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Significance Statement:
Networks are powerful tools for interventions due to the cascading impact one individual can have on others. To obtain

highly connected individuals for any intervention, we typically need to know the relevant network structure, which is

typically not available. We propose intervention strategies termed local and global strategies, based on the friendship

paradox to choose individuals for intervention. Both strategies require no prior knowledge of network structure, only

sampling from a random individual’s friends. These strategies both are guaranteed to obtain greater than average degree

for almost any network structure. We characterize the value of these intervention strategies both theoretically and using

data from real-world networks. Finally, we identify which strategy performs best with a novel network property called

Inversity.
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ABSTRACT

Network intervention problems often benefit from selecting a highly-connected node to perform

interventions using these nodes, e.g. immunization. However, in many network contexts, the

structure of network connections is unknown, leading to a challenge. We develop and examine the

mathematical properties of two distinct informationally light strategies, a novel global strategy and

local strategy, that yield higher degree nodes in virtually any network structure. We further identify a

novel network property called Inversity, whose sign determines which of the two strategies, local or

global, will be most effective for a network. We demonstrate that local and global strategies obtain a

several-fold improvement in node degree relative to a random selection benchmark for generated and

real networks (including contact, affiliation and online networks). In some networks, they achieve a

100-fold improvement. We show how these new strategies can be used to control contagion of an

epidemic spreading across a set of village networks, finding that the strategies developed here require

far fewer (< 50%) nodes to be immunized, relative to the random strategy baseline. Prior research

has typically used the complete network structure to choose nodes for optimal seeding. The relevant

network is often costly to collect, and is privacy-invasive, requiring knowing each person’s network

neighbors, and might not be possible to obtain for time-sensitive interventions. Our interventions are

less invasive of individual privacy, since each selected node only needs to nominate some network

neighbors for intervention, while mathematically guaranteed to provide better connected nodes.

Network-based interventions are wide-ranging and of crucial importance in any setting where an individual’s choice or

action has an indirect impact on others, and can have cascading effects. Consider the following: (a) (Reducing) A new

infectious disease is spreading through a large population. We want to minimize the number of infected individuals by

inoculating using a new vaccine; however, we only have a limited number of doses to administer. (b) (Accelerating)

We have a new highly effective medical device with limited samples that we would like to provide to select medical

professionals, who can then share information through word of mouth. (c) (Observing) We would like to identify viral

contagion as quickly as possible by choosing individuals as observation stations (or for contact tracing).

Although seemingly distinct, whether to reduce, accelerate or observe dynamic contagion, these problems represent a

class of network interventions [44] in which we benefit from identifying more central or highly connected individuals

in the network.1

Most current approaches focus on taking advantage of detailed network data on social connections and also on activity

to identify influential individuals [25, 24, 48, 2]. However, privacy concerns are increasingly important in such settings,

making it challenging to obtain network data [1, 12, 34, 49, 43]. Users are also concerned that their data may be used

in algorithms [28], and might even result in discrimination against them [46]. Even, if network data is available, the

challenge in many cases is that we do not have access to the relevant network structure. In application (a), having the
1We focus on the class of “simple contagion” problems, which require only one rather than “complex contagion” that require

multiple exposures [11, 10].
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Facebook (or similar) network structure might not be useful, since the relevant network would be the physical contact

network, which might be harder to get. In contrast, for application (b), finding a high degree node using a physical

contact network of everyone who interacts with a medical professional is unlikely to be informative in characterizing

opinion leadership in the profession. For (c), carrying out contact tracing for all individuals can be expensive in effort

and time. These factors make it important to be able to leverage the structure of the relevant network while being

sensitive to privacy concerns.

We develop, model and characterize privacy-sensitive novel network intervention strategies, which obtain highly

connected nodes from the relevant network by querying randomly chosen individuals, and which do not require

knowledge of the underlying network structure. These interventions termed global and local strategies are based on the

friendship paradox, and result from theoretical network properties developed here. We also derive a structural network

property called inversity, which determines the relative effectiveness of the local and global strategies.

These strategies have several advantages for implementation. First, despite being informationally-light, the strategies

here provide provable advantages for virtually any network structures, in contrast to strategies that don’t provide such

guarantees for general networks. The network structure may be expensive to collect, not be possible to obtain in a timely

manner, or may vary over time, making such a method valuable. Second, the strategies are much more privacy-sensitive

than mapping out social networks. Third, the strategies can be implemented quickly since they only require local

network information obtained by querying individuals or interaction data. Finally, the class of interventions here can be

used for both advance and consequent interventions, i.e. for both prevention and treatment interventions.

Friendship Paradox

The Friendship Paradox, which our interventions are based on, is colloquially stated as “your friends have more friends

than you” [18, 50].2 The intuition for why the friendship paradox helps obtain well-connected nodes is this: since

highly-connected nodes (hubs) are connected to many other nodes (by definition), obtaining a random friend (or

neighbor) of a random node is likely to result in a hub with greater likelihood, compared to the case of randomly

selecting nodes.

We establish that the friendship paradox is actually not just one statement, but a set of distinct claims (All theorems and

proofs are in Supplement §S.B). First, we find an impossibility, i.e. the individual-level friendship paradox cannot hold

for all individuals in a network (Theorem S1). In practice for real networks, it can hold for a large proportion of nodes

in the network (Figs. S2 and S3 in Supplement §S.D). Second, we demonstrate that in contrast to the impossibility

of the individual friendship paradox, the network level friendship paradox holds. We find that the average number

of friends of friends across the network can be characterized in two different ways, using the local and global mean,

defined below. Both local and global means are greater than the mean degree of the network, and these means are

related through a novel network characteristic we term inversity. While some of these strategies have been suggested
2The phenomenon has also been generalized to the idea that individual attributes and degree are correlated [23], e.g. an

individual’s co-authors are more likely to be cited [16], or that friends more active on social media [21].

3



and used as interventions in practice, e.g. [14, 3], their theoretical properties and connections have not been examined

and characterized for wide classes of networks.

Local and Global Means We formally characterize the two distinct but related network properties deriving from

the friendship paradox relating to the “average number of friends of friends." Denote a network (see Table S1 for full

notation) as an undirected graph G = (V,E) with V the set of nodes and E the set of edges (eij ∈ {0, 1} denoting

absence or presence of a connection between i and j), Di refers to the degree of node i, andN(i) the set of i’s neighbors.

