

calculated with respect to P . Consequently, to estimate the posterior mean and covariance

for {D(0),D′(p1), . . . ,D
′(pA)}, the only necessary adjustment is to compute the derivatives

of the kernel function with respect to the test points.

We compute the partial derivatives of the kernel with respect to the prices as follows:

∂k(p∗i , pj)

∂p∗i
=

σ2
D

l2
(pj − p∗i ) exp

(
−(p∗i − pj)

2

2l2

)
, (EC.11)

∂k(pi, p
∗
j)

∂p∗j
=

σ2
D

l2
(
pi − p∗j

)
exp

(−(pi− p∗j)
2

2l2

)
, (EC.12)

∂2k(p∗i , p
∗
j)

∂p∗i∂p
∗
j

=
σ2
D

l4

(
l2− (p∗i − p∗j)

2

)
exp

(−(p∗i − p∗j)
2

2l2

)
. (EC.13)

EC.4 Regret Bounds

Consider a setting where P = {p1 ≤ p2 ≤ · · · ≤ pd} are a subset of prices that we choose as

knots. We consider a Gaussian process for which draws are C1 almost surely, and consider

the joint distribution over draws f, f ′. We define the set of monotonic functions,

M= {f ∈C1([0,1]) : f ′(x)≤ 0, x∈ [0,1]}.

Ideally we would like to restrict draws of our GP to M, but in general, since we can only

evaluate our GP at a finite set of points, we instead insist that our function is monotonic

at the set of knots,

M(P ) = {f(∈C1[0,1] : f ′(p)≤ 0, p∈ P}

We denote the joint prior distribution over the function and the derivative Π0 =

GP ([0,0],K|M(P )), where K is the appropriate kernel.

Let p∗ = argmaxp∈P f(p) – note that since f is drawn from the underlying prior, p∗ is a

random variable. We define the Bayesian regret of our policy

BRT =

T∑
t=1

E[p∗f(p∗)− ptf(pt)]

where the expectation is over draws from the prior, reward noise, and any internal ran-

domness of the algorithm.

Throughout the following, we refer to the truncated distribution as Πt, and the untrun-

cated distribution GP ([µt, µ
′
t],Kt) as Πt,u. Let the induced probability laws and expecation,

with respect to the measure conditioned on the history Ht = {(ps, rs)}ts=1, be Pt,Et, and

for the untruncated version, Pt,u,Et,u. Critically we make the following assumption:
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Assumption 1. The probability of returning a function monotonic on the knots is bounded

below, i.e., there exists c≥ 0 such that

Pt,u(ft, f
′
t ∈M(P ))≥ c,∀t≥ 1

Remark: Note that Pt,u(f
′
t(P ) ≥ 0) is equivalent to P(y ≥ 0) for x, y ∼

N([µt(P ), µ′
t(P )],Kt). This is an integral of a multivariate Gaussian over an open set. Since

f ′(P )≥ 0 by definition of the prior, if µ′(P )→ f ′(P ), we should expect this probability to

actually increase with t.

Additionally, we require the following lemma linking a distribution with its truncated

version.

Lemma EC.2. Let p(x) be a distribution on Rd. Let S ⊂ Rd. Define the truncated pdf

on Rd, pS(x) = 1{x∈ S}p(x)/µ(S) where µ(S) =
∫
x∈S p(x). Then given an event E ⊂Rd,

Pp(1{E ∩S})≤ PpS(E)≤ 1

µ(S)
Pp(E)

and given a function f(x) :Rd →R

EpS(f(x))≤
1

µ(S)
Ep(f(x))

Proof. The lower bound is immediate since µ(S)≤ 1.