We specify the local mean as:

µL =
1

N

∑
i∈V

 1

Di

∑
j∈N(i)

Dj

 (1)

The global mean is defined as the ratio of the total number of friends of friends to the total number of friends in the

network, consistent with [18]:

µG =

∑
i∈V

[∑
j∈N(i)Dj

]
∑
i∈V Di

(2)

The above means arise from differently weighting the average degree across friends. Both means above are consistent

with the notion of “average number of friends of friends,” although they are distinct network properties (see Fig. S1 for

an example and detailed explanation). The global mean was theoretically investigated earlier and found to be greater

than the average degree and is independent of the local structure of connections, given node degrees (Theorem S2). The

local mean is also shown to be greater than the mean degree (Theorem S3).3 However, the contrast is that the local

mean has distinct properties that depend on local network structure (i.e. who is connected to whom).

The global mean is greater when there is higher variation across nodes in terms of degree (variance), whereas local

mean is greater when we have higher variation across edges, i.e. when edges connect nodes of very dissimilar degree

(e.g. with a hub and spoke network). More specifically, the global mean is invariant to rewiring the network while

keeping the degree distribution the same, whereas the local mean is impacted by the rewiring (Theorem S6).

We identify below network structures that result in a greater divergence between the Local and Global mean, and

between these means and the average degree (Figure 1, including whether one of the means is always greater than the

other, whether they always exhibit correlated variation away from the mean degree, and demonstrate how this matters in

network interventions.

We examine four illustrative network structures (Fig. 1) to answer these questions and to understand the differences

between the two means. We find that both local and global mean can be much greater than the mean degree, and

between these two means, either of them can be greater than the other, and in some network structures, both can be

relatively high compared to the mean degree.

3We term these means local or global since the former depends on the local structure (who is connected to whom), whereas the
latter only depends on the global network properties (degree distribution).
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Figure 1: Four Illustrative Networks with Varying Local and Global Means.
Each network in (A)-(D) has the original network plot (left), local weighted network (middle) and global weighted network (right).
On the right is a barplot indicating the mean degree, local mean and global mean for each of the networks. Local Panel (Red): In the
local weighted network plot (middle), nodes are sized proportional to their weight

(
wLi

)
in contributing to the local mean. Edges

that receive a higher than median weight in computing the local mean are in black color. Otherwise, the edges are not plotted in the
middle panel. Note that although the original networks are undirected, the selected edges are directed. Global Panel (Green): Nodes
are sized proportional to their weight

(
wGi

)
in contributing to the global mean. Edges are all weighted equally in the global weighted

network. (A) Small World Ring: Each node has four friends, and local and global mean are both equal to avert age degree (4). None
of the edges are shown in the middle panel since all edges have identical weight in computing the local mean. All nodes in both
local and global means have the same weight, and size in the middle and right panel. (B) Two Central Hubs with Spokes: Each
central hub is connected to 7 nodes. The mean degree is lowest in this network. However, local mean is substantially higher than the
global mean, and is higher than the mean degree across all networks (a)-(d). In local panel, we see that the weight of central hubs
has increased, whereas the corresponding weight for the low degree “spoke” nodes has decreased. In the global panel, the node
weights are proportional to degree. (C) Heavy Core with Attached Cycle: The global mean is substantially higher than the local mean
(and mean degree). Here, we see in the local panel that the weight of each of the nodes has not changed, and all nodes have the
same weight. However, in the global panel, we see that the high degree nodes in the complete graph has higher weight compared to
the original network, whereas the weights for the nodes in the 2-cycle are lower than in the original network. (D) Heavy Core with
Pendants: Both the local and global mean are substantially higher than mean degree. In the local panel, the edges connecting core
nodes to other nodes (both core and pendant) have a relatively low weight, and are not displayed.

Intervention Strategies

The above formulation of local and global mean suggests distinct intervention strategies. We illustrate random, local

and global strategies to choose a “seed” node in the network beginning with an initial randomly chosen node (Table 1).

The local strategy would query randomly selected individual nodes with the query, “could you suggest the name of

a randomly chosen friend?” as example. The global strategy would ask individual nodes to provide a proportion of

their friends, and such a proportion can be set to be small (say 1%) to be sensitive to privacy concerns. Recall that full

network strategies, in contrast, require access the entire structure of connections.

We illustrate how the method is able to obtain the relevant network structure in a straightforward manner. Specifically,

when querying individual nodes to select from the set of friends, we can add a condition to the query. For instance, in

application (a) where the focus was on physical contagion network, the query would be "provide a random friend whom

you have interacted with in person," where a number of such conditions can be added to the query. Similar conditions
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can be used for applications (b) and (c). We can thus view such a query as providing a specific type of network that is

more relevant to the application under consideration.

Observe that with the local strategy, the number of seed nodes is fixed, whereas it is probabilistic under the global

strategy. For the local strategy, by construction, the expected degree of the obtained seed is equal to the local mean. For

the global strategy, we prove that the expected degree of chosen nodes is equal to the global mean (Theorem S5).

Though the local and global strategies appear to be similar in the sense that we are choosing friends of randomly chosen

individuals, the crucial distinction lies in whether we are choosing one random friend or whether we are choosing

among each friend. Table 1 details the algorithms to obtain k seeds in a network of size N � k. This impacts their

relative effectiveness as examined below.

Table 1: Implementation of Seeding Strategies

Step Details

0 Fix p ∈ (0, 1] (only used for Global strategy
in Step 2G).

Repeat Steps 1-2 below until at least k seeds are present in the seed set S.

1 Draw a random node r uniformly from set of
nodes, V .
In Example Network, Nodes 10, 18 and 12 (in
black) are drawn for (R), (L) and (G) strategies
respectively.

2 Depending on the strategy Random (R), Local
(L) or Global (G), do the following:

2R (Random): Add r to the seed set S.
In Example Network, add node 10 to the seed
set.

2L (Local): Obtain a node s chosen with uniform
probability from r’s friends, i.e. s ∈ Nr . Add
the friend s to the seed set S.
In Example Network, one of node 18’s friends,
node 14 (in red), is chosen at random. Add
node 14 to the seed set.

2G (Global): For each of r’s friends, s ∈ Nr:
With probability p (0 < p ≤ 1), add s to the
seed set S.
In Example Network, each of node 12’s
friends, nodes 1, 2, 8 and 9 (in green), are
added probabilistically (with probability p) to
the seed set.
Implementation: For each s ∈ Nr , draw from
an independent uniformly distributed random
variable zs ∼ U [0, 1]. If zs < p, add s to the
seed set S.

Note: With Random and Local strategies, we will
obtain exactly k nodes in the seed set S. With the
global strategy we might obtain more than k nodes
in the seed set. In such a case, we select k nodes at
random from the seed set S without replacement.

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

Example Network
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Inversity: Connecting Local and Global Means

We next characterize the relative effectiveness of local and global strategies. We identify and define a novel network

property, Inversity, that determines when the local mean is greater than the global mean. This property captures all

local network information related to the local mean and is scale-invariant, i.e. independent of the size or density of the

network. We prove that the sign of inversity helps us determine which of the local mean or the global mean is higher for

any given network. We show how inversity is related to but distinct from degree assortativity (in Supplement §S.F).

Inversity is a correlation-based metric that relates the global and local means for any network is obtained as follows.

First, define the following edge-based distributions to examine the relationship between the means. The origin degree

(O), DO(e), destination degree (D), DD(e), and inverse destination degree (ID) distribution, DID(e), are defined

across directed edges e ∈ Ê as: DO(ejk) = Dj , D
D(ejk) = Dk, D

ID(ejk) = 1
Dk

. We define the inversity across the

edge distribution as the Pearson correlation across the origin and inverse degree distributions.

ρ = Corr
(
DO, DID

)
(3)

We connect (see Theorem S4) the local and global means with inversity and the degree distribution
(
κm =

∑
i∈V D

m
i

)
as:

µL = µG + ρ Ψ(κ−1, κ1, κ2, κ3) (4)

where Ψ is a positive function of the degree distribution.

When connections (edges) are mostly between nodes of similar degree, then inversity ρ is likely to be more negative. In

such a case, the global mean is greater than the local mean. In contrast, when connections are more likely to be between

nodes of dissimilar degree, then inversity ρ is positive, and the local strategy is likely to be obtain higher degree nodes.

Therefore, if inversity is known, we don’t need the entire degree distribution to obtain the local mean. Rather, four

moments of the degree distribution are sufficient for that purpose. Inversity captures the local information on imbalances

in degree of nodes across edges, whereas the moments of the degree distribution represent global information about

the network. Inversity ρ has a critical role in determining whether the local or global mean is larger for a network;

specifically, ρ < 0 indicates the global mean is higher than the local mean, whereas ρ > 0 indicates the reverse, implying

that knowing inversity can help us determine which strategy to use. Even computing inversity is information-light,

requiring only the 2k distribution, which represents the degrees of nodes at the termini of each edge, rather than the

entire network [32].

Effectiveness of Strategies: Leverage

To evaluate how much of an improvement over the random strategy is possible, and how this varies across a variety

of generated and real networks, we examine the relative effectiveness of strategies, with the random strategy as the
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baseline and characterize leverage as the improvement in expected degree. Leverage for strategy s on network G is

defined as λs(G) = µs(G)
µD(G) for s ∈ {R,L,G} (since the random strategy obtains the mean degree in expectation, the

leverage for R is λr(G) = 1 and it serves as a baseline). We examine the leverage of both generated and real networks.

Generated Networks: The generated networks using Random, Scale Free and Small World models are detailed in

the Supplement §S.E. We examine 3 generative mechanisms: (a) Erdos-Renyi (ER), (b) Scale Free (SF) and (c) Small

World (SW) networks (Fig. S4) [17, 5, 47]. We find that for ER networks, at very low density (edge probability), the

leverage is very low because most edges connect nodes that have a degree of 1. As density increases, we obtain more

variation in degrees, and local leverage increases. However, beyond an edge probability of p = 0.05, leverage decreases

as the density of the network decreases. Local leverage thus forms a non-monotonic pattern with ER networks. For

SF networks, rather than density or edge probability, we initially examine leverage as the network becomes more

centralized (as γ increases above 1, very high degree nodes have a lower probability of occurring). We find that as γ

increases from 1 to 2, the leverage increases, but then decreases beyond 2. For WS networks, unlike in the ER and SF

networks, leverage is monotonically decreasing with number of neighbors (or density), and is monotonically increasing

with rewiring probability.

Real Networks: The range of real networks is detailed in Supplement §S.C. First, observing the local strategy (Fig.

2A), we find that for all networks, as expected, the friendship paradox strategies are at least as good as the random

strategy. Second, for networks like Twitter (OS4) or Internet Topology (C1), the leverage can be as high as 100. Thus,

obtaining a friend of a random node will provide a 100-fold increase in the expected degree of a chosen node. Third, we

observe that both local and global leverage (Figs. 2A and 2B) are higher for nodes when average degree is intermediate,

i.e. not too low or high. Some networks like the CA Roads network (I3) have very little degree variation and local

and global strategies are relatively less effective. Finally, we examine when local and global strategies make a relative

difference (Fig. 2B). We find that the highest ratio of local to global mean is for Twitter network (OS4), whereas the

lowest ratio (indicating that global strategy has a higher expected mean degree) is shown by Flickr (OS2), both of which

belong to the same category of online social networks. Citation networks tend to have higher global mean, whereas for

Infrastructure networks, both strategies seem to work just as well.

Application: Controlling Contagion in Networks

We demonstrate an application comparing different strategies to control simple contagion spreading through a network,

using the local and global strategies. There are a number of models of contagion, and they can be parametrized several

ways. However, remarkably most models of contagion can be characterized by a single parameter termed the epidemic

threshold. If the ratio of infection to that of recovery is lower than the epidemic threshold, then the epidemic is contained

and will die out, whereas if the ratio is above the threshold, then it could turn into an epidemic. The epidemic threshold

captures the idea that a contagion when introduced into the network will die out if the reproductive number (R0) is
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Figure 2: Global and Local Leverage in Real Networks Local and Global Means across Networks (each circle is a network). Area
of circles indicates size of networks (number of nodes) in log scale. Color of circle indicates network category. (A) The average of
Local and Global Mean is higher than mean degree in all real networks, with the highest differences occurring in online social
networks and computer networks. Most large networks also tend to show a higher leverage ratio. For in person or face to face
networks, the pattern is more variable. The iso-leverage line indicates leverage levels of 1,2,5,10 and 100. We find that all networks
have leverage greater than 1, a majority of networks have leverage greater than 5, and 2 networks have leverage close to 100. (B)
Comparison: Ratio of Local to Global Mean. The ratio of local to global mean µL

µG
is represented as follows (< 1

2
in black circle,

1
2
< µL

µG
< 1 in dark gray circle and 1 < µL

µG
< 2 in light gray circle. For example, in the Twitter network, local mean is almost

twice the global mean, whereas in the Flickr network, global mean is almost twice the local mean. Computer networks have higher
values of the ratio, whereas Infrastructure networks have similar values of local and global means.

below the epidemic threshold, and lead to an epidemic if above the threshold. Thus, a network with a higher epidemic

threshold would be able to better withstand or control an infection.