PpS(E) =

∫
x∈Rd

1{x∈E}1{x∈ S}p(x)/µ(S)

=
1

µ(S)

∫
x∈Rd

1{x∈E}1{x∈ S}p(x)

≤ 1

µ(S)

∫
x∈Rd

1{x∈E}p(x)

≤ 1

µ(S)
Pp(E)

The result on expectations is immediate. □

Theorem EC.1. The Bayes Regret of Algorithm 1 GP-TS-M is bounded by

BRt ≤E

√√√√ ∞∑
t=1

p2t

√γT log(1+σ−2
0 ) log

(
T 2|A|√

2π

)
+ ET +1

≤

√
TγT log(1+σ−2

0 ) log

(
T 2|A|√

2π

)
+ Et +1

where ET =
∑

t=1E[µt(p
∗)− Et[ft(p

∗)]] and γT is the mutual information of the Gaussian

process (Srinivas et al. 2009).
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Interpreting the Regret: We remark that if we were not restricting to the monotonic set

of functions, the argument shows that ET is 0. And so the final regret is of the form

O(
√

γTT log(T |P |). Note that this regret is independent of the underlying constraint set

of monotonic functions. To understand the impact of the underlying constraint set, we

focus on the path-dependent regret term
∑T

t=1 p
2
t . In general, this quantity is less than the

maximum price played times T , and is a tighter regret result compared to existing works.

We remark that the looseness in this result is primarily due to using loose tail bounds that

do not effectively account for the constraint set. Future work could examine different and

potentially tighter bounds.

Discussion of ET . In Figure EC.3, we have plotted log(t) vs. log(Et), where Et estimates

each term of Et, defined as E[µt(p
∗)−Et[ft(p

∗)]]. At each update of the Gaussian process,

ft is obtained from 10,000 posterior draws, and the difference from µt is calculated to

estimate Et. To ensure robustness, these Et values were averaged across 1,000 independent

simulations. As the plot demonstrates, Et ≈ t−α where α ∈ [.5, .8]. This implies that ET ≤

O(T−α+1) hence contributing a regret bounded by O(
√
T ). Intuitively this is not surprising,

we should expect fast concentration of µt(p
∗) and Et[ft(p

∗)] to both quickly concentrate to

µ(p∗) at a rate that matches the parametric rate of 1/
√
t.

Proof. Define Ut(p) := µt−1(p) + β
1/2
t−1σt−1(p) where βt = log(t2c−1|P |/

√
2π). Note that,

conditioned on Ht, the optimal action p∗ and the action pt selected by posterior sampling

are identically distributed by Fact 5 (see below). In addition, Ut is deterministic conditioned

on the history, so, Et[Ut(p
∗)] =Et[Ut(At)]. Therefore,

E[p∗f(p∗)− ptf(pt)] =E[Et[p
∗f(p∗)− ptf(pt)]]

=E[Et[ptUt(pt)− p∗Ut(p
∗)+ p∗f(p∗)− ptf(pt)]]

=E[Et[ptUt(pt)− ptf(pt)] +Et[p
∗f(p∗)− p∗Ut(p

∗)]]

=E[ptUt(pt)− ptf(pt)] +E[p∗f(p∗)− p∗Ut(p
∗)].

Thus, we see that we can bound the Bayes-Regret as

BR(T )≤
T∑
t=1

E[ptUt(pt)− ptf(pt)] +
T∑
t=1

E[p∗f(p∗)− p∗Ut(p
∗)] (EC.14)

(EC.15)
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We now focus on the first term,

ptUt(pt)− ptf(pt) = ptUt(pt)− ptµt(pt)+ ptµt(pt)− ptf(pt)

=E[ptUt(pt)− ptµt(pt)] + ptµt(pt)− ptf(pt)

≤ ptβ
1/2
t σt(pt)+ ptµt(pt)− ptf(pt)

≤ ptβ
1/2
t σt(pt)+µt(pt)− f(pt)

Next,

T∑
t=1

ptβ
1/2
t σt(pt)≤

√√√√βT

∞∑
t=1

p2t

√√√√ ∞∑
t=1

σ2
t (pt) (Cauchy-Schwartz)

A standard argument (see Srinivas et al. (2009)) shows that

∞∑
t=1

σ2
t (pt)≤

γT
log(1+σ−2)

Finally, we bound the second term of EC.14

T∑
t=1

E[p∗f(p∗)− p∗Ut(p
∗)]≤

∞∑
t=1

∑
p∈P

Et[1{f(p)−Ut(p)≥ 0}(f(p)−Ut(p))]

≤
∞∑
t=1

∑
p∈P

1

Pt,u(M)
Et,u[1{f(p)−Ut(p)≥ 0}(f(p)−Ut(p))]

≤
∞∑
t=1

∑
p∈P

1

c
Et,u[1{f(p)−Ut(p)≥ 0}(f(p)−Ut(p))]

Now, in the untruncated distribution, Et,u[f(p)− Ut(p)] = −β
1/2
t σ2

t (p), which is negative.