We then examine how the epidemic threshold changes as a function of the proportion of nodes vaccinated (removed),

for each strategy (random, local and global). For most virus propagation models (VPM) is characterized as the inverse

of the greatest (first) eigenvalue of the adjacency matrix A of the network, denoted as τ(E) =
1

λ1(E)
(details in §S.G

of the Supplement). The threshold in an undirected network is shown to be proportional to the inverse of the largest

eigenvalue for a wide range of VPMs, including SIR, SEIR, etc. models that have been commonly used for modeling

infectious diseases [33]. Nodes are selected for immunization or treatment using each of the intervention strategies

(random, local and global).

To ensure realistic in person contact networks for modeling contagion, we examine data in the India villages networks

from [4], who collected detailed full census data on the social networks of 75 villages in southern India. The social

networks are captured at two different levels of aggregation, at the level of individuals and of households. The advantage

of this data set is that villages are relatively geographically isolated and can therefore be treated as separate networks.

Details of the network dataset are provided in §S.C of the Supplement.
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We find that networks can have either positive or negative inversity depending on how nodes and edges are defined.

Figure 3(a) illustrates the inversity values across the 75 villages separately for individual and household networks.

When nodes as defined as individuals, we find that the networks have negative inversity, whereas if the nodes are defined

as households, the inversity values of the resulting networks are mostly positive. Inversity values therefore depend

strongly on how the network structure is aggregated. Considering interventions, the inversity values suggest that a

household-based intervention might use the local strategy, whereas the individual-based intervention might use the

global strategy. Note that the household-level ties are aggregated from the individual-level ties, implying that networks

obtained from similar underlying relationships can result in dramatically different inversity characteristics, which lead

to different interventions.

Our first step is to identify how the epidemic threshold τ changes as we immunize nodes from the network G. This

dataset is especially useful in our analysis since the villages are relatively isolated, implying they can be evaluated

separately. While immunizing (or removing) any node from the network is likely to increase the epidemic threshold,

immunizing well-connected nodes is likely to prove especially beneficial. We examine the effectiveness of the three

strategies (Random, Local and Global) in identifying which nodes to immunize in the network. We next consider

Epidemic Thresholds with Immunization in Figure 3(b). We examine 3 strategies (Random, Local and Global) to choose

nodes to immunize. The proportion of nodes immunized ranges from 1% - 75%. In both household and individual

networks, we find that the friendship paradox strategies obtain higher thresholds than random, for the same proportion

of nodes immunized. For instance, in the household networks, to achieve a threshold τ = 0.15, the random strategy

needs to have about 50% of nodes immunized, but the Local and Global strategies require less than half of that, at

around 25%. For the household networks, we find that the local strategy is better than the global strategies especially at

higher levels of removal. However, for individual networks, we find that the Global strategy obtains greater thresholds

than Local. This broadly signifies that it is helpful to know which among the global or local strategies to use, and is

consistent with the sign of inversity.

Finally, we simulate an infection process and evaluate the epidemic characteristic of peak infectivity using an SIR virus

propagation model (details in §S.G), the most popular class of contagion models [42], with parameters of the simulation

detailed in Table S5. We examine peak infection since it is known to be an important characteristic of epidemics [40],

directly impacting the load on the healthcare system. Define Iit ∈ {0, 1} as an indicator of whether an individual i is

infected at time t. We evaluate the epidemics on the proportion of the population infected at the peak of the epidemic(
1
N maxt(

∑
i Iit)

)
, which is a useful measure in cases where hospital capacity is constrained. There has been much

discussion about interventions to avoid precisely such a peak [7]. A strategy with a density plot to the left of another is

better in terms of reducing the severity of the epidemic. Thus, for household networks, the local strategy (in red) is

better than the global, which in turn is better than the random strategy in reducing peak infection. For the individual

networks, however, the global strategy is better.
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Conclusion

We show that with unknown networks, the friendship paradox can be leveraged to obtain such individuals with minimal

informational requirements. We identify intervention strategies (local and global) that have theoretical guarantees on

obtaining better-connected individuals. With both generated random networks and real networks, our results show the

value of using the local and global strategies to obtain highly connected nodes. In the vast majority of networks, we

obtain at least double the average degree, and some networks show increases of several hundred-folds in node degree.

We expect the advantages of speed of implementation, generality of application areas for these privacy-sensitive and

informationally-light strategies to provide an important tool for network interventions in unknown structures.
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Figure 3: Inversity and Epidemic Characteristics on Village Networks. Data for these networks (N=75) obtained from Indian villages
is publicly available and detailed in [4], and includes both individual-level (Individual network) ties as well as connections between
households (Household network). (a): Inversity: Frequency plot of inversity across village networks. (b) Epidemic Thresholds with
Immunization: The epidemic threshold

(
τ = 1

λ1

)
is computed at different levels of immunization, and for different immunization

strategies (Random, Local and Global). The strategies are used to select nodes, which upon immunization lose the capability to
transmit contagion, and infect other nodes. (c) Epidemic Peak Infection: The proportion of the network nodes that are infected
during the peak of the epidemic for immunization level (X) is represented as a density plot. Variation is obtained due to differences
in outcomes across village as well as simulation variation. See Table S5 in the Supplement for simulation parameters.
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S.A Local and Global Mean in Example Network
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Local Mean

D Global Mean
We need to compute the Total Number of Friends and the Total Number of Friends of Friends in Network. a has 
2 friends, b has 2, c has 3 and d has 1 friend. Thus, the total number of friends is (2+2+3+1) = 8.
For the Total Number of Friends of Friends, a has 5 friends of friends, b has 5, c has 5  and d has 3. So the total 
number of friends of friends = (5+5+5+3) = 18.

Average Number of Friends of Friends = !"∑# Node 𝑖
$s average number of friends of friends

𝜇) =
$"$"$"#

*
= %*

*Average Number of Friends of Friends = Total Number of Friends of Friends
Total Number of Friends

Nodes in gray are friends. Nodes in red are friends of friends. 

Figure S1: Local and Global Means in Example Network. (A) Network. Example network with 4 nodes a,b,c and d. (B)
Illustration of Friends and Friends of Friends. Each node is mapped out with its friends and friends of friends. The node is in
light blue color, Friends are in gray color and Friends of Friends are in red color. Node a has 2 friends b and c. Node a also has 5
friends of friends. (C) Local Mean. a has 2 friends, b and c. The total number of friends of friends in a’s network is 5: (a’s friend b
has 2 friends, a and c; a’s friend c has 3 friends, a, b and d). So average number of friends of friends for a is the ratio of the number
of nodes in black to the number of nodes in red, i.e. 2+3

2
= 5

2
. Similarly, for the other nodes, we have b : 2+3

2
= 5

2
, c : 2+1+2

3
= 5

3
,

d : 3
1

= 3. The local mean of the network is the mean of these local average friends of friends, so µL = 1
4

(
5
2

+ 5
3

+ 1
4

+ 3
1

)
= 2.42.