Thus, using standard tail bounds Russo and Van Roy (2014),

T∑
t=1

E[p∗f(p∗)− p∗Ut(p
∗)]≤ 1

c

∞∑
t=1

σt(p)√
2π

e−β/2

≤ 1

c

∞∑
t=1

σt(p)

t2|P |c−1
≤ 1

The result follows from combining all the terms.
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Figure EC.3 Decay of Et under Different Distributions
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Notes. At each update step of the Gaussian process, Et is calculated as the expected difference E[µt(p∗)− Et[ft(p∗)]], where
ft is obtained averaging over 10,000 posterior draws. Results are averaged over 1,000 independent simulations. The solid black
lines show the empirical estimates of log(Et), while the blue dotted lines display the corresponding linear fits, with equations
annotated in each panel.

EC.5 Simulations Using Alternative WTP Distributions

We evaluate the robustness of the proposed method across a variety of challenging scenarios

to demonstrate its practical value.

EC.5.1 Field Data

To further demonstrate the applicability of our method, we tested it on real-world data.

The data comes from an empirical study of demand for a music streaming subscription

service where the distribution of WTP for a monthly plan is estimated (Chou and Kumar

2024; see Figure 2). From this, we then normalize the WTP distribution to lie in the range

[0,1]; specifically, p′ =
p

1000
. Using this WTP distribution, we run the bandit algorithms

using the same setup as in the simulations.

Since the optimal price is relatively low (0.21) within the price set, we expect similar

uplifts from the informational externalities as observed in the Beta(2,9) case from the main

analysis. For the first informational externality, the uplift increases with the number of

arms, being slightly negative for 5 arms, slightly positive for 10 arms, and dramatically

positive for 100 arms. For the second informational externality, across all price sets the

uplifts are positive and similar in size. Additionally, GP-TS-M is the best performing

algorithm. These findings are consistent with the Beta(2,9) simulations and highlight the

validity and practical value of our method.
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Figure EC.4 Field Data: Cumulative Percent of Optimal Rewards (Profits)
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Notes. The lines represent the means of the cumulative expected percentage of optimal rewards across 1000 simulations. The
black horizontal line represents the maximum obtainable reward given the price set, while 100% represents the true optimal
reward given the underlying distribution.

EC.5.2 Discontinuous Demand: Left-Digit Bias

We next discuss the case where consumers may be affected by left-digit bias. This phe-

nomenon occurs when the demand function is discontinuous at a price where the left digit

changes (e.g., from $1.99 to $2.00), as consumers perceive the price increase to be larger

than one cent (Thomas and Morwitz 2005). For instance, Strulov-Shlain (2023) empiri-

cally found that consumers reacted to a one-cent increase from a ninety-nine-ending price

(resulting in a left-digit change) as if it were a twenty-cent increase. This is an important

case to test, as GP-based models rely on continuity and may struggle with discontinuities.

To be consistent with left-digit literature, we discretize the continuum of prices [0,1] into

1000 points and introduce discontinuities at changes in the left-most significant digit (e.g.,

0.099 to 0.100, 0.199 to 0.200, etc.). This ensures the left-digit effect occurs between prices

ending in ninety-nine and zero. To specify the size of the discontinuities, we calculate the

difference in demand between consecutive prices where the left-digit changes and multiply it

by a scale factor ζ. For instance, if ζ = 20, the gap is 20 times larger than usual – consistent

with Strulov-Shlain (2023). We then rescale the continuous portion of the demand curve

to accommodate these gaps.

For our simulations, we used demand curves (Figure EC.5) derived from three WTP

distributions – Beta(2,9), Beta(2,2), and Beta(9,2) – adjusted with ζ = 10 (low left-digit

bias) and ζ = 30 (high left-digit bias). These cases provide generous bounds for estimates

of left-digit bias based on Strulov-Shlain (2023).



ec10 e-companion to Weaver, Kumar & Jain: Nonparametric Pricing Bandits Leveraging Informational Externalities

Figure EC.5 Left-Digit Demand Curves
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Notes. Price is discretized at intervals of 0.001 from 0 to 1, with left-digit discontinuities occurring every 0.01. ζ = 1 represents
the base case with no left-digit bias (discontinuities arise solely from price discretization). ζ = 10 corresponds to low left-digit
bias, with a discontinuity gap 10 times larger than the base case. ζ = 30 corresponds to high left-digit bias, with a discontinuity
gap 30 times larger than the base case.

Our simulation results are shown in Figure EC.6. With 10 arms, we observe that in both

cases (low ζ and high ζ), GP-based algorithms perform as well as in the main analysis.

That is with just 10 arms, left-digit discontinuities do not affect GP-based algorithms.

Perhaps surprisingly, this outcome is expected as when only 10 prices are tested, each price

falls within a distinct interval of the piecewise function, leaving enough distance between

prices for the discontinuities to have no impact.

The issue arises when multiple prices are tested within each interval, requiring the GP

to learn both the continuous segments and the discontinuity gaps. Since the GP assumes

continuity, it tends to smooth over these gaps, resulting in a slight misestimation of the

demand curve. For example, in the Beta(2,2) case, when there are low left-digit disconti-

nuity gaps (ζ = 10), GP-TS-M achieves 97.4% (after 2500 consumers) of the true optimal

for 10 arms and 96.9% for 100 arms – a slight decrease. However, when there are high

left-digit discontinuity gaps (ζ = 30), this decline is more pronounced (97.7% to 95.0%).

This is because as the GP tries to smooth over larger discontinuity gaps, it leads to greater

misestimation and the selection of slightly suboptimal prices. This can be seen in subfigure

d)ii) of Figure EC.6, where the cumulative optimal rewards curve for GP-TS-M flattens

before reaching the optimal, as the algorithm prefers to select 0.43, which provides 3% less

reward than the true optimal price of 0.39.

Despite the GP’s difficulty in handling discontinuities with 100 arms, the monotonic

versions of the algorithm remain the best performers after 2500 consumers. While TS and
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Figure EC.6 Left Digit: Cumulative Percent of Optimal Rewards (Profits)
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a) ζ = 10 (10 Arms)

b) ζ = 10 (100 Arms)

c) ζ = 30 (10 Arms)

d) ζ = 30 (100 Arms)

Notes. The lines represent the means of the cumulative expected percentage of optimal rewards across 1000 simulations. The
black horizontal line represents the maximum obtainable reward given the price set, while 100% represents the true optimal
reward given the underlying distribution. ζ is a measure of the size of the discontinuity gap that occurs at locations where the
left-digit changes.
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UCB (which can handle discontinuities as they model each arm independently) will even-

tually learn the optimal price and surpass the performance of GP-TS-M and GP-UCB-M,

this will only happen for extremely large customer counts. For any reasonable number of

tested consumers, the additional exploration cost from forgoing the informational exter-

nalities far outweighs the small performance loss from slight misestimation.

To summarize, even with left-digit bias, our algorithms continue to perform best empiri-

cally. From a managerial perspective, if a firm suspects left-digit bias, a practical approach

is to test prices only at the discontinuities (e.g., 1.99, 2.99, etc.) to avoid misspecification

issues with the GP. However, testing fewer prices may lower the maximum reward obtain-

able from the price set. Thus, the trade-off in determining the number of prices to test

involves balancing the potential for a higher possible maximum reward against the risk of

misestimation. This trade-off is evident in our experiments: in the Beta(2,9) case, when

100 prices were tested instead of 10, GP-TS-M performed better when left-digit bias was

low [subfigure a)i) vs. b)i)] but worse when left-digit bias was high [subfigure c)i) vs. d)i)].