(D) Global Mean. Global mean is the ratio of the total number of friends of friends to the total number of friends. The total number
of friends of friends contributed by a is 5. Similarly, b contributes 5, c contributes 5 and d contributes 3 friends of friends. Thus, the
total number of friends of friends (i.e. the nodes in red color) are (5 + 5 + 5 + 3) = 18. The total number of friends is represented
by the nodes in gray, (2 + 2 + 3 + 1) = 8.
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S.B Mathematical Appendix

Formally, the network graph G = (V,E) is comprised of a set of N individual nodes and a set of undirected edges

E. Each element of E is a pair of nodes, (i, j) indicates an edge (connection) with eij ∈ {0, 1}. We also define the

directed edge set Ê including both (i, j) and (j, i) as distinct elements of Ê corresponding to an undirected edge i↔ j.

We detail the table of notation in Table S1.

Table S1: Table of Notation
Symbol Term Definition
G,V ,E Network Network Graph of Nodes V and Edges E
Ê Directed Edge Set Each edge in E is replaced by two directed edges
Di Degree Number of friends of i

N (i) Neighbors Set of Friends of i
Fi Average degree of friends of i 1

Di

∑
j∈N (i)Dj

µD, σ
2
D Mean and variance of Degrees 1

N

∑
iDi,

1
N

∑
i (Di − µD)

2

µL Local Mean 1
N

∑
i Fi

µG Global Mean
∑

iDiFi∑
iDi

ρ Inversity Corr
(
Di,

1
Dj

)
∀(i, j) ∈ Ê

The basic idea of the friendship paradox can be expressed as "your friends have more friends than you." We examine

the degree to which the friendship paradox holds for individual nodes, or the individual friendship paradox. We find in

the result below that it cannot hold for all nodes, but can hold for an arbitrarily high proportion (< 1) of nodes.

Theorem S1. The friendship paradox statement that "your friends have more friends than you" cannot hold for all

nodes in a network. Also, the statement can hold for all nodes, except one.

Proof. Consider a connected network where not all degrees are identical (if all are identical, the statement cannot

hold). There must be at least one node that has the highest degree Dmax and which is connected to at least one node

with a lower degree. If not, then the connected network is comprised entirely of highest (identical) degree nodes, thus

contradicting the initial statement. If the highest degree node is connected to a lower degree node, then the average

friends of friends of the highest degree node must be lower than Dmax. Thus the statement cannot hold for all nodes.

To show the second part that it can hold for all nodes except one, consider the star (hub and spoke) network, where all

of the nodes except the central node have fewer friends than their friends do.

Theorem S2. [Feld 1991] For a network G = (V,E) with degree mean µD and variance σ2
D, the global mean of

friends of friends is µG =
(
µD +

σ2
D

µD

)

Proof. (as given in Feld, 1991). µG =

∑
i

∑
j eijDj∑
iDi

=

∑
iD

2
i∑

iDi
=
µ2
D + σ2

D

µD

2



Theorem S3. For any general network G = (V,E) with mean degree µD, the local mean of friends is given by

µL = µD +
1

2|V |
∑

(i,j)∈V×V

eij

[
(Di −Dj)

2

DiDj

]
(5)

where Di is the degree of node i, and eij ∈ {0, 1} indicates a connection between i and j.

Proof. Let Di denote the number of connections of individual i, i.e. Di =
∣∣ {k ∈ V : (i, k) ∈ E}

∣∣. Denote the set

of neighbors of i by N (i) = {k ∈ V : (i, k) ∈ E}. Define Fi = 1
Di

∑
j∈N(i)Dj as the mean number of friends for

friends of i. The local mean is defined as:

µL =
1

|V |
∑
i

Fi =
∑
i∈V

 1

Di

 ∑
j∈N (i)

Dj


Rewriting the expression for µL in terms of the connections (edges) between individuals, we obtain:

µL =
1

|V |
∑
i∈V

 1

Di

∑
j∈V

eijDj

 =
1

|V |
∑
i∈V

∑
j∈V

[
eij

1

Di
(Dj)

]

=
1

2|V |
∑

(i,j)∈V×V

[
eij

(
Dj

Di

)
+ eji

(
Di

Dj

)]
=

1

2|V |
∑

(i,j)∈V×V

eij

[
Dj

Di
+
Di

Dj

]

=
1

2|V |
∑

(i,j)∈V×V

eij

[
D2
j +D2

i

DiDj

]
=

1

2|V |
∑

(i,j)∈V×V

eij

[
(Di −Dj)

2
+ 2DiDj

DiDj

]

=
1

2|V |
∑

(i,j)∈V×V

eij

[
(Di −Dj)

2

DiDj

]
+

1

2|V |
(4|E|)

= µD +
1

2|V |
∑

(i,j)∈V×V

eij

[
(Di −Dj)

2

DiDj

]

Note that what we characterize as the local mean defined as above was examined by others including [18] etc. and

was independently shown to be greater than the mean degree by us ([26]) and others (including by Christian Borgs &

Jennifer Chayes in an online comment to an article by [41], and by [22]). However, the properties of the local mean

htave not been formally examined and characterized.

Theorem S4. Define the m-th moment of the degree distribution by κm = 1
N

∑
i∈V D

m
i . The local and global means

are connected by the following relationship involving the inversity ρ and the -1,1,2, and 3rd moments of the degree

distribution: µL = µG + ρ

√(
κ1κ3−κ2

2

κ1

) [
κ−1 − (κ1)

−1
]
3



Proof. Define the moments of the degree distribution as: κm = 1
N

∑
iD

m
i . Since we defined ρ the measure of inversity

as the correlation of two distributions that we specify as the origin degree (O) and inverse desitnation degree (ID)

distributions. The O distribution consists of the degree of nodes corresponding to edges, and ID distribution consists

of the inverse degree of nodes corresponding to edges. Thus, each connection (edge) contributes two entries to each

distribution. For example, if there is a connection between i and j, i.e. eij = 1, we would have
(
Di,

1
Dj

)
and(

Dj ,
1
Di

)
. Observe that each individual appears in both distributions multiple times based on degree.

Next, we detail the mean and variance of the distributions. First, we consider the means. The mean of the origin

distribution is µO = 1
2|E|

∑
iD

2
i =

µ2
D+σ2

D

µD
= µG = κ2

κ1
. Similarly, the ID mean is µID = 1

2|E|
∑
iDi

(
1
Di

)
= 1

µD
.

Next, consider the variances. The variance of the origin distribution (O) is computed as:

σ2
O =

1

2|E|
∑

(i,j)∈E

(Di − µO)
2

=
1

2|E|
∑
i∈V

Di (Di − µO)
2

=
1

NµD

∑
i∈V

[
D3
i − 2µOD

2
i + (µO)

2
Di

]
=
κ3
κ1
−
(
κ2
κ1

)2

Next, we express the corresponding variance of the inverse destination degree distribution (ID), σ2
ID. Again, recall that

1
Di

does not appear just once, but Di times. Therefore, we have:

σ2
ID =

1

2|E|
∑

(i,j)∈E

[(
1

Dj
− 1

µD

)2
]

=
1

2|E|
∑

(i,j)∈E

(
1

D2
j

+
1

µ2
D

− 2

µDDj

)

=
1

2|E|

 ∑
(i,j)∈E

1

D2
j

+
1

µ2
D

 ∑
(i,j)∈E

1

− 2

µD

∑
(i,j)∈E

1

Dj

 =
1

2|E|

∑
j∈V

1

Dj
+

1

µ2
D

2|E| − 2

µD
N


=

1

µDN

∑
j∈V

1

Dj

− 1

µ2
D

= (κ1)
−1
[
κ−1 − (κ1)

−1
]

4



We next turn to the inversity and based on the definition we connect it to the local and global means and the degree

distribution.

ρ =

(
1

2|E|σOσID

) ∑
(i,j)∈E

eij

[
(Di − µO)

(
1

Dj
− 1

µD

)]

(NµDσOσID) ρ =

 ∑
(i,j)∈E

eij

(
Di

Dj

)
− µO

 ∑
(i,j)∈E

1

Dj

− 1

µD

∑
(i,j)∈E

Di +
∑

(i,j)∈E

eij

(
µO
µD

)
=

N (µL)− µO ·N −
1

µD

∑
(i,j)∈E

Di +
∑

(i,j)∈E

eij

(
µO
µD

)
=

(NµL)−NµO −
1

µD

∑
(i,j)∈E

Di + 2|E|
(
µO
µD

)
=⇒ µL = µG + ρ · µD · σOσID

Finally, substituting µD = κ1 and the expressions for the variances, we obtain:

µL = µG + ρ

√(
κ1κ3 − κ22

κ1

)[
κ−1 − (κ1)

−1
]

(6)

Theorem S5. The expected degree of nodes chosen by global strategy is the global mean.

Proof. To determine the expected degree of a node chosen by the global strategy: Choose M = 1 node initially, (say

X). With probability q, choose each neighbor of X. For a node k with degree Dk, the probability of being chosen by

this process is the first step when any of k’s friends is chosen as the initial node, and the second step is k being chosen

with probability q. This probability is pk = 1
N Dk × q = qDk

N . The expected degree of a chosen “seed” node is then

the degree-weighted probability:

∑
k∈V pkDk∑
k∈V pk

=

∑
k∈V

1
N q D

2
k∑

k∈V
1
N q Dk

=
1
N

∑
k∈V D

2
k

1
N

∑
k∈V Dk

=
µ2
D + σ2

D

µD
= µG

Similar logic applies if we choose any arbitrary initial sample of size M as long as the network is large, i.e. N �M .

Observation. Denote an undirected tie (a, b) as a connection between nodes a and b. For any network with a given

distribution of degrees, the distribution of degrees is unchanged if any two ties (a, b) and (c, d) are rewired to either (i)

(a, c),(b, d) or (ii) (a, d),(b, c).
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Each of these nodes loses one tie and gains another and therefore the degrees are unchanged.

Theorem S6. [Rewiring Theorem] Let network G = (V,E) with N > 3 nodes include nodes a, b, c, d with degrees

ordered as: Da ≤ Db < Dc ≤ Dd. If G containing edges (a, b), (c, d) ∈ E, but (a, d), (b, c) /∈ E is rewired to

network G′ = (V,E′), containing edges (a, d), (b, c) ∈ E′, but (a, b), (c, d) /∈ E′, then G′ has higher local mean than

G, but both networks have the same global mean.

Proof. First, observe that the degree distribution is unaffected by the change, and therefore the global mean (which only

depends on mean and variance of the degree distribution) is also unaffected, i.e. µG(G) = µG(G′). Recall that the local

mean is µL = 1
N

∑
i

∑
j eij

[
Di

Dj
+
Dj

Di

]
. Since between G and G′ the degrees of all nodes are the same, and all edges

are the same except the two rewired edges, we can write the difference between the local means the local means as:

µL(G′)− µL(G) =
1

N

[(
Da

Dd
+
Dd

Da
+
Db

Dc
+
Dc

Db

)
−
(
Da

Db
+
Db

Da
+
Dc

Dd
+
Dd

Dc

)]
=

1

N

[
(Dd −Db)

(
1

Da
− 1

Dc

)
+ (Dc −Da)

(
1

Db
− 1

Dd

)]
> 0

The last inequality follows from the ordering of the node degrees. Note that we actually only require the conditions

Db < Dd and Da < Dc to hold.
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S.C Data on Real Networks
We use a wide variety of real networks to determine properties and illustrate of the networks as it relates to the

interventions detailed in the paper. We use data from two repositories.

S.C.1 Koblenz Network Collection
The networks are selected across several categories (Affiliation, Face-to-face Social, Online Social, Computer, In-

frastructure and Biological networks), and span a wide range in network characteristics like size and density (Table

S2). These networks also vary widely in terms of their size, from a low of 25 to networks with millions of nodes (e.g.

Youtube). All network data was obtained from the Koblenz Network Collection [27]. We examine these real networks

on a number of dimensions, the number of nodes, edges and the variation in the degree distribution.
Table S2: Real Network Characteristics

Label Network Name Nodes Edges Min Degree Max Degree
Collaboration

A1 Actor-Movie 383640 1470338 1 655
A2 Club Mmebers 25 91 3 20
A3 Citation (Physics) 28045 3148413 1 4909
A4 Citation (CS) 317080 1049865 1 343

Face-toFace Interaction
FS1 Physician 117 464 2 26
FS2 Adolescent 2539 10454 1 27
FS3 Contact 274 2124 1 101
FS4 Conference 410 2765 1 50

Online Social
OS1 PGP Users 10679 24315 1 205
OS2 Flickr 105722 2316667 1 5425
OS3 Advogato 5042 40509 1 803
OS4 Twitter 465016 833539 1 677
Topology of Computer Networks

C1 Internet Topology 34761 107719 1 2760
C2 WWW (Google) 855802 4291352 1 6332
C3 Gnutella P2P 62561 147877 1 95

Infrastructure
I1 Power Grid 4941 6593 1 19
I2 US Airports 1572 17214 1 314
I3 CA Roads 1957027 2760387 1 12

Biological
B1 Human Protein 1 2783 6222 1 129
B2 Human Protein 2 5973 146385 1 855
B3 Yeast Protein 1458 1970 1 56
B4 C. Elegans 453 2033 1 237

S.C.2 India Village Networks

In addition, we also use data from N = 75 villages in India made publicly available (see [4] for details). The summary

statistics for those village household networks are detailed in Table S3.