EC.5.3 Time Varying Demand

We now consider the case where demand changes depending on the season (Soysal and

Krishnamurthi 2012). We model this by introducing a shock (drawn from the uniform dis-

tribution [−ρ, ρ]) to the underlying WTP distribution every Q consumers. Specifically, the

WTP distribution is shifted horizontally by the value of the shock, increasing or decreas-

ing every consumer’s valuation by this amount and resulting in a horizontal shift in the

demand curve.

We evaluate the performance (results are shown in Figure EC.7) of the proposed algo-

rithms under these time-varying distributions in two ways. First, we consider the usual

baselines (represented by dotted lines), which retain all data from the experiment. Alter-

natively, we analyze reset variants (represented by solid lines), where the learning process

is reset every 500 consumers by discarding all previous experiment data.

First, we analyze how performance changes as ρ varies. When there are no seasonal

shocks (ρ = 0), resetting results in worse performance for all algorithms. However, the

performance gap between the baseline and its corresponding reset variant decreases as

informational externalities are incorporated. Furthermore, as ρ increases, the performance

decrease from using the reset variants diminish, with GP-TS-M reset variants actually

outperforming the baselines when ρ is sufficiently large (ρ= 0.2).
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Figure EC.7 Time Varying: Cumulative Percent of Optimal Rewards (10 arms)
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iii) Left−Skewed: Beta(9,2)

Algorithm
TS GP−TS GP−TS−M
TS (Reset) GP−TS (Reset) GP−TS−M (Reset)

a) ρ = 0

b) ρ = 0.1

c) ρ = 0.2

Notes. The lines represent the means of the cumulative expected percentage of optimal rewards across 1000 simulations. A
demand shock is drawn from [−ρ, ρ] every 500 consumers.
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Next, we analyze how performance differs across distributions. The performance decrease

from using the reset variants instead of the baselines are most pronounced for Beta(2,9)

and decrease as the distribution shifts to Beta(2,2) and then to Beta(9,2). In the Beta(9,2)

case, when demand shocks are sufficiently large (ρ = 0.2), the reset variants outperform

the baselines for all three algorithms. However, for the same ρ under Beta(2,9), the TS and

GP-TS reset variants perform significantly worse than the baselines, with only GP-TS-M

performing better with a reset.

These patterns can be understood by considering the trade-off of resetting. Resetting

incurs a cost in learning, as the algorithm must re-learn the demand from scratch. Con-

versely, resetting enables more accurate learning when the underlying demand has shifted.

Thus, resetting performs better only when the losses from learning a new demand curve

are less than the losses from using pre-shock data. This suggests that resetting is most

applicable when demand shocks are large (i.e., ρ is large) and when learning is relatively

easy (i.e., when the optimal price is high within the price set, as in Beta(9,2)).

Finally, regardless of the size of the shocks or the underlying demand curve, resetting

is consistently more effective for algorithms with higher learning efficiency. Since incorpo-

rating informational externalities enhances learning efficiency, these externalities provide

a persistent advantage to the algorithms that leverage them.

EC.6 Heteroscedastic Noise

As discussed in the main results, when there are very few arms, TS can outperform GP-

TS. This is intuitive, as the value of the first informational externality (learning across

arms) decreases when there are fewer arms that are further apart. Another key consider-

ation is that TS learns the noise separately for each arm, whereas standard GPs assume

homoscedastic noise across all arms.