Table S3: Summary Statistics of Village Networks
Network Statistic Mean SD Min Max
Number of households 216.69 61.22 77 356
Number of (undirected) edges 993.31 348.77 334 2015
Density 0.05 0.02 0.02 0.11
Degree Mean 9.10 1.573 6.13 12.78
Degree Variance 52.03 19.88 27.80 124.56
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S.D Individual Friendship Paradox

A basic view of the friendship paradox is developed by plotting the average number of friends (degree) of individual

nodes’ “friends” on the vertical axis against the average degree (Fig. S2, Fig. S3). For example, in the Contact (In

person Social) network, we see a deep blue region above and to the left of the 45◦ line. Although present across all

networks, the pattern is most prominent in the WWW (Google) or Twitter (Online Social) network. Observe also that in

the Road Network, only ∆ = 37% of nodes have a higher average number of friends of friends than their own degree.
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Figure S2: Friendship Paradox at Individual Level. Density plot of average number of friends of nodes compared to node degree
in networks. ∆ indictes the proportion of nodes that have a higher average number of friends of friends than their degree. Lowest
density regions within each network are marked by white / orange, and highest density regions are marked in blue. For all networks,
the highest density region lies above and to the left of the 45 degree line. For some networks like Adolescent Health or Road Network
(CA), it is relatively more evenly distributed both above and below the 45 degree line, whereas for networks like Internet Topology or
Twitter, the distribution is skewed above and to the left.

We illustrate this “individual friendship paradox” using a scatterplot of the node degree versus the average friend

degree in Figure S3. Nodes that have a higher degree than their average friends do are colored red, whereas nodes that

have lower degree are colored blue. Across most real networks, we observe that the blues vastly outnumber the reds.

Relatedly, there are several nodes with low degrees whose friends on average have a high degree.
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Figure S3: Individual Friendship Paradox. Empirical Cumulative Distribution Functions (CDF) of Real Networks. Panels show the
CDF of 3 different network properties at the individual node level. For a specific node degree, the probability that a node with a
lower (or identical) degree is chosen by the sampling strategy for random sampling (gray), local FoF sampling (red) and global FoF
sampling (green). Across all networks, for lower degrees, the random sampling curve is to the left of the local and global FoF curves.
In several networks, global FoF is to the left and higher than local FoF (e.g. Contact), whereas in others, it is to the right (e.g. Flickr).
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S.E Leverage in Generated Networks
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Figure S4: Local Leverage Density in Generated Networks from three different generative models, and spans the parameter space.
A sample of 1,000 networks was used for each of the models. (A) Erdos-Renyi (ER) networks generated with edge probabilities,
p ∈ [0.05, 0.95], and size ranging from N=50 to N=1000 nodes. We find that local leverage is highest for the lowest edge probabilities,
and leverage converges to 1 as the networks become more dense. (B) Static Scale Free (BA or Barabasi Albert) networks with
scale-free parameter γ ∈ [1, 6]. For these networks, observe that the leverage spans a wider range, e.g. for γ = 2, the samples range
from leverage of 1 to over 40. The mean leverage is non-monotonic in terms of γ, increasing when γ < 2 and decreasing for γ > 2.
The distribution of leverage across the samples also displays decreasing variance when γ > 2. At very high levels of γ ≈ 6, the
local mean converges to the mean degree. With small world (Watts-Strogatz) networks, we have two parameters. First is the number
of neighbors each node is connected to initially, n. The edges are then rewired with a specified probability, pr . First, in panel (C), we
find that with a small number of neighbors, the leverage distribution is quite spread out, and there is a substantial leverage effect.
However, as we begin to create very dense networks, both the mean and the variance of the leverage distribution leverage diminish
substantially. Second, we examine the impact of rewiring probability on the leverage distribution in panel (D). We find that with
lower rewiring probabilities, say pr = 0.05, the leverage distribution is closer to 1, whereas with a higher rewiring probabilities, the
distributions feature increased variance as well as higher mean leverage.
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S.F How Is Inversity Different from Degree Assortativity?

A natural question is whether inversity captures the same information (with opposite sign) as degree assortativity, which

is a well known network property ρa = Corr
(
DO, DD

)
capturing the correlation in degree across all edges in the

network [30, 31, 37]. To examine this question, we generate 1000 networks using different generative methods as above.

We find that assortativity and inversity are not guaranteed to have opposite signs (Fig. S5A). Therefore, the sign of

assortativity cannot be used to determine whether the local or global mean is greater for a network, unlike with inversity.

All 3 network generating processes create networks with the same sign for both metrics (detail in Fig. S5B). Example

networks for the case of same sign assortativity and inversity are illustrated (Fig. S5C, S5D), showing that it is not

obvious to predict inversity of a network if we know its assortativity.
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Figure S5: Assortativity and Inversity. N=1000 networks are generated from three classes of networks. (A) Erdos-Renyi (ER),
Scale Free (BA or Barabasi Albert) and Small World (WS or Watts Strogatz), parameters detailed in legend of Figure S4. Observe
the regions in red and blue, where networks have the same sign of assortativity and inversity. (B) Detailed view of region around
(0,0) showing all three network types can produce networks with same sign for assortativity and inversity. (C) Example network with
N=7 nodes where assortativity and inversity are both positive. (D) Similar example where both measures are negative. Overall, it
demonstrates that inversity and assortativity are not equivalent measures, e.g. using assortativity in place of inversity could result in
using a global strategy when local may be more appropriate.
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S.G Virus Propagation Models

We detail below several examples of virus propagation models being used for characterizing the transmission and

spread of diseases. These models build upon the early work of Kermack and McKendrick [29]. All individuals in a

population (in our case, the nodes in a network) are in one of the states, either susceptible (S) or infected (I). Based on

the viral propagation, they can move to other states like Exposed (X), Recovered (R), or Deceased (D). For example,

the SIR model involves individuals being in one of three states, (S), (I) or (R) and transitioning between the states

probabilistically. Typically, the vast majority of nodes are present in the susceptible state (S), in which they might

contrast the disease. The exposed state (X) is used to indicate a node that has been exposed to the disease, but could

be asymptomatic during an incubation period and is not capable of infecting others. In contrast, the infected state (I)

indicates a node that is capable of infecting others. The (R) recovered state implies permanent immunity. There are

further extensions possible, e.g. adding infants who have maternal antibodies (state M) that provide passive immunity.

See [8] or [20] for an overview and survey of these models. These models have been extensively used in epidemiological

studies to characterize disease dynamics as detailed in Table S4, including measles, influenza and COVID-19.

There has been recent notable work that aims to characterize the epidemic thresholds of these compartmental models

with disease transmission over a network [13, 33]. The critical idea is that the epidemic threshold of a network can be

characterized as the inverse of the greatest (first) eigenvalue of the adjacency matrix A of the network, denoted as:

τ(A) =
1

λ1(E)

.

Eigenvalue λ1 termed the spectral radius characterizes the connectivity of the network graph. Thus, networks that have

higher connectivity or λ1 are more likely to allow a contagion different paths to grow into an epidemic, whereas in

networks with low connectivity, the epidemic is more likely to die out.

While there have been a number of epidemic thresholds for specific network generating processes (e.g. small world),

the generality of the result above is valuable since it allows: (a) any arbitrary network, without placing restrictions on its

topology or structure, (b) a wide range of compartmental models like SIS, SIR and others detailed in Table S4 typically

used to model infectious disease.

Consider a SIR model for illustration, the results also hold for the other models. The model is parametrized by two

rates: β is the probability of an infected node infecting a susceptible node in a given time period, and δ is the probability

at which an infected node recovers (or is cured) during the period. If time is continuous, β and δ can be viewed as the

rates of infection and recovery. In either case,R0 is defined as R0 =
β

δ
.
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The epidemic threshold τ is defined as follows [13]:


R0 =

β

δ
< τ(E) =⇒ infection dies out over time

R0 =
β

δ
> τ(E) =⇒ infection grows over time

There are a few observations relevant here. First, the critical value of epidemic threshold is a function of the adjacency

matrix E of the network topology (structure) G. Second, a network topology with a higher epidemic threshold is less

likely to have an epidemic. Third, interventions like immunizing nodes or reducing the number of connections (edges)

can increase the threshold τ(E) so that infections are more likely to die out.

Table S4: Virus Propagation Models Used for Diseases

Virus Propagation Model Infectious Diseases [References]
SIS Malaria ([39])
SIR Measles [19], Swine Flu H1N1 [38], Ebola [6]
SXIR Chicken Pox [15], SARS [36], COVID-19 [35]
SIRD COVID-19 ([9])

Note: The states refer to (S)usceptible, (I)nfectious, (R)ecovered / (R)emoved, (X)Exposed, (D)eceased

Implementation of VPM

We begin with a seed set of 1% of the nodes being infected, and evaluate epidemic outcomes using the SIR model. All

the nodes in the network that are not infected or recovered are susceptible (S) to the infection. Each infected node

can transmit an infection in each period probabilistically to each of its neighbors. The probability of an infection

is Ptransmit = β. Thus, a node can become infected (I) from contact with any of its neighbors. In each period, an

infected node can be cured or recovered (R) probabilistically, with the likelihood Pcure = δ. Recovered nodes cannot be

reinfected and cannot transmit infections.

The process of immunizing (or vaccinating) a set of nodes involves choosing a proportion of nodes (5%, or 10% or

20%) and ensuring that these nodes do not transmit any disease. The nodes for immunization are chosen based on three

strategies: random, local and global. The parameters used in the simulation of the epidemic are detailed in Table S5.
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Table S5: Parameters of SIR Network Propagation Model

Parameter Value Description
Ptransmit = β 0.20 Probability of an infected node transmitting the disease to a susceptible

neighbor.
Pcure = δ 0.15 Probability of an infected node recovering. Thus, moving from (I) =⇒

(R) is PI→R = Pcure, and PI→I = 1− Pcure

P kS→I 1− (1− β)N
infected
k Probability of a susceptible node k becoming infected. Depends on the

number of infected neighbors N infected
k . Thus, k can become infected

through any of its infected neighbors. So we have: P kS→I = 1− (1−
Ptransmit)

N infected
k . Similarly, P kS→S = (1− Ptransmit)

N infected
k .

n0infected 1% Proportion of nodes in network that are infected at the beginning
nsim 100 Number of simulations

Note: (S)usceptible, (I)nfectious, (R)ecovered / (R)emoved

Thus, a strategy A is better than an alternative strategy B if it results in lowers levels of peak infections, total infections

and total suffering.

S.H Epidemic Outcomes

In Figure S6, we examine the epidemic propagation characteristics on the Facebook network [45] using the same

parameters as detailed in Table S5. The epidemic could either be viewed as an informational epidemic propagating

through Facebook. Alternatively, one might consider the Facebook network structure to serve as an approximation of

contact network for the purposes of this evaluation.

We evaluate epidemics using the following metrics:

• Proportion Infected at Peak = 1
N maxt(

∑
i Iit): Since epidemics increase in intensity and eventually die

down, an important characteristic is to measure the proportion of the population who are infected at the peak

of the epidemic. This directly impacts important decisions like hospital capacity planning etc.

• Proportion Ever Infected = 1
N

∑
i maxt(Iit): The proportion of the population that was ever infected by the

disease is important since it represents the total spread of the disease in the population. It could also represent

the number of people who might have immunity to future recurrences of the disease.

• Total Suffering: 1
NT

∑
i

∑
t(Iit) Here, the total suffering metric captures not just how many infections occur,

but also the length of the infections. This represents the proportion of individual-period combinations with an

infection.

For the Facebook network sample, we find that an epidemic’s outcomes are better when using the local strategy

compared to the global strategy, which in turn in are better than the random strategy. This conclusion holds for all the

metrics considered above.
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Figure S6: Epidemic Outcomes with Immunization in Facebook Network. See Table S5 for parameters of simulation. All outcomes
are density plots. We plot 3 outcomes: (a) the proportion of population infected at the peak, (b) proportion of population that was
ever infected, and (c) total suffering. The x-axis represent proportions and the y-axis represent density. We plot the outcomes for 3
strategies: (R)andom, (L)ocal and (G)lobal. The dashed vertical lines represent the means for the 3 strategies. We find that for the
Facebook network, the Local strategy is better for all outcomes than the Global, which in turn is better than the Random strategy.

16


	Local and Global Mean in Example Network
	Mathematical Appendix
	Data on Real Networks
	Koblenz Network Collection
	India Village Networks

	Individual Friendship Paradox
	Leverage in Generated Networks
	How Is Inversity Different from Degree Assortativity?
	Virus Propagation Models
	Epidemic Outcomes