This assumption is a limitation of standard GPs, as the noise around purchase rates

is inherently heteroscedastic. Intuitively, the sample mean at a price where nearly every

consumer either purchases or does not purchase is much less noisy than at a price where

consumers are equally likely to purchase and not purchase. Specifically, since purchase is

a binary decision, the variance at purchase rate yat is given by yat(1− yat). This appendix

addresses this limitation by introducing an alternative method for tuning the noise hyper-

parameter to account for heteroscedasticity.
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Implementation: While there are methods to estimate a GP with heteroscedastic noise

(Goldberg et al. 1997, Kersting et al. 2007), they face the same challenges as estimating

noise using MLE under the homoscedastic specification. Specifically, it can be difficult

to accurately identify the shape and noise hyperparameters (Murray 2008), which poses

significant problems for bandits, as an insufficient noise estimate can cause the algorithm

to get stuck on suboptimal arms.

An alternative approach is to model the error by specifying an underlying structural

process. In our case, the noise can be modeled based on how likely a consumer is to

purchase. Generally, this can be written as σ2
y = g(D(p)) for some unknown function g.

However, because the noise depends on the underlying distribution, which is completely

unknown, it is unlikely that any suitable candidates for g(·) exist.

Our estimation process for heteroscedastic noise operates as follows. First, we estimate

the GP using homoscedastic noise, producing the standard results. Next, we take a demand

draw from this GP, which (due to the binary nature of purchase decisions) allows the

noise estimate at each price to be calculated as D̃(p)(1− D̃(p)). Using this noise input, we

estimate another GP, after which the bandit process continues as usual. Importantly, as this

method updates with a new noise draw at each update iteration, it provides more accurate

noise estimates while still preventing the algorithm from getting stuck from consistently

underestimating noise. We refer to this implementation as GP-TS-H, with its monotonic

version called GP-TS-M-H.

Results: The results are presented in Figure EC.8. Including heteroscedasticity in addition

to monotonicity results in a small performance increase across all simulations. As with

other informational externalities, the effects are most pronounced in the Beta(2,9) case.

This is because smaller noise hyperparameters synergize with monotonicity to reduce the

space of potential demand curves in the low-reward, high-price region.
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Figure EC.8 Heteroscedasticity: Cumulative Percent of Optimal Rewards (Profits)

0

25

50

75

100

0 500 1000 1500 2000 2500
# of consumers tested

%
 o

f o
pt

im
al

 r
ew

ar
ds

i) Right−Skewed: Beta(2,9)

0

25

50

75

100

0 500 1000 1500 2000 2500
# of consumers tested

%
 o

f o
pt

im
al

 r
ew

ar
ds

ii) Symmetric: Beta(2,2)

0

25

50

75

100

0 500 1000 1500 2000 2500
# of consumers tested

%
 o

f o
pt

im
al

 r
ew

ar
ds

iii) Left−Skewed: Beta(9,2)

0

25

50

75

100

0 500 1000 1500 2000 2500
# of consumers tested

%
 o

f o
pt

im
al

 r
ew

ar
ds

i) Right−Skewed: Beta(2,9)

0

25

50

75

100

0 500 1000 1500 2000 2500
# of consumers tested

%
 o

f o
pt

im
al

 r
ew

ar
ds

ii) Symmetric: Beta(2,2)

0

25

50

75

100

0 500 1000 1500 2000 2500
# of consumers tested

%
 o

f o
pt

im
al

 r
ew

ar
ds

iii) Left−Skewed: Beta(9,2)

0

25

50

75

100

0 500 1000 1500 2000 2500
# of consumers tested

%
 o

f o
pt

im
al

 r
ew

ar
ds

i) Right−Skewed: Beta(2,9)

0

25

50

75

100

0 500 1000 1500 2000 2500
# of consumers tested

%
 o

f o
pt

im
al

 r
ew

ar
ds

ii) Symmetric: Beta(2,2)

0

25

50

75

100

0 500 1000 1500 2000 2500
# of consumers tested

%
 o

f o
pt

im
al

 r
ew

ar
ds

iii) Left−Skewed: Beta(9,2)

Algorithm GP−TS GP−TS−M GP−TS−M−H

a) 5 Arms

b) 10 Arms

c) 100 Arms

Notes. The lines represent the means of the cumulative expected percentage of optimal rewards across 1000 simulations. The
black horizontal line represents the maximum obtainable reward given the price set, while 100% represents the true optimal
reward given the underlying distribution.
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